CN101496718B - Carotid pulse wave detection sensor adjustment device - Google Patents
Carotid pulse wave detection sensor adjustment device Download PDFInfo
- Publication number
- CN101496718B CN101496718B CN2009100145048A CN200910014504A CN101496718B CN 101496718 B CN101496718 B CN 101496718B CN 2009100145048 A CN2009100145048 A CN 2009100145048A CN 200910014504 A CN200910014504 A CN 200910014504A CN 101496718 B CN101496718 B CN 101496718B
- Authority
- CN
- China
- Prior art keywords
- sensor
- neck
- neck pillow
- arc
- pressure
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
Abstract
本发明提供了一种颈动脉脉搏波检测传感器调整装置,包括颈枕、大臂、小臂、传感器连接体和传感器;颈枕上面设有支撑颈部的弧形支承面,颈枕内设有弧形轨道;大臂安装在颈枕的弧形轨道中,一端伸出弧形轨道;小臂的一端与大臂伸出颈枕弧形轨道的一端通过小臂锁紧轴铰接在一起,小臂的另一端与传感器连接体通过连接体锁紧轴铰接在一起,传感器安装在传感器连接体上。检测时,传感器输出端与信号采集装置相连,输出的信号进入计算机,进行后续处理。本发明使被检测者的颈部枕在颈枕上,使得颈部自然伸展,颈动脉充分暴露,有效地减轻被检测者的疲劳感,在维持被检测者处于自然状态的同时,实现颈动脉脉搏波快速、准确的无创检测获取。
The invention provides a carotid pulse wave detection sensor adjustment device, which comprises a neck pillow, a big arm, a small arm, a sensor connection body and a sensor; Arc-shaped track; the big arm is installed in the arc-shaped track of the neck pillow, and one end protrudes from the arc-shaped track; one end of the forearm and the end of the big arm protruding from the arc-shaped track of the neck pillow are hinged together through the forearm locking shaft. The other end of the arm is hinged with the sensor connection body through the connection body locking shaft, and the sensor is installed on the sensor connection body. During detection, the output terminal of the sensor is connected with the signal acquisition device, and the output signal enters the computer for subsequent processing. The invention makes the subject's neck pillow on the neck pillow, so that the neck stretches naturally, the carotid artery is fully exposed, effectively reduces the fatigue of the subject, and realizes carotid artery pulse while maintaining the subject in a natural state. Wave fast and accurate non-invasive detection acquisition.
Description
技术领域technical field
本发明涉及一种用于检测颈动脉脉搏波的传感器调整装置,属于生物医学工程的人体信号检测技术领域。The invention relates to a sensor adjustment device for detecting carotid pulse waves, which belongs to the technical field of human body signal detection in biomedical engineering.
背景技术Background technique
与外周动脉相比,作为体表可触及的中央大动脉,颈动脉更能直接的反映心脏和中心动脉的状态,如根据颈动脉脉搏波形的反射波压力和主波压力得到的增强指数能定量反映整个动脉系统的总体弹性,根据舒张期段颈动脉脉搏波形的衰减指数得到的心输出量能定量反映心泵功能,根据颈动脉脉搏波形上特征点(如起点和切迹点)与心源信号上对应点间的时间间隔得到的脉搏波传播速度能定量反映心脏到颈动脉之间血管的弹性状况。同时,作为给脑部供血的主要大血管,颈动脉直接构成了心脏到脑的通路,脑血管状态的改变必然会耦合到颈动脉,如果把脑血管网看作心脏的负载,利用颈动脉压力和血流信息,就能综合评价脑循环功能和检测脑负载状态。所以颈动脉脉搏波形的准确获取是心脑血管疾病早期诊断的关键。Compared with the peripheral arteries, as the central aorta that can be touched on the body surface, the carotid artery can more directly reflect the state of the heart and central arteries, such as the enhancement index obtained from the reflected wave pressure and main wave pressure of the carotid pulse waveform can quantitatively reflect The overall elasticity of the entire arterial system, the cardiac output obtained according to the attenuation index of the carotid pulse waveform in the diastolic period can quantitatively reflect the heart pump function, according to the characteristic points (such as starting point and notch point) on the carotid pulse waveform and the cardiac source signal The pulse wave propagation velocity obtained from the time interval between the corresponding points above can quantitatively reflect the elastic state of the blood vessel between the heart and the carotid artery. At the same time, as the main large blood vessel supplying blood to the brain, the carotid artery directly constitutes the pathway from the heart to the brain. Changes in the state of cerebrovascular vessels will inevitably be coupled to the carotid artery. If the cerebral vascular network is regarded as the load of the heart, the carotid artery pressure And blood flow information, can comprehensively evaluate the cerebral circulation function and detect the state of brain load. Therefore, accurate acquisition of carotid pulse waveform is the key to early diagnosis of cardiovascular and cerebrovascular diseases.
