CN101493578B - Period-adjustable micro-mechanical grating and making technique thereof - Google Patents
Period-adjustable micro-mechanical grating and making technique thereof Download PDFInfo
- Publication number
- CN101493578B CN101493578B CN2009100213223A CN200910021322A CN101493578B CN 101493578 B CN101493578 B CN 101493578B CN 2009100213223 A CN2009100213223 A CN 2009100213223A CN 200910021322 A CN200910021322 A CN 200910021322A CN 101493578 B CN101493578 B CN 101493578B
- Authority
- CN
- China
- Prior art keywords
- grating
- period
- substrate
- structural layer
- driver
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Diffracting Gratings Or Hologram Optical Elements (AREA)
- Micromachines (AREA)
Abstract
Description
所属领域:Field:
本发明属于微光机电(MOEMS)器件领域,主要涉及微机电系统(MEMS)技术、光栅技术以及微加工技术等。The invention belongs to the field of micro-opto-electro-mechanical (MOEMS) devices, and mainly relates to micro-electro-mechanical systems (MEMS) technology, grating technology, micro-processing technology and the like.
现有技术:current technology:
周期可调微机械光栅是一种全新概念下的光栅,以微机电系统(MEMS)为基础,采用微加工技术制作。通过对光栅驱动电路的编程控制,实现对光栅周期的调节,从而使衍射光谱发生偏移。与传统光栅相比,周期可调微机械光栅具有衍射光强可编程控制、响应速度快、可大批量生产等特点。Period-tunable micromachined grating is a kind of grating under the new concept, which is based on micro-electromechanical system (MEMS) and manufactured by micro-processing technology. Through the programming control of the grating driving circuit, the adjustment of the grating period is realized, so that the diffraction spectrum is shifted. Compared with traditional gratings, period-tunable micromechanical gratings have the characteristics of programmable control of diffracted light intensity, fast response, and mass production.
近年来,随着微机械光栅技术研究的不断深入,周期可调微机械光栅的研究多有报道。2001年,台湾Ching-liang Dai等人采用CMOS工艺制作了反射式周期可调微机械光栅(Sensor.Actuat.A,2001,95:69),该光栅结构采用三层金属和二层氧化硅材料复合淀积为结构层,使用硅作为基底,基底硅不透光,所以这种光栅只能工作于反射方式。2005年,密歇根大学的科研人员采用纳米压印技术,对PDMS材料进行加工,制作了透射式周期可调微机械光栅(Appl.Phys.Lett.,2005,86:161113-1)。该光栅的栅条结构通过在PDMS材料上直接刻划得到,由于PDMS是透明的聚合物材料,入射光经光栅栅条发生衍射后,衍射光直接透射输出。由于PDMS材料刚度小,在垂直于栅条方向对PDMS施加拉力或压力,PDMS产生伸缩变形,带动栅条移动,从而实现光栅周期的调节。2007年,日本东京大学基于SOI工艺,研制了一种反射式周期可调微机械光栅(MEMS’2007,Jan.21-25,2007,pp.147-150)。它是通过对SOI硅片结构层进行刻蚀和二氧化硅层进行选择性去除获得可动的光栅结构,基底也是硅材料,所以也只能工作在反射方式。在该光栅每相邻两个栅条上施加电压,栅条之间会产生静电力引起栅条的移动,改变光栅周期。In recent years, with the continuous deepening of research on micro-mechanical grating technology, there have been many reports on the research of period-tunable micro-mechanical gratings. In 2001, Taiwan's Ching-liang Dai et al. used CMOS technology to produce a reflective period-tunable micromechanical grating (Sensor.Actuat.A, 2001, 95:69). The grating structure uses three layers of metal and two layers of silicon oxide materials Composite deposition is a structural layer, using silicon as a substrate, and the substrate silicon is opaque, so this grating can only work in reflection mode. In 2005, researchers at the University of Michigan used nanoimprint technology to process PDMS materials and fabricated a transmission-type period-tunable micromechanical grating (Appl. Phys. Lett., 2005, 86: 161113-1). The grid structure of the grating is obtained by directly scribing on the PDMS material. Since PDMS is a transparent polymer material, after the incident light is diffracted by the grating bars, the diffracted light is directly transmitted out. Due to the small stiffness of the PDMS material, when a tensile or compressive force is applied to the PDMS in the direction perpendicular to the grid bars, the PDMS will produce stretching deformation, which will drive the grid bars to move, thereby realizing the adjustment of the grating period. In 2007, based on the SOI process, the University of Tokyo developed a reflective period-tunable micromechanical grating (MEMS'2007, Jan.21-25, 2007, pp.147-150). It obtains a movable grating structure by etching the SOI silicon wafer structure layer and selectively removing the silicon dioxide layer. The substrate is also silicon material, so it can only work in the reflection mode. When a voltage is applied to every two adjacent grid bars of the grating, an electrostatic force will be generated between the grid bars to cause the grid bars to move and change the grating period.
