CN101492477B - Photosensitizer, composite photocatalyst and method for preparing the same - Google Patents
Photosensitizer, composite photocatalyst and method for preparing the same Download PDFInfo
- Publication number
- CN101492477B CN101492477B CN 200910058202 CN200910058202A CN101492477B CN 101492477 B CN101492477 B CN 101492477B CN 200910058202 CN200910058202 CN 200910058202 CN 200910058202 A CN200910058202 A CN 200910058202A CN 101492477 B CN101492477 B CN 101492477B
- Authority
- CN
- China
- Prior art keywords
- solution
- photosensitizer
- hydroxyquinoline
- nso
- composite photocatalyst
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000011941 photocatalyst Substances 0.000 title claims abstract description 26
- 239000002131 composite material Substances 0.000 title claims abstract description 23
- 239000003504 photosensitizing agent Substances 0.000 title claims abstract description 21
- 238000000034 method Methods 0.000 title description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims abstract description 54
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims abstract description 29
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 26
- 239000000725 suspension Substances 0.000 claims abstract description 12
- 238000003756 stirring Methods 0.000 claims abstract description 11
- 239000000843 powder Substances 0.000 claims abstract description 10
- HQDLMVWLAXXWKK-UHFFFAOYSA-K 8-hydroxyquinoline-5-sulfonate iron(3+) Chemical compound C1=CC2=C(C=CC(=C2N=C1)O)S(=O)(=O)[O-].C1=CC2=C(C=CC(=C2N=C1)O)S(=O)(=O)[O-].C1=CC2=C(C=CC(=C2N=C1)O)S(=O)(=O)[O-].[Fe+3] HQDLMVWLAXXWKK-UHFFFAOYSA-K 0.000 claims abstract description 9
- 238000009835 boiling Methods 0.000 claims abstract description 6
- 239000000463 material Substances 0.000 claims abstract description 5
- 229910052708 sodium Inorganic materials 0.000 claims abstract description 5
- 239000011734 sodium Substances 0.000 claims abstract description 5
- BDHFUVZGWQCTTF-UHFFFAOYSA-M sulfonate Chemical compound [O-]S(=O)=O BDHFUVZGWQCTTF-UHFFFAOYSA-M 0.000 claims abstract description 5
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims description 84
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims description 33
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 claims description 20
- LGDFHDKSYGVKDC-UHFFFAOYSA-N 8-hydroxyquinoline-5-sulfonic acid Chemical compound C1=CN=C2C(O)=CC=C(S(O)(=O)=O)C2=C1 LGDFHDKSYGVKDC-UHFFFAOYSA-N 0.000 claims description 16
- 238000002360 preparation method Methods 0.000 claims description 12
- 239000011780 sodium chloride Substances 0.000 claims description 10
- 239000012043 crude product Substances 0.000 claims description 7
- 230000007935 neutral effect Effects 0.000 claims description 7
- 238000004062 sedimentation Methods 0.000 claims description 7
- 238000000967 suction filtration Methods 0.000 claims description 7
- 239000006228 supernatant Substances 0.000 claims description 7
- 239000012535 impurity Substances 0.000 claims description 5
- -1 8-hydroxyquinoline-5-sulfonic acid iron (III) Chemical compound 0.000 claims description 4
- 238000010668 complexation reaction Methods 0.000 claims description 4
- 239000012141 concentrate Substances 0.000 claims description 3
- YMQMFBBTIOWFCH-UHFFFAOYSA-N 8-hydroxyquinoline-5-sulfonic acid;sodium Chemical compound [Na].C1=CN=C2C(O)=CC=C(S(O)(=O)=O)C2=C1 YMQMFBBTIOWFCH-UHFFFAOYSA-N 0.000 claims description 2