但是,由于颈动脉所处位置的特殊性使得颈动脉脉搏波形的准确获取成为难题,进而限制了颈动脉压力信号的应用。颈动脉脉搏波检测中存在的难点主要包括:①检测点位置不易确定,颈动脉脉搏波检测对检测点位置要求比较高,太靠近远心端容易检测到分叉后的颈动脉,不利于综合评价颅内和颅外的脑血管状态,太靠近近心端颈动脉深埋于肌肉下,在体表不易于检测,应该选取颈动脉分叉前的颈总动脉处尽量远离颈动脉分叉部位,因为分叉处有颈动脉窦,其对外加压力的变化敏感会引起波形变形,而且此处易形成斑块,给检测带来新的困难;②外部施加压力不易确定,压力太小不能获得清晰的颈动脉压力波形,压力太大波形会发生变形,影响波形的真实性,而且长时间对颈动脉施加较大压力会造成脑部供血不足,使被检测者产生不适感;③传感器不易在颈部固定,由于气管和多条给脑部供血的大血管的存在使得在腕部和指端等部位广泛应用的固定方式不再适用。However, due to the particularity of the location of the carotid artery, it is difficult to accurately obtain the carotid artery pulse waveform, which limits the application of the carotid artery pressure signal. Difficulties in carotid pulse wave detection mainly include: ①The position of the detection point is not easy to determine. Carotid pulse wave detection has relatively high requirements for the position of the detection point. If it is too close to the distal end, it is easy to detect the bifurcated carotid artery, which is not conducive to comprehensive To evaluate the status of intracranial and extracranial cerebrovascular vessels, the carotid artery is too close to the proximal end and is buried under the muscle, so it is not easy to detect on the body surface. The common carotid artery before the bifurcation of the carotid artery should be selected as far away from the bifurcation of the carotid artery as possible , because there is a carotid sinus at the bifurcation, which is sensitive to changes in external pressure and will cause waveform deformation, and plaques are easy to form here, which brings new difficulties to detection; ②The external pressure is not easy to determine, and the pressure is too small to obtain Clear carotid artery pressure waveform, if the pressure is too high, the waveform will be deformed, which will affect the authenticity of the waveform, and applying high pressure to the carotid artery for a long time will cause insufficient blood supply to the brain and make the subject feel uncomfortable; Neck fixation, due to the existence of the trachea and multiple large blood vessels that supply blood to the brain, the fixation methods widely used in the wrist and fingertips are no longer applicable.
现有的检测方法和装置主要有以下几种:①手持式:早期颈动脉脉搏波检测多采用检测者用手按压传感器背面将传感器紧贴在颈部的方式,手持式的检测方法虽然操作简便,但是不便于长时间操作,而且由于检测者对传感器施加的压力不稳定影响了波形的质量;②贴附式:如日本福田公司VS-1000动脉硬化检测仪中的颈动脉脉搏波形传感器,传感器被固定在具有一定粘性的贴片上,利用贴片的附着力将传感器固定在颈部,贴附式的检测方法解放了检测者的双手,但是由于没有对传感器施加一定的压力,传感器易受呼吸、体动等影响而随颈部皮肤上下波动,获得的波形不理想。③夹子式:如日本欧姆龙科林-全自动动脉硬化检测仪BP203RPE-II(VP-1000)中的颈动脉压力检测装置中的颈动脉脉搏波检测部件和韩国翰博PP-1000动脉硬化及血管疾病检测系统中的颈动脉脉动传感器,传感器被固定在夹形支架的前端,通过夹子的弹性将传感器夹在颈部,夹子式的检测方法虽然解决了传感器固定的问题,但由于对传感器施加压力的大小完全由被检测者颈部的尺寸和夹子的弹性决定,所以对于固定的被检测者施加压力不可调,满足不了临床使用的要求;④绑缚式:如中国专利文献公开号CN1393203A公开的《动脉硬化评价设备》、公开号CN1428129A公开的《动脉硬化评估仪器》和公开号CN1432337A公开的《动脉硬化评估仪器》中所公开的借助于带子将压力脉波检测器佩戴到被检测者颈部上;又如中国专利文献公开号CN1226812A公开的《脉搏检测装置、搏动检测装置及压力检测装置》中所公开的传感器被固定于由弹性体形成弯曲成圆弧状的领子上,领子配置于衣领内侧,绑合于被测者的颈部周围,领子的周长可以调节,据此调节绑合颈部的力,绑缚式的方式虽然可靠,但在颈部使用会使检测对象产生不适感。The existing detection methods and devices mainly include the following types: ①Hand-held: Early carotid pulse wave detection mostly uses the way that the detector presses the back of the sensor with his hand and sticks the sensor to the neck. Although the hand-held detection method is easy to operate , but it is inconvenient to operate for a long time, and the quality of the waveform is affected by the unstable pressure exerted by the detector on the sensor; It is fixed on a sticky patch, and the sensor is fixed on the neck by using the adhesive force of the patch. The sticky detection method liberates the hands of the tester, but because there is no certain pressure on the sensor, the sensor is susceptible to damage. Respiration, body movement and other influences fluctuate with the neck skin up and down, and the waveform obtained is not ideal. ③Clip type: such as the carotid artery