然而,已有的周期可调微机械光栅,受工艺及材料上的约束,只能工作于反射或透射方式,这在一定程度上限制了光栅的应用。However, the existing period-tunable micromechanical gratings can only work in reflection or transmission mode due to the constraints of technology and materials, which limits the application of gratings to a certain extent.
发明内容:Invention content:
发明目的:Purpose of the invention:
为了克服现有周期可调微机械光栅只能工作于反射或透射方式之一,光栅应用受限的不足,本发明提出一种新型的周期可调微机械光栅及其制作方法,这种新型的周期可调微机械光栅能同时工作于反射及透射方式。In order to overcome the shortcomings of the existing period-tunable micro-mechanical gratings that can only work in one of the reflection or transmission modes, and the application of the grating is limited, the present invention proposes a new type of period-tunable micro-mechanical grating and its manufacturing method. The period-tunable micromachined grating can work in reflection and transmission modes simultaneously.
技术方案:Technical solutions:
参阅图1,本发明提出的周期可调微机械光栅由基底和结构层组成,结构层通过锚点3悬置于基底上;所述的结构层为硅、砷化镓等可刻蚀可键合的导电材料,结构层包括若干等距平行的光栅栅条8、弹性支撑梁9和连接梁10,每相邻的两根光栅栅条8通过两侧的折叠U形连接梁10进行连接,两端的两根光栅栅条8通过弹性支撑梁9连接到锚点3上,驱动器7与一端的光栅栅条8连接,带动光栅栅条8沿着与栅条垂直的方向往复运动;所述的基底为绝缘透明材料,如玻璃、蓝宝石等;基底上有金属薄膜作为电极及引线,使得驱动器7通过金属薄膜与外界连接,从而给驱动器7供电,金属薄膜为金、铝等材料。Referring to Fig. 1, the period-tunable micromechanical grating proposed by the present invention is composed of a substrate and a structural layer, and the structural layer is suspended on the substrate through
参阅图2,本发明提出的周期可调微机械光栅的制作方法,包括如下工艺步骤:Referring to Fig. 2, the method for fabricating a period-tunable micromechanical grating proposed by the present invention includes the following process steps:
步骤1:在基底1表面淀积一层金属薄膜2;Step 1: Deposit a layer of
步骤2:在结构材料的一侧刻蚀出一定高度的锚点3;Step 2: Etching an
步骤3:将由步骤1和步骤2得到的结构通过锚点3键合在一起,并将结构材料减薄至所需厚度;Step 3: bonding the structures obtained in
步骤4:对结构材料进行刻蚀、释放形成结构层部分,形成周期可调的微机械光栅。Step 4: Etching the structural material and releasing the part forming the structural layer to form a micromechanical grating with an adjustable period.
参阅图3,工作时,入射光4入射到微机械光栅上,一部分被光栅栅条8反射,产生反射式衍射光谱5;另一部分入射光通过光栅栅条8之间的缝隙到达基底1的前表面,由于基底1是完全透光的,因此在基底1的后表面形成透射式衍射光谱6。在较小的光栅周期下,周期可调微机械光栅对入射光4的反射式衍射光谱5和透射式衍射光谱6偏移较大;在驱动器7驱动下,弹性支撑梁9和连接粱10变形,光栅栅条8移动,光栅周期变大,周期可调微机械光栅对入射光4的反射式衍射光谱5和透射式衍射光谱6产生较小偏移。Referring to FIG. 3 , during operation, the incident light 4 is incident on the micromechanical grating, a part of which is reflected by the
有益效果:Beneficial effect:
本发明的有益效果是:该周期可调微机械光栅能同时工作在反射及透射方式,光栅周期的变化能够改变衍射光谱的衍射角度,使反射式衍射光和透射式衍射光在周围空间重新分配,从而改变光强分布。The beneficial effects of the present invention are: the period-adjustable micromechanical grating can work in both reflection and transmission modes at the same time, and the change of the period of the grating can change the diffraction angle of the diffraction spectrum, so that the reflective diffracted light and the transmissive diffracted light can be redistributed in the surrounding space , thereby changing the light intensity distribution.