- 239000000203 mixture Substances 0.000 claims 2
- 239000000758 substrate Substances 0.000 claims 2
- 239000005725 8-Hydroxyquinoline Substances 0.000 claims 1
- VTLYFUHAOXGGBS-UHFFFAOYSA-N Fe3+ Chemical compound [Fe+3] VTLYFUHAOXGGBS-UHFFFAOYSA-N 0.000 claims 1
- 229960003540 oxyquinoline Drugs 0.000 claims 1
- MCJGNVYPOGVAJF-UHFFFAOYSA-N quinolin-8-ol Chemical compound C1=CN=C2C(O)=CC=CC2=C1 MCJGNVYPOGVAJF-UHFFFAOYSA-N 0.000 claims 1
- 229910010413 TiO 2 Inorganic materials 0.000 abstract description 15
- 230000015556 catabolic process Effects 0.000 abstract description 11
- 238000006731 degradation reaction Methods 0.000 abstract description 11
- 238000001228 spectrum Methods 0.000 abstract description 7
- 229910052739 hydrogen Inorganic materials 0.000 abstract description 6
- 239000001257 hydrogen Substances 0.000 abstract description 4
- 239000002957 persistent organic pollutant Substances 0.000 abstract description 4
- STZCRXQWRGQSJD-GEEYTBSJSA-M methyl orange Chemical compound [Na+].C1=CC(N(C)C)=CC=C1\N=N\C1=CC=C(S([O-])(=O)=O)C=C1 STZCRXQWRGQSJD-GEEYTBSJSA-M 0.000 abstract description 2
- 229940012189 methyl orange Drugs 0.000 abstract description 2
- 208000017983 photosensitivity disease Diseases 0.000 abstract description 2
- 231100000434 photosensitization Toxicity 0.000 abstract description 2
- 125000004435 hydrogen atom Chemical class [H]* 0.000 abstract 1
- STZCRXQWRGQSJD-UHFFFAOYSA-M sodium;4-[[4-(dimethylamino)phenyl]diazenyl]benzenesulfonate Chemical compound [Na+].C1=CC(N(C)C)=CC=C1N=NC1=CC=C(S([O-])(=O)=O)C=C1 STZCRXQWRGQSJD-UHFFFAOYSA-M 0.000 description 9
- 239000000047 product Substances 0.000 description 8
- 239000000975 dye Substances 0.000 description 7
- 230000003197 catalytic effect Effects 0.000 description 5
- 230000001699 photocatalysis Effects 0.000 description 5
- 238000001704 evaporation Methods 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- 239000011159 matrix material Substances 0.000 description 4
- 229910021578 Iron(III) chloride Inorganic materials 0.000 description 3
- 239000000084 colloidal system Substances 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- RBTARNINKXHZNM-UHFFFAOYSA-K iron trichloride Chemical compound Cl[Fe](Cl)Cl RBTARNINKXHZNM-UHFFFAOYSA-K 0.000 description 3
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000003912 environmental pollution Methods 0.000 description 2
- 150000002431 hydrogen Chemical class 0.000 description 2
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- SOQBVABWOPYFQZ-UHFFFAOYSA-N oxygen(2-);titanium(4+) Chemical compound [O-2].[O-2].[Ti+4] SOQBVABWOPYFQZ-UHFFFAOYSA-N 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 229910052707 ruthenium Inorganic materials 0.000 description 2
- 238000001179 sorption measurement Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 125000000542 sulfonic acid group Chemical group 0.000 description 2
- 230000004580 weight loss Effects 0.000 description 2
- 238000005160 1H NMR spectroscopy Methods 0.000 description 1
- ROFVEXUMMXZLPA-UHFFFAOYSA-N Bipyridyl Chemical class N1=CC=CC=C1C1=CC=CC=N1 ROFVEXUMMXZLPA-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 206010034972 Photosensitivity reaction Diseases 0.000 description 1
- 229910003074 TiCl4 Inorganic materials 0.000 description 1
- 238000000862 absorption spectrum Methods 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000008033 biological extinction Effects 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000000921 elemental analysis Methods 0.000 description 1