pulse wave detection part in the carotid artery pressure detection device in Japan's Omron Kelin-Automatic Arteriosclerosis Detector BP203RPE-II (VP-1000) and Korea Hanbo PP-1000 Arteriosclerosis and Vascular For the carotid pulse sensor in the disease detection system, the sensor is fixed on the front end of the clip-shaped stent, and the sensor is clamped to the neck by the elasticity of the clip. Although the clip-type detection method solves the problem of sensor fixation, due to the pressure on the sensor The size of the test is completely determined by the size of the neck of the subject and the elasticity of the clip, so the pressure applied to the fixed subject cannot be adjusted, which cannot meet the requirements of clinical use; "Arteriosclerosis Evaluation Equipment", Publication No. CN1428129A disclosed "Arteriosclerosis Evaluation Instrument" and Publication No. CN1432337A disclosed "Arteriosclerosis Evaluation Instrument" discloses that the pressure pulse wave detector is worn on the neck of the subject by means of a belt on; and as disclosed in the Chinese Patent Literature Publication No. CN1226812A "Pulse Detection Device, Pulse Detection Device and Pressure Detection Device", the sensor is fixed on the collar formed by the elastic body and bent into an arc shape, and the collar is arranged on the clothes The inside of the collar is bound around the neck of the subject. The circumference of the collar can be adjusted, and the force of binding the neck can be adjusted accordingly. Although the binding method is reliable, it will cause discomfort to the test subject when used on the neck feel.
发明内容Contents of the invention
本发明针对现有颈动脉脉搏波检测技术存在的不足,提供一种颈动脉脉搏波检测传感器调整装置,该装置在维持被检测者处于自然状态的同时,实现颈动脉脉搏波快速、准确的无创获取,解决了颈动脉脉搏波检测过程中存在的检测点位置不易确定、外部施加压力不易确定和传感器不易在颈部固定的问题。The present invention aims at the deficiencies in the existing carotid pulse wave detection technology, and provides a carotid pulse wave detection sensor adjustment device. The acquisition solves the problems that the position of the detection point is difficult to determine, the external pressure is difficult to determine, and the sensor is difficult to fix on the neck in the process of carotid pulse wave detection.
本发明的颈动脉脉搏波检测传感器调整装置采用以下技术方案:The carotid pulse wave detection sensor adjustment device of the present invention adopts the following technical solutions:
该颈动脉脉搏波检测传感器调整装置包括颈枕、大臂、小臂、传感器连接体和传感器;颈枕上面设有支撑颈部的弧形支承面,颈枕内设有弧形轨道;大臂安装在颈枕的弧形轨道中,一端伸出弧形轨道;小臂的一端与大臂伸出颈枕弧形轨道的一端通过小臂锁紧轴铰接在一起,小臂的另一端与传感器连接体通过连接体锁紧轴铰接在一起,传感器安装在传感器连接体上。检测时,传感器输出端与信号采集装置相连,输出的信号进入计算机,进行后续处理。The carotid pulse wave detection sensor adjustment device comprises a neck pillow, a big arm, a forearm, a sensor connecting body and a sensor; the neck pillow is provided with an arc-shaped support surface for supporting the neck, and the neck pillow is provided with an arc-shaped track; the big arm Installed in the arc track of the neck pillow, one end protrudes from the arc track; one end of the forearm and the end of the upper arm protruding from the arc track of the neck pillow are hinged together through the forearm locking shaft, and the other end of the forearm is connected to the sensor The connecting body is hinged together through the connecting body locking shaft, and the sensor is installed on the sensor connecting body. During detection, the output end of the sensor is connected with the signal acquisition device, and the output signal enters the computer for subsequent processing.
颈枕内的弧形轨道贯通颈枕两端,大臂能够由弧形轨道的任一端装入颈枕。The arc-shaped track in the neck pillow runs through both ends of the neck pillow, and the big arm can be loaded into the neck pillow from any end of the arc-shaped track.
颈枕的侧面设有用于锁紧大臂的锁紧把手。The side of the neck pillow is provided with a locking handle for locking the upper arm.