附图说明:Description of drawings:
图1.本发明提出的周期可调微机械光栅结构示意图Figure 1. Schematic diagram of the period-tunable micromechanical grating proposed by the present invention
图2.本发明提出的周期可调微机械光栅制作工艺流程图Figure 2. The process flow chart of the period-tunable micromachined grating production process proposed by the present invention
图3.本发明提出的周期可调微机械光栅工作原理图Figure 3. Schematic diagram of the working principle of the period-tunable micromachined grating proposed by the present invention
图4.实施例1中的周期可调微机械光栅结构示意图Figure 4. Schematic diagram of the period-tunable micromachined grating structure in Example 1
其中:1.基底;2.金属薄膜;3.锚点;4.入射光;5.反射式衍射光输出;6.透射式衍射光输出;7.驱动器;8.光栅栅条;9.弹性支撑梁;10.连接粱Among them: 1. Substrate; 2. Metal film; 3. Anchor point; 4. Incident light; 5. Reflective diffracted light output; 6. Transmissive diffracted light output; 7. Driver; 8. Grating bars; 9. Elasticity Supporting beam; 10. Connecting beam
具体实施方式:Detailed ways:
实施例1:Example 1:
参阅图4,本实施例中的周期可调微机械光栅由基底和结构层组成,结构层通过锚点3悬置于基底上。结构层材料为硅,包括7根等距平行的光栅栅条8,4根弹性支撑梁9,和12根连接梁10,每相邻的两根光栅栅条8通过两侧的折叠U形连接梁10进行连接,两端的两根光栅栅条8通过弹性支撑梁9连接到锚点3上,驱动器7采用静电梳齿驱动,与光栅栅条8的一端连接,带动光栅栅条8沿着与栅条垂直的方向往复运动。基底材料为玻璃,其上有材料为金的金属薄膜作为电极及引线,使得驱动器7通过金属薄膜与外界连接,从而给驱动器7供电。Referring to FIG. 4 , the period-tunable micromechanical grating in this embodiment is composed of a substrate and a structural layer, and the structural layer is suspended on the substrate through
本实施例中的周期可调微机械光栅的制作方法,工艺步骤如下:The manufacturing method of the period-tunable micromechanical grating in this embodiment, the process steps are as follows:
步骤1:在基底1表面淀积一层金作为金属薄膜2;Step 1: Deposit a layer of gold on the surface of the
步骤2:在硅片的一侧刻蚀出高50μm的锚点3;Step 2: etching an
步骤3:将由步骤1和步骤2得到的结构通过锚点3键合在一起,并将硅片减薄至20μm;Step 3: bonding the structures obtained in
步骤4:对硅片进行刻蚀、释放形成结构层部分,形成周期可调的微机械光栅。Step 4: Etching the silicon wafer, releasing the part forming the structural layer, and forming a micromechanical grating with an adjustable period.
实施例2:Example 2:
参阅图4,本实施例中的周期可调微机械光栅由基底和结构层组成,结构层通过锚点3悬置于基底上。结构层材料为砷化镓,包括7根等距平行的光栅栅条8,4根弹性支撑梁9,和12根连接梁10,每相邻的两根光栅栅条8通过两侧的折叠U形连接梁10进行连接,两端的两根光栅栅条8通过弹性支撑梁9连接到锚点3上,驱动器7采用静电梳齿驱动,与光栅栅条8的一端连接,带动光栅栅条8沿着与栅条垂直的方向往复运动。基底材料为蓝宝石,其上有材料为铝的金属薄膜作为电极及引线,使得驱动器7通过金属薄膜与外界连接,从而给驱动器7供电。Referring to FIG. 4 , the period-tunable micromechanical grating in this embodiment is composed of a substrate and a structural layer, and the structural layer is suspended on the substrate through anchor points 3 . The material of the structural layer is gallium arsenide, including 7 equidistant and
本实施例中的周期可调微机械光栅的制作方法,工艺步骤如下:The manufacturing method of the period-tunable micromechanical grating in this embodiment, the process steps are as follows:
步骤1:在基底1表面淀积一层铝作为金属薄膜2;Step 1: Deposit a layer of aluminum on the surface of the
步骤2:在砷化镓晶圆的一侧刻蚀出高50μm的锚点3;Step 2: Etch an
步骤3:将由步骤1和步骤2得到的结构通过锚点3键合在一起,并将硅片减薄至30μm;Step 3: bonding the structures obtained in
步骤4:对砷化镓晶圆进行刻蚀、释放形成结构层部分,形成周期可调的微机械光栅。Step 4: Etching the gallium arsenide wafer, releasing the part forming the structural layer, and forming a micromechanical grating with adjustable period.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2009100213223A CN101493578B (en) | 2009-02-27 | 2009-02-27 | Period-adjustable micro-mechanical grating and making technique thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2009100213223A CN101493578B (en) | 2009-02-27 | 2009-02-27 | Period-adjustable micro-mechanical grating and making technique thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101493578A CN101493578A (en) | 2009-07-29 |
CN101493578B true CN101493578B (en) | 2011-03-02 |
Family
ID=40924245