- 238000005886 esterification reaction Methods 0.000 description 1
- 230000005281 excited state Effects 0.000 description 1
- 239000003446 ligand Substances 0.000 description 1
- 230000031700 light absorption Effects 0.000 description 1
- 239000002120 nanofilm Substances 0.000 description 1
- 229910000510 noble metal Inorganic materials 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 125000002524 organometallic group Chemical group 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000033116 oxidation-reduction process Effects 0.000 description 1
- 238000005424 photoluminescence Methods 0.000 description 1
- 230000002165 photosensitisation Effects 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- PYWVYCXTNDRMGF-UHFFFAOYSA-N rhodamine B Chemical compound [Cl-].C=12C=CC(=[N+](CC)CC)C=C2OC2=CC(N(CC)CC)=CC=C2C=1C1=CC=CC=C1C(O)=O PYWVYCXTNDRMGF-UHFFFAOYSA-N 0.000 description 1
- 229940043267 rhodamine b Drugs 0.000 description 1
- 238000001878 scanning electron micrograph Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- IIABRHKOFVJBEV-UHFFFAOYSA-M sodium;8-hydroxyquinoline-5-sulfonate Chemical compound [Na+].C1=CN=C2C(O)=CC=C(S([O-])(=O)=O)C2=C1 IIABRHKOFVJBEV-UHFFFAOYSA-M 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- ANRHNWWPFJCPAZ-UHFFFAOYSA-M thionine Chemical compound [Cl-].C1=CC(N)=CC2=[S+]C3=CC(N)=CC=C3N=C21 ANRHNWWPFJCPAZ-UHFFFAOYSA-M 0.000 description 1
- XJDNKRIXUMDJCW-UHFFFAOYSA-J titanium tetrachloride Chemical compound Cl[Ti](Cl)(Cl)Cl XJDNKRIXUMDJCW-UHFFFAOYSA-J 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/549—Organic PV cells
Landscapes
- Catalysts (AREA)
Abstract
本发明属于材料技术领域,涉及光敏化剂和光催化剂。光敏化剂为8-羟基喹啉-5-磺酸铁(III)络合物的黑色粉末,分子式为(C9H6NSO4)3Fe·2H2O,其中(C9H6NSO4)3Fe为六齿配位结构。复合光催化剂为纳米TiO2表面吸附(C9H6NSO4)3Fe·2H2O络合物的胶状或粉末状材料。首先配制8-羟基喹啉-5-磺酸钠溶液;然后滴入FeCl3溶液,沸水浴中搅拌加热、再蒸干;最后经无水乙醇抽提、真空干燥即得光敏化剂。在TiO2悬浊液中加入(C9H6NSO4)3Fe·2H2O,不断搅拌下、避光放置即得胶状复合光催化剂(或静置、过滤、低温真空干燥可得粉状复合光催化剂)。所述光敏化剂具有可见光频谱范围的光敏化性能;所述复合光催化剂对甲基橙的降解率在1小时内可达90%以上。本发明可用于可见光分解水制氢、敏化太阳能电池和有机污染物的降解。
The invention belongs to the technical field of materials, and relates to a photosensitizer and a photocatalyst. The photosensitizer is the black powder of 8-hydroxyquinoline-5-sulfonate iron (III) complex, the molecular formula is (C 9 H 6 NSO 4 ) 3 Fe·2H 2 O, where (C 9 H 6 NSO 4 ) 3 Fe is a six-dentate coordination structure. The composite photocatalyst is a colloidal or powdery material in which (C 9 H 6 NSO 4 ) 3 Fe·2H 2 O complexes are adsorbed on the surface of nanometer TiO 2 . First prepare 8-hydroxyquinoline-5-sodium sulfonate solution; then drop into FeCl 3 solution, stir and heat in a boiling water bath, then evaporate to dryness; finally extract with absolute ethanol and vacuum dry to obtain the photosensitizer. Add (C 9 H 6 NSO 4 ) 3 Fe 2H 2 O to the TiO 2 suspension, keep stirring and place away from light to obtain a colloidal composite photocatalyst (or stand still, filter, and dry in a low-temperature vacuum to obtain powder shape composite photocatalyst). The photosensitizer has photosensitization performance in the visible light spectrum range; the degradation rate of the composite photocatalyst to methyl orange can reach more than 90% within one hour. The invention can be used for visible light splitting water to produce hydrogen, sensitized solar cells and degradation of organic pollutants.