传感器连接体可以只是一个安装传感器的连接件,也可以在该传感器连接体内设有能够调整传感器施加压力的压力调节机构。The sensor connecting body may be just a connecting piece for installing the sensor, or a pressure regulating mechanism capable of adjusting the pressure applied by the sensor may be provided in the sensor connecting body.
传感器连接体内的压力调节机构是由安装在连接体上的传动轴和安装在连接体内的传动套组成的螺旋移动机构,传动轴与传动套螺纹连接。可在传动轴的上端设有压力调节旋钮。传感器安装在传动套的下端,传感器的非感应面与传动套相连。通过转动传动轴带动传动套和固定在传动套上的的传感器上下移动,实现调节施加于颈动脉上的压力。The pressure regulating mechanism in the connecting body of the sensor is a screw moving mechanism composed of a transmission shaft installed on the connecting body and a transmission sleeve installed in the connecting body, and the transmission shaft is threadedly connected with the transmission sleeve. A pressure adjustment knob may be provided on the upper end of the transmission shaft. The sensor is installed at the lower end of the transmission sleeve, and the non-inductive surface of the sensor is connected with the transmission sleeve. The pressure applied to the carotid artery is adjusted by rotating the transmission shaft to drive the transmission sleeve and the sensor fixed on the transmission sleeve to move up and down.
传感器采用压阻式压力传感器,传感器的感应部分为直径8mm~10mm有一定凸起的圆弧面,输出的信号中包含表征脉搏搏动情况的交流量和表征施加于检测部位外力大小的直流量,设置传感器中电桥电阻的阻值,使输出的脉搏波波形稳定时输出的直流量刚好为零或者处于零附近的一个很小的范围内,以此直流量数值作为指示外加压力是否调节合适的参考值。The sensor adopts a piezoresistive pressure sensor. The sensing part of the sensor is a circular arc surface with a diameter of 8mm to 10mm. The output signal includes the AC quantity representing the pulse and the DC quantity representing the external force applied to the detection part. Set the resistance value of the bridge resistance in the sensor so that when the output pulse wave waveform is stable, the output DC flow is just zero or in a small range near zero, and the DC flow value is used as an indication of whether the external pressure is adjusted properly. Reference.
本发明使被检测者的颈部枕在颈枕上,使得颈部自然伸展,颈动脉充分暴露,不但有利于波形稳定而且可以有效地减轻被检测者的疲劳感,在维持被检测者处于自然状态的同时,实现颈动脉脉搏波快速、准确的无创检测获取,解决颈动脉脉搏波检测过程中存在的检测点位置不易确定,外部施加压力不易确定和传感器不易在颈部固定的问题。The invention makes the subject's neck rest on the neck pillow, so that the neck stretches naturally, and the carotid artery is fully exposed, which not only helps to stabilize the waveform, but also can effectively reduce the fatigue of the subject, and maintain the subject in a natural state. At the same time, it realizes fast and accurate non-invasive detection and acquisition of carotid pulse wave, and solves the problems that the position of the detection point in the detection process of carotid pulse wave is difficult to determine, the external pressure is difficult to determine, and the sensor is difficult to fix on the neck.
附图说明Description of drawings
图1是本发明的颈动脉脉搏波检测传感器调整装置使用状态示意图。Fig. 1 is a schematic diagram of the use state of the carotid pulse wave detection sensor adjustment device of the present invention.
图2是本发明实施例1的颈动脉脉搏波检测传感器调整装置的结构分解主视图。Fig. 2 is an exploded front view of the structure of the carotid pulse wave detection sensor adjustment device according to
图3是本发明实施例1的颈动脉脉搏波检测传感器调整装置的结构分解后视图。Fig. 3 is an exploded rear view of the carotid pulse wave detection sensor adjustment device according to
图4是本发明实施例1检测右侧颈动脉的示意图。Fig. 4 is a schematic diagram of detecting the right carotid artery according to
图5是本发明实施例1检测左侧颈动脉的示意图。Fig. 5 is a schematic diagram of detecting the left carotid artery according to
图6是本发明实施例2的颈动脉脉搏波检测传感器调整装置的结构分解主视图。Fig. 6 is an exploded front view of the carotid pulse wave detection sensor adjustment device according to
图7是本发明实施例2的颈动脉脉搏波检测传感器调整装置的结构分解后视图。Fig. 7 is an exploded rear view of the carotid pulse wave detection sensor adjustment device according to
图8是不同外加压力下检测到的颈动脉脉搏波波形的示意图。Fig. 8 is a schematic diagram of detected carotid pulse waveforms under different applied pressures.