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2009100213223A Expired - Fee Related CN101493578B (en) | 2009-02-27 | 2009-02-27 | Period-adjustable micro-mechanical grating and making technique thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101493578B (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102368098B (en) * | 2011-10-27 | 2013-01-16 | 无锡英普林纳米科技有限公司 | Submicron diffraction grating with modulatable period and preparation method thereof |
CN104297843B (en) * | 2013-03-18 | 2017-08-11 | 南京邮电大学 | Micro electronmechanical adjustable nitride resonance grating preparation method |
CN104614551B (en) * | 2015-01-27 | 2018-04-10 | 浙江大学 | Combine grating micro-machine acceleration transducer and its method for measuring acceleration |
CN111141096A (en) * | 2020-01-20 | 2020-05-12 | 中国科学院上海光学精密机械研究所 | Integrated reflective active cooling device for optical grating |
CN115826225B (en) * | 2022-11-22 | 2024-10-25 | 西北工业大学 | MEMS grating modulator and preparation method thereof |
-
2009
- 2009-02-27 CN CN2009100213223A patent/CN101493578B/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
CN101493578A (en) | 2009-07-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107783280B (en) | Scanning microelectromechanical reflector system | |
CN101493578B (en) | Period-adjustable micro-mechanical grating and making technique thereof | |
JP5807292B2 (en) | MICROSTRUCTURE, ITS MANUFACTURING METHOD, MICROSTRUCTURE AND MICROSYSTEM BONDING DEVICE | |
CN105242395B (en) | Electromagnetically driven micromechanical is tunable enamel amber wave filter and preparation method thereof | |
CN103086316B (en) | MEMS vertical comb micro-mirror surface driver manufacturing method | |
CN111552072B (en) | Large-size MEMS vertical comb micro-mirror and preparation method thereof | |
CN101152955B (en) | Method of making microstructure device, and microstructure device made by the same | |
TWI313250B (en) | ||
CN101290395A (en) | A kind of miniature multifunctional optical device and its preparation method | |
TWI242794B (en) | MEMS element and method of producing the same, and diffraction type MEMS element | |
JP5176146B2 (en) | Micro movable element and optical switching device | |
CN103901609A (en) | Movable MEMS large turning angle blazed grating light modulator based on double-layer comb drive | |
Lee et al. | SOI-based fabrication processes of the scanning mirror having vertical comb fingers | |
CN103076676B (en) | Manufacturing methods of micromechanical optical grating with adjustable blazing angle | |
CN101971494A (en) | Resonator and resonator array | |
CN101276053B (en) | Micro oscillating device and micro oscillating device array | |
JP3942619B2 (en) | Optical deflection element | |
Bruno et al. | Micro Fresnel mirror array with individual mirror control | |
JPH1172723A (en) | Microoptical element, function element unit and their production | |
Zhang et al. | AlScN-based quasi-static multi-degree-of-freedom piezoelectric MEMS micromirror with large mirror plate and high fill factor | |
P. Bruno et al. | Fabrication of an Adaptive Micro Fresnel Mirror Array | |
CN114779463A (en) | MEMS micro-mirror and preparation method thereof | |
JP5545190B2 (en) | Method for manufacturing tunable interference filter | |
CN1587022A (en) | Torque mirror driver of micro electromechanical system, producing method and use | |
CN102129125A (en) | Stacked dual-shaft micro lens array driver based on MEMS (Micro Electronic Mechanical System) technology and use thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C17 | Cessation of patent right | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20110302 Termination date: 20140227 |