Description
技术领域 technical field
本发明属于材料技术领域,涉及一种光敏化剂、复合光催化剂及其制备方法。The invention belongs to the technical field of materials, and relates to a photosensitizer, a composite photocatalyst and a preparation method thereof.
背景技术 Background technique
1991年,瑞士洛桑工学院的教授在Nature上首次报道了染料敏化多孔TiO2纳米薄膜为光阳极的太阳能电池(Dye-sensitized Solar Cells,简写为DSSCs),它以羧酸联吡啶钌(II)配合物为染料敏化剂,其光电转化效率在AM1.5的模拟太阳光照射下可以达到7.1~7.9%,并且价格较低,因而引起了全世界的关注(B O’Regan,MNature,1991,353:737~739)。此后,人们在这种电池的运作机理及电池组成部分的优化性能改进部分作了大量的研究,使DSSCs能向实用化发展。在DSSCs中,染料敏化剂就像捕获天线,起着收集能量的作用,它的性能将直接影响到DSSCs的光电转化效率,具有非常重要的作用。在20多年的研究当中,人们合成了近千种染料,但只有一小部分具有良好的光电敏化性能,其中主要是钌的联吡啶配合物。作为染料敏化剂不但要求其对太阳光具有良好的广泛吸收,高的摩尔消光系数,在半导体上吸附性能良好(有在TiO2表面吸附良好的基团,如-OH、-COOH、-SO3H、-PO3H2等),还要有合适的氧化-还原电位,激发态寿命长、光致发光性好以及具有良好的稳定性等。但从目前的研究来看,联吡啶钌系列配合物是目前研究和应用最多的一类染料,这是因为他们具有较宽的可见光吸收谱、理想的氧化还原性能以及高的氧化态稳定性。但由于钌系贵金属,其金属配合物合成难度较大,且易造成环境污染,因此人们开始开发其他配合物的染料敏化剂。现已发现了各种敏化剂,如Rhodamine B、Thionine等纯有机染料,金属酞菁等有机金属配合物(Bae E,Choi W,Park J,Shin H S,Kim S B,Lee J S.J Phys Chem B.2004(108):14093-14101.),含有高度共轭结构的聚合物(Lin Song,RongLiang Qiu,Yueqi,etal.Catalysis Communications,2007(8):429-433)等。目前,光敏化TiO2催化剂已广泛的应用于可见光分解水制氢、光电太阳能电池和可见光催化降解有机污染物的研究中。但总的来说其可见光催化性能不理想,且易造成环境污染。因此,需要研制新型高效的、环保的光催化剂。In 1991, the Swiss Institute of Technology in Lausanne The professor reported for the first time in Nature that dye-sensitized porous TiO 2 nano-films are used as photoanode solar cells (Dye-sensitized Solar Cells, abbreviated as DSSCs), which use carboxylic acid bipyridyl ruthenium (II) complexes as dye sensitizers , its photoelectric conversion efficiency can reach 7.1~7.9% under the simulated sunlight irradiation of AM1.5, and the price is relatively low, thus caused the attention of the whole world (B O'Regan, M Nature, 1991, 353:737-739). Since then, people have done a lot of research on the operation mechanism of this battery and the optimization and performance improvement of the battery components, so that DSSCs can be developed into practical use. In DSSCs, the dye sensitizer is like a capture antenna, which plays a role in collecting energy, and its performance will directly affect the photoelectric conversion efficiency of DSSCs, which plays a very important role. In more than 20 years of research, nearly a thousand dyes have been synthesized, but only a small part have good photosensitive properties, mainly bipyridine complexes of ruthenium. As a dye sensitizer, it is not only required to have good broad absorption of sunlight, high molar extinction coefficient, and good adsorption performance on semiconductors (with groups that are well adsorbed on the surface of TiO2 , such as -OH, -COOH, -SO 3 H, -PO 3 H 2 , etc.), but also have a suitable oxidation-reduction potential, long excited state lifetime, good photoluminescence and good stability. However, according to the current research, bipyridyl ruthenium complexes are the most studied and applied dyes because of their broad