图9是实施例2中传感器连接体内的压力调节机构的结构示意图。Fig. 9 is a structural schematic diagram of the pressure regulating mechanism in the sensor connecting body in
图10是图9所示压力调节机构使用状态示意图。Fig. 10 is a schematic diagram of the use state of the pressure regulating mechanism shown in Fig. 9 .
图11是实施例2检测右侧颈动脉的示意图。Fig. 11 is a schematic diagram of detecting the right carotid artery in Example 2.
图12是实施例2检测左侧颈动脉的示意图。Fig. 12 is a schematic diagram of detecting the left carotid artery in Example 2.
图13是本发明实施例3的颈动脉脉搏波检测传感器调整装置的结构分解主视图。Fig. 13 is an exploded front view of the carotid pulse wave detection sensor adjustment device according to
图14是本发明实施例3的颈动脉脉搏波检测传感器调整装置的结构分解后视图。Fig. 14 is an exploded rear view of the carotid pulse wave detection sensor adjustment device according to
图15是实施例3检测右侧颈动脉的示意图。Fig. 15 is a schematic diagram of detecting the right carotid artery in Example 3.
图16是实施例3检测左侧颈动脉的示意图。Fig. 16 is a schematic diagram of detecting the left carotid artery in Example 3.
其中:1、颈枕,2、大臂,3、小臂,4、传感器连接体,5、传感器,6、弧形轨道,7、锁紧把手,8、小臂锁紧轴,9、小臂锁紧旋钮,10、连接体锁紧轴a,11、连接体锁紧轴b,12、压力调节旋钮,13、支承面,14、颈枕右侧丝孔,15、颈枕左侧丝孔,16、锁紧凹槽,17、小臂锁紧孔a,18、小臂锁紧孔b,19、连接体锁紧孔,20、连接体锁紧丝孔,21、外壳,22、传动轴,23、传动套,24、保护盖,25、传感器感应部分,26、颈部,27、右侧颈动脉,28、左侧颈动脉,29、肩部,30、颈枕前表面。Among them: 1. Neck pillow, 2. Big arm, 3. Forearm, 4. Sensor connecting body, 5. Sensor, 6. Arc track, 7. Locking handle, 8. Forearm locking shaft, 9. Small Arm locking knob, 10, connecting body locking shaft a, 11, connecting body locking shaft b, 12, pressure adjustment knob, 13, supporting surface, 14, silk hole on the right side of the neck pillow, 15, silk hole on the left side of the neck pillow Hole, 16, locking groove, 17, forearm locking hole a, 18, forearm locking hole b, 19, connecting body locking hole, 20, connecting body locking thread hole, 21, shell, 22, Transmission shaft, 23, transmission sleeve, 24, protective cover, 25, sensor induction part, 26, neck, 27, right carotid artery, 28, left carotid artery, 29, shoulder, 30, front surface of neck pillow.
具体实施方式Detailed ways
实施例1Example 1
如图2和图3所示,本实施例的颈动脉脉搏波检测传感器调整装置包括:颈枕1、大臂2、小臂3、传感器连接体4和传感器5。As shown in FIG. 2 and FIG. 3 , the carotid pulse wave detection sensor adjustment device of this embodiment includes: a
颈枕1具有支撑颈部的支承面13,支承面13由多个弧面组成,贴合人体颈部曲线,整个支承面13的弧度大于成年男性颈部后侧曲面的弧度,保证被检测者的颈部能够全部容纳在支承面13内。颈枕1的高度能够保证被检测者的颈部枕在颈枕1上时头部自然后仰暴露颈部。为了缓和被检测者的颈部与支承面13直接接触产生的痛苦,最好在支承面13表面上贴附例如由海棉等弹性材料构成的缓冲垫。通过这样的辅助后仰结构,使得颈部自然伸展,颈动脉充分暴露,不但有利于波形稳定而且可以有效地减轻被检测者的疲劳感。The
颈枕1的内部设有贯通整个颈枕的弧形轨道6(图2中虚线部分),大臂2也呈与弧形轨道6一致的弧形。弧形轨道6的尺寸与大臂2尺寸相吻合,便于大臂2沿弧形轨道6顺畅滑动。在颈枕1一端的侧面上设有一个通入弧形轨道的螺丝孔,即颈枕右侧丝孔14,在这个螺丝孔中装有锁紧把手7。当大臂2装入弧形轨道6内时,锁紧把手7的里端能够处在大臂2侧面的锁紧凹槽13内,旋紧锁紧把手7即可使大臂2在所需位置固定住,实现可靠锁紧。The inside of the
大臂2露在颈枕1外的一端设有小臂锁紧孔a17,小臂3的一端设有小臂锁紧孔b18,小臂3的另一端设有连接体锁紧孔19。将小臂锁紧轴8穿过小臂锁紧孔a17和小臂锁紧孔b18,使小臂3通过小臂锁紧轴8安装在大臂2上,小臂3能够绕小臂锁紧轴8转动。小臂锁紧轴8上设有锁紧旋钮,拧紧锁紧旋钮即可限制小臂3的自由摆动,实现小臂3的可靠锁紧。大臂2的弧形直径大于成年男性颈部所在圆周的直径,保证被检测者的颈部能够全部容纳在颈枕1、大臂2和小臂3所组成的圆周内并且留有一定的可调节范围。One end of the
小臂3的另一端设有连接体锁紧孔19,传感器连接体4上设有连接体锁紧丝孔20,连接体锁紧轴a10和连接体锁紧轴b11穿过小臂3上的连接体锁紧孔19并拧进传感器连接体4上的连接体锁紧丝孔20使传感器连接体4安装在小臂3上,传感器连接体4可绕连接体锁紧轴a10和连接体锁紧轴b11转动,通过拧紧两个连接体锁紧轴a10和连接体锁紧轴b11限制传感器连接体4的自由摆动,实现可靠锁紧。本实施例的传感器连接体4只是一个用来安装传感器5的连接件。The other end of the
传感器5固定在传感器连接体4内,传感器5的非感应面与传感器连接体4内表面相连。传感器5与检测点接触的感应部分25为突起的圆弧面,便于实现传感器5与检测部位的单点接触,不会对气管和其它大血管造成压迫。The
图1给出了本实施例的使用状态示意图。利用本实施例的颈动脉脉搏波检测传感器调整装置可以在不改变被检测者检测体位的情况下,通过调节图2所示传感器5在A、B、C三个方向上的移动量并可靠锁定实现双侧颈动脉脉搏波的准确检测,A方向是大臂2在弧形轨道6内的移动方向,B方向是小臂3绕小臂锁紧轴8的转动方向,C方向是传感器连接体4的转动方向。FIG. 1 shows a schematic view of the use status of this embodiment. Using the carotid pulse wave detection sensor adjustment device of this embodiment, it is possible to adjust the movement amount of the
下面,参照图1、图2、图3、图4和图5对本实施例的操作步骤进行说明。Next, the operation steps of this embodiment will be described with reference to FIG. 1 , FIG. 2 , FIG. 3 , FIG. 4 and FIG. 5 .
使用时,将本实施例的传感器调整装置放置在检测床上,被检测者平躺在检测床上,其颈部26枕在颈枕1上,肩部29贴紧颈枕前表面30。首先,采用手指触摸或目测的方法找到所要检测颈动脉26一侧右侧颈动脉27或左侧颈动脉28的搏动最强点。其次,拧松锁紧把手7、小臂锁紧旋钮9、连接体锁紧轴a10和连接体锁紧轴b11使得传感器5可以在A、B、C三个方向上自由移动。然后,一手持大臂2一手持小臂3,同时调节大臂2在A方向上的伸缩量和小臂3在B方向上的摆动量,直到传感器5的感应部分25落到搏动最强点的正上方,旋紧锁紧把手7锁紧大臂2。接着,调节传感器连接体4在C方向上的摆动量使得传感器5与检测面相垂直,拧紧连接体锁紧轴a10和连接体锁紧轴b11锁紧传感器连接体4。最后,调节小臂3在B方向上的摆动量使得传感器5以一定的力压在右侧颈动脉27或左侧颈动脉28上,拧紧小臂锁紧旋钮9锁紧小臂,开始检测。通过以上步骤可以实现如图4所示的右侧颈动脉检测和图5所示的右侧颈动脉检测。图4所示的右颈总动脉检测和图5所示的右颈总动脉检测的操作步骤是相同的,只需根据颈动脉所处位置调节大臂2、小臂3和传感器连接体4的移动量使得传感器定位在所要检测一侧的颈动脉上方。When in use, the sensor adjustment device of this embodiment is placed on the detection bed, the person to be tested lies flat on the detection bed, his
实施例2Example 2
如图6和图7所示,本实施例的颈动脉脉搏波检测传感器调整装置与实施例1相比,用于固定传感器5的传感器连接体4的结构不同,本实施例的传感器连接体4内设有压力调节机构,增加了传感器5在D方向上的移动。As shown in Figure 6 and Figure 7, compared with
实验证明,在脉搏波检测过程中对动脉施加不同的压力会得到不同的脉搏波波形。如图8所示,压力太小不能获得清晰的颈动脉压力波形,压力太大波形会发生变形,影响波形的真实性,当外加压力调节适当时得到的脉搏波波形是最佳波形(图8中的3号波形),此时的外加压力是最佳压力。为了得到最佳波形,本实施例增加了能够调节外部施加压力的结构。Experiments have proved that different pulse wave waveforms can be obtained by applying different pressures to the arteries during the pulse wave detection process. As shown in Figure 8, if the pressure is too low, a clear carotid artery pressure waveform cannot be obtained, and if the pressure is too high, the waveform will be deformed, affecting the authenticity of the waveform. When the external pressure is properly adjusted, the pulse wave waveform obtained is the best waveform (Figure 8 Waveform No. 3 in), the applied pressure at this time is the optimum pressure. In order to obtain the best waveform, this embodiment adds a structure capable of adjusting externally applied pressure.