visible light absorption spectrum, ideal redox performance and high oxidation state stability. However, due to the difficulty in synthesizing the metal complexes of ruthenium-based noble metals, and easy to cause environmental pollution, people began to develop dye sensitizers of other complexes. Various sensitizers have been found, such as pure organic dyes such as Rhodamine B and Thionine, organometallic complexes such as metal phthalocyanines (Bae E, Choi W, Park J, Shin H S, Kim S B, Lee J SJ Phys Chem B .2004(108): 14093-14101.), polymers containing highly conjugated structures (Lin Song, RongLiang Qiu, Yueqi, etal.Catalysis Communications, 2007(8): 429-433), etc. At present, photosensitized TiO2 catalysts have been widely used in the research of visible light splitting water to produce hydrogen, photoelectric solar cells and visible light catalytic degradation of organic pollutants. But in general, its visible light catalytic performance is not ideal, and it is easy to cause environmental pollution. Therefore, it is necessary to develop new efficient and environmentally friendly photocatalysts.
发明内容 Contents of the invention
本发明的目的在于提供一种光敏化剂及其制备方法,该光敏化剂具有可见光频谱范围的光敏化性能;该光敏化剂的制备方法简单易行、成本低廉。本发明的另一目的在于提供一种复合光催化剂及其制备方法,该复合光催化剂以纳米二氧化钛为基体,吸附本发明提供的光敏化剂形成,可用于可见光分解水制氢、染料敏化太阳能电池和可见光催化降解有机污染物中。该复合光催化剂的制备方法同样具有简单易行、成本较低的特点。The object of the present invention is to provide a photosensitizer and a preparation method thereof. The photosensitizer has photosensitization performance in the visible light spectrum range; the preparation method of the photosensitizer is simple and easy, and the cost is low. Another object of the present invention is to provide a composite photocatalyst and its preparation method. The composite photocatalyst is formed by absorbing the photosensitizer provided by the present invention with nano-titanium dioxide as the matrix, and can be used for visible light splitting water to produce hydrogen and dye-sensitized solar energy. Batteries and Visible Light Catalytic Degradation of Organic Pollutants. The preparation method of the composite photocatalyst also has the characteristics of simplicity and low cost.
本发明技术方案为:Technical scheme of the present invention is:
一种光敏化剂,其主体成分为8-羟基喹啉-5-磺酸铁(III)络合物的黑色粉末,易溶于水形成深绿色的溶液,微溶于乙醇,并且在pH<8下具有很高的络合稳定性。其分子式为(C9H6NSO4)3Fe·2H2O,其中(C9H6NSO4)3Fe的结构式为(如图2所示):A photosensitizer whose main component is black powder of 8-hydroxyquinoline-5-sulfonate iron (III) complex, easily soluble in water to form a dark green solution, slightly soluble in ethanol, and at pH< It has high complexation stability under 8. Its molecular formula is (C 9 H 6 NSO 4 ) 3 Fe·2H 2 O, where the structural formula of (C 9 H 6 NSO 4 ) 3 Fe is (as shown in Figure 2):
上述光敏化剂的制备方法,包括以下步骤:The preparation method of above-mentioned photosensitizer, comprises the following steps:
步骤1:将8-羟基喹啉-5-磺酸溶于NaOH热溶液中,控制8-羟基喹啉-5-磺酸与NaOH的摩尔比为nHQS∶nNaOH=1∶0.9~1.1,生成8-羟基喹啉-5-磺酸钠溶液;Step 1: 8-hydroxyquinoline-5-sulfonic acid is dissolved in NaOH hot solution, and the molar ratio of controlling 8-hydroxyquinoline-5-sulfonic acid to NaOH is n HQS :n NaOH =1:0.9~1.1, Generate 8-hydroxyquinoline-5-sodium sulfonate solution;
步骤2:在8-羟基喹啉-5-磺酸钠溶液中滴入FeCl3溶液,控制8-羟基喹啉-5-磺酸与FeCl3的摩尔比为nHQS∶nFeCl3=3∶0.9~1.1;然后将溶液的pH值调节至4~5;Step 2: drop FeCl solution in 8-hydroxyquinoline-5-sulfonic acid sodium solution, control 8-hydroxyquinoline-5-sulfonic acid and FeCl The mol ratio is n HQS : n FeCl =3: 0.9 ~1.1; then adjust the pH of the solution to 4~5;
步骤3:将步骤2所得的溶液在沸水浴中搅拌加热0.5~4小时后再蒸干制得8-羟基喹啉-5-磺酸铁(III)络合物(分子式是:(C9H6NSO4)3Fe·2H2O)的粗产品;Step 3: Stir and heat the solution obtained in
步骤4:对步骤3所得的8-羟基喹啉-5-磺酸铁(III)络合物的粗产品,采用无水乙醇抽提以除去杂质,然后在50~100℃下真空干燥即得到光敏化剂-(C9H6NSO4)3Fe·2H2O络合物。Step 4: The crude product of 8-hydroxyquinoline-5-sulfonate iron (III) complex obtained in step 3 is extracted with absolute ethanol to remove impurities, and then vacuum-dried at 50-100°C to obtain Photosensitizer-(C 9 H 6 NSO 4 ) 3 Fe·2H 2 O complex.
采用以上方法制得的(C9H6NSO4)3Fe·2H2O络合物是黑色粉末,易溶于水形成深绿色的溶液,微溶于乙醇,并且在pH<8下具有很高的络合稳定性。其产率70~80%、m.p>300℃;元素分析实验值:N%5.33%,C%43.51%,H%3.91%,计算值N%5.77%,C%44.51%,H%2.88%;BRUKER1H-NMR(D2O,600MHz):δ=9.17(s,3H,SO3H),8.85(d,3H1),8.08(d,3H3),7.88(m,3H4),7.29(d,3H2),7.24(d,3H6);FTIR-8400S(KBr):vO-H3350cm-1;羟基弯曲振动吸收峰δO-H1225cm-1;vC-O 1025cm-1;vC=C1579cm-1,1549cm-1,1479cm-1;vC=N1511cm-1;vO=S=O1369cm-1,1164cm-1;紫外可见光谱:357nm,459nm,630nm;TGA:106℃、346℃、512℃和628℃,失重比例为2.91:12.23:12.06:13.35基本满足1:6.22:6.22:6.22化学式(C9H6NSO4)3Fe·2H2O的失重比例,说明其结构中应包含3个相同的8-羟基喹啉-5-磺酸配体,结合经典的化学结构理论其结构应是六齿配位。图1是(C9H6NSO4)3Fe的XRD谱,该物质的结晶程度较好,呈现规则晶型。The (C 9 H 6 NSO 4 ) 3 Fe·2H 2 O complex prepared by the above method is a black powder, easily soluble in water to form a dark green solution, slightly soluble in ethanol, and has a strong High complexation stability. Its yield is 70-80%, mp>300°C; elemental analysis experimental value: N% 5.33%, C% 43.51%, H% 3.91%, calculated value N% 5.77%, C% 44.51%, H% 2.88%; BRUKER 1 H-NMR (D 2 O, 600MHz): δ=9.17(s, 3H, SO 3 H), 8.85(d, 3H 1 ), 8.08(d, 3H 3 ), 7.88(m, 3H 4 ), 7.29(d, 3H 2 ), 7.24(d, 3H 6 ); FTIR-8400S(KBr): v OH 3350cm -1 ; hydroxyl bending vibration absorption peak δ OH 1225cm -1 ; v CO 1025cm -1 ; v C=C 1579cm -1 , 1549cm -1 , 1479cm -1 ; v C=N 1511cm -1 ; v O=S=O 1369cm -1 , 1164cm -1 ; UV-Vis: 357nm, 459nm, 630nm; TGA: 106°C, 346 ℃, 512°C and 628°C, the weight loss ratio is 2.91:12.23:12.06:13.35 basically satisfying the weight loss ratio of the chemical formula (C 9 H 6 NSO 4 ) 3 Fe·2H 2 O 1:6.22:6.22:6.22, indicating that in its structure It should contain three identical 8-hydroxyquinoline-5-sulfonic acid ligands, and its structure should be a hexadentate coordination based on classical chemical structure theory. Fig. 1 is the XRD spectrum of (C 9 H 6 NSO 4 ) 3 Fe, which shows a good crystallization degree and regular crystal form.
一种复合光催化剂,是以纳米TiO2为基体,且基体表面吸附本发明提供的光敏化剂-(C9H6NSO4)3Fe·2H2O络合物的复合胶状或粉末状材料。A composite photocatalyst, which uses nano- TiO2 as a matrix, and the surface of the matrix absorbs the photosensitizer-(C 9 H 6 NSO 4 ) 3 Fe·2H 2 O complex compound colloid or powder Material.
上述复合光催化剂的制备方法,采用下述步骤制成:The preparation method of above-mentioned composite photocatalyst adopts following steps to make:
首先将TiCl4的乙醇溶液滴入NaOH和TEA的乙醇溶液中(n TiCl4∶nTEA∶nNaOH=1∶1∶4),抽滤除去生成的氯化钠后向其中滴加热水,蒸馏出乙醇后调节体系pH值至3以下;然后在100℃下水热1~4h,再升高pH至中性,自然沉降后倾出上层清液,重复操作2~3次后再进一步将其蒸发浓缩成TiO2的悬浊液;最后向TiO2悬浊液加入本发明提供的光敏化剂-(C9H6NSO4)3Fe·2H2O络合物,在不断的搅拌下,控制体系pH在3~7内,避光放置即得胶状复合光催化剂(或静置12~36h后,过滤、低温真空干燥可得粉状复合光催化剂)。First drop the ethanol solution of TiCl 4 into the ethanol solution of NaOH and TEA (n TiCl 4 : n TEA : n NaOH = 1: 1: 4), remove the generated sodium chloride by suction filtration, then add heated water to it, distill out After ethanol, adjust the pH value of the system to below 3; then heat it in water at 100°C for 1-4 hours, then raise the pH to neutral, pour out the supernatant after natural sedimentation, and repeat the operation 2-3 times before further evaporating and concentrating into a TiO 2 suspension; finally add the photosensitizer-(C 9 H 6 NSO 4 ) 3 Fe 2H 2 O complex provided by the invention to the
上述复合光催化剂的复合机理可解释为:①磺酸基与TiO2的表面产生的羟基产生酯化反应,相似相溶;②TiO2的粒径非常的小,具有很大的比表面积,能很好吸附亲水基团如磺酸基等。The composite mechanism of the above-mentioned composite photocatalyst can be explained as follows: ①The sulfonic acid group and the hydroxyl group produced on the surface of TiO 2 produce an esterification reaction, and they are similar and compatible; ②TiO 2 has a very small particle size and a large specific surface area, which can easily Good adsorption of hydrophilic groups such as sulfonic acid groups.