图9和图10给出了本实施例中传感器连接体4内的压力调节机构的结构,该压力调节机构是由安装在连接体上的传动轴22和安装在连接体内的传动套23组成的螺旋移动机构,传动轴22与传动套23螺纹连接。传动轴22的上端设有压力调节旋钮12,转动压力调节旋钮12,传动套23可在外壳21内上下移动。传感器5通过其非感应面连接在传动套23上。传感器连接体4在闲置状态(如图9所示)时,传动套23完全在连接体内,并在连接体的开口端安装保护盖24以保护传感器5。传感器连接体4的使用状态如图10所示,使用时,拿掉保护盖24,转动压力调节旋钮12,传动轴22转动使传动套23上下移动,固定在传动套23上的传感器5随之上下移动,使传感器5接触人体颈部26,上下转动传动轴22,即可调节传感器5施加于颈部26的压力,当压力调节合适时,停止转动压力调节旋钮12使得传感器5锁定在当前位置,开始检测。检测完毕,通过转动压力调节旋钮12到初始位置,使得传感器5全部缩进连接体内,并且将保护盖24盖在连接体的下端,实现对传感器5的有效保护。Figures 9 and 10 show the structure of the pressure regulating mechanism in the
传感器5与检测点接触的感应部分25为突起的圆弧面,便于实现传感器5与检测部位的单点接触,不会对气管和其它大血管造成压迫。传感器5采用压阻式压力传感器,输出的信号中包含表征脉搏搏动情况的交流量和表征施加于检测部位外力大小的直流量,设置传感器中电桥电阻的阻值,保证输出的脉搏波波形稳定时输出的直流量刚好为零或处于零附近的一个很小的范围内,以标定后直流量数值作为指示外加压力是否调节合适的参考值。The
本实施例可以在不改变被检测者检测体位的情况下,通过调节图6所示传感器5在A、B、C、D四个方向上的移动量并可靠锁定实现双侧颈动脉脉搏波的准确检测,D向为传感器5的上下移动方向。In this embodiment, without changing the detection position of the subject, by adjusting the movement amount of the
图11和图12给出了本实施例检测颈动脉脉搏波的示意图。在完成实施例1所述的操作步骤后,按图6所示调节传感器5在D方向上的移动量可以实现如图11所示右侧颈动脉检测和图12所示左侧颈动脉检测。Fig. 11 and Fig. 12 show the schematic diagrams of detecting the carotid artery pulse wave in this embodiment. After completing the operation steps described in
实施例3Example 3
本实施例的颈动脉脉搏波检测传感器调整装置与实施例1相比,除了用于固定传感器5的传感器连接体4的结构不同外,还增加了便于检测者自由选择床边操作位置的结构。本实施例采用与实施例2结构相同的带有压力调节机构的传感器连接体4。Compared with
如图13所示,弧形轨道6贯通颈枕1,在颈枕1两端各有一开口,大臂2可由任一个开口装入弧形轨道6内。由右端装入的示意图如图13和图14所示,由左端装入时的示意图如图15和图16所示。在颈枕1两端的侧面上各设有一个通入弧形轨道6的螺丝孔,即颈枕右侧丝孔14和颈枕左侧丝孔15,这两个螺丝孔可以装入锁紧把手7以便锁紧大臂2。这样可以便于检测者根据检测时周围环境的特点自由选择床边操作位置。As shown in FIG. 13 , the
本实施例的结构可以在不改变被检测者检测体位的情况下,根据检测床的摆放位置,操作环境的限制和操作者的操作习惯等条件由操作者自由选择操作位置。The structure of this embodiment allows the operator to freely select the operating position according to the position of the test bed, the limitation of the operating environment, and the operating habits of the operator without changing the position of the subject to be tested.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2009100145048A CN101496718B (en) | 2009-02-27 | 2009-02-27 | Carotid pulse wave detection sensor adjustment device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2009100145048A CN101496718B (en) | 2009-02-27 | 2009-02-27 | Carotid pulse wave detection sensor adjustment device |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101496718A CN101496718A (en) | 2009-08-05 |
CN101496718B true CN101496718B (en) | 2010-10-27 |
Family
ID=40944136
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2009100145048A Expired - Fee Related CN101496718B (en) | 2009-02-27 | 2009-02-27 | Carotid pulse wave detection sensor adjustment device |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101496718B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3788953A4 (en) * | 2018-05-01 | 2022-01-26 | Kyocera Corporation | Electronic device |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101703394B (en) * | 2009-11-25 | 2011-04-27 | 山东大学 | Radial artery pulse wave detection device |
CN101732040B (en) * | 2009-12-24 | 2013-03-27 | 中国科学院力学研究所 | Non-invasive multipath pulse wave detection device, system and analytical system |
LT6276B (en) * | 2014-10-13 | 2016-06-27 | Klaipėdos Universitetas | Carotin artery blood pressure and its pulse wave measuring device and system for calculation of augmentation index and carotid artery inner diameter and calculating method |
JP2019058320A (en) * | 2017-09-26 | 2019-04-18 | ヤマハ株式会社 | Pulse wave detection device |
US20200345244A1 (en) * | 2017-11-22 | 2020-11-05 | Kyocera Corporation | Electronic device |
WO2019133930A1 (en) * | 2017-12-29 | 2019-07-04 | Raydiant Oximetry, Inc. | Trans-abdominal fetal pulse oximetry and/or uterine tone determination devices and systems with adjustable components and methods of use thereof |
CN109528178B (en) * | 2018-11-15 | 2024-10-29 | 智美康民(珠海)健康科技有限公司 | Mechanical finger for pulse-taking instrument |
CN109480804A (en) * | 2018-12-04 | 2019-03-19 | 南京国科医工科技发展有限公司 | Pulse pressure method is most preferably taken for pulse wave detection |
CN111358689A (en) * | 2020-03-26 | 2020-07-03 | 商昌臣 | Clinical medical cardiopulmonary resuscitator of emergency department |
CN111887998B (en) * | 2020-08-11 | 2023-01-13 | 赵燕辉 | Urinary surgery operation diagnosis and treatment integrated device |
CN113786224B (en) * | 2021-09-15 | 2024-05-28 | 中国人民解放军海军军医大学第一附属医院 | Carotid artery compressor for operation of cerebral vascular disease interventional operation and compression method |
-
2009
- 2009-02-27 CN CN2009100145048A patent/CN101496718B/en not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3788953A4 (en) * | 2018-05-01 | 2022-01-26 | Kyocera Corporation | Electronic device |
Also Published As
Publication number | Publication date |
---|---|
CN101496718A (en) | 2009-08-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101496718B (en) | Carotid pulse wave detection sensor adjustment device | |
CN101703394A (en) | Radial pulse wave detection device | |
CN109890277B (en) | Blood pressure signal acquisition using an array of pressure sensors | |
US20180333056A1 (en) | Apparatus for monitoring cardiovascular health | |
TWI583354B (en) | Portable device and method for obtaining physiological measurements | |
Credeur et al. | Effects of handgrip training with venous restriction on brachial artery vasodilation | |
US20040073123A1 (en) | Apparatus and methods for non-invasively measuring hemodynamic parameters | |
JP2003062033A (en) | Device for detecting acupuncture point and device for judging effect of treatment | |
WO2017215409A1 (en) | Portable smart health monitoring device | |
TWM486396U (en) | Cardiovascular detection device | |
CA2375470A1 (en) | Diagnosing medical conditions by monitoring peripheral arterial tone | |
Zahedi et al. | Finger photoplethysmogram pulse amplitude changes induced by flow-mediated dilation | |
CN104665821A (en) | Cardiovascular health monitoring device and method | |
JP7462572B2 (en) | Apparatus, system for determining stress and/or pain levels, method of operating said system, and computer readable medium having computer readable code for carrying out the method of operating said system | |
US20070239039A1 (en) | Method and apparatus for measuring blood pressures by using blood oxygen concentration and electrocardiography | |
TW201216922A (en) | capable of eliminating the use of a digital-analog converter unit to reduce the size of the pulsation sensor module | |
CN104665786A (en) | Cardiovascular health monitoring device and method | |
US20120108985A1 (en) | Cuffless blood pressure monitor | |
US10098587B1 (en) | Physiology detecting garment and method thereof | |
TWI586319B (en) | Cardiovascular health monitoring device and method | |
CN211633256U (en) | Cardiovascular internal medicine nursing blood pressure monitor | |
Wang et al. | Comparison between reflection-mode photoplethysmography and arterial diameter change detected by ultrasound at the region of radial artery | |
CN209932877U (en) | Compression band after arterial puncture | |
CN204863139U (en) | Cardiovascular health monitoring device | |
CN221083665U (en) | A peripheral vascular resistance detection and measurement device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C17 | Cessation of patent right | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20101027 Termination date: 20140227 |