本发明提供的光敏化剂具有可见光频谱范围的光敏化性能;本发明提供的复合光催化剂以纳米二氧化钛为基体,吸附本发明提供的光敏化剂形成,其可见光催化活性若用甲基橙的降解率来评价,在1小时内可达90%以上。本发明提供的光敏化剂和复合光催化剂可用于可见光分解水制氢、染料敏化太阳能电池和可见光催化降解有机污染物中。二者的制备方法简单易行、成本低廉,产品质量稳定可靠。The photosensitizer provided by the present invention has photosensitizing properties in the visible light spectrum range; the composite photocatalyst provided by the present invention takes nano-titanium dioxide as a matrix, and absorbs the photosensitizer provided by the present invention to form, and its visible light catalytic activity is as good as the degradation of methyl orange. To evaluate the rate, it can reach more than 90% within 1 hour. The photosensitizer and composite photocatalyst provided by the invention can be used in visible light splitting water to produce hydrogen, dye-sensitized solar cells and visible light catalytic degradation of organic pollutants. The preparation methods of the two are simple and easy, the cost is low, and the product quality is stable and reliable.
附图说明 Description of drawings
图1为(C9H6NSO4)3Fe的XRD谱。Figure 1 is the XRD spectrum of (C 9 H 6 NSO 4 ) 3 Fe.
图2为(C9H6NSO4)3Fe分子的结构图。Fig. 2 is a structure diagram of (C 9 H 6 NSO 4 ) 3 Fe molecule.
图3为自制的光催化反应器结构示意图。Figure 3 is a schematic diagram of the self-made photocatalytic reactor.
图4为未敏化TiO2的XRD谱。Figure 4 is the XRD spectrum of unsensitized TiO 2 .
图5为未敏化TiO2的扫描电镜图。Figure 5 is the SEM image of unsensitized TiO2 .
具体实施方式 Detailed ways
实施例1:Example 1:
1、将8-羟基喹啉-5-磺酸溶于0.2M的NaOH热溶液中,控制8-羟基喹啉-5-磺酸与NaOH的摩尔比为nHQS∶nNaOH=1∶1.0,生成8-羟基喹啉-5-磺酸钠溶液;1. Dissolve 8-hydroxyquinoline-5-sulfonic acid in 0.2M NaOH hot solution, control the molar ratio of 8-hydroxyquinoline-5-sulfonic acid to NaOH to be n HQS :n NaOH =1:1.0, Generate 8-hydroxyquinoline-5-sodium sulfonate solution;
2、在步骤1中滴入1M的FeCl3溶液,控制8-羟基喹啉-5-磺酸与FeCl3的摩尔比为nHQS∶nFeCl3=3∶1.1;然后将溶液的pH值调节至5;2, in step 1, drop into 1M FeCl 3 solution, the mol ratio of controlling 8-hydroxyquinoline-5-sulfonic acid and FeCl 3 is n HQS : n FeCl 3 = 3: 1.1; Then the pH value of the solution is adjusted to 5;
3、在沸水浴中搅拌加热2小时后再蒸干溶液可制得8-羟基喹啉-5-磺酸铁(III)配合物(分子式是:(C9H6NSO4)3Fe·2H2O)的粗产品;3. Stir and heat in a boiling water bath for 2 hours, then evaporate the solution to obtain 8-hydroxyquinoline-5-sulfonate iron (III) complex (molecular formula: (C 9 H 6 NSO 4 ) 3 Fe·2H 2 O) crude product;
4、用无水乙醇抽提以除去氯化钠等杂质,100℃下干燥即可以得到(C9H6NSO4)3Fe·2H2O络合物;4. Extract with absolute ethanol to remove impurities such as sodium chloride, and dry at 100°C to obtain (C 9 H 6 NSO 4 ) 3 Fe·2H 2 O complex;
5、将TiCl4的乙醇溶液滴入NaOH和TEA的乙醇溶液中(n TiCl4∶nTEA∶nNaOH=1∶1∶4),抽滤除去生成的氯化钠后向其中滴加热水,蒸馏出乙醇后调节体系pH值至2.5。100℃下水热2h后,再升高pH至中性,自然沉降后倾出上层清液,重复操作2~3次后再进一步将其蒸发浓缩到含一定浓度TiO2的悬浊液。再向新制的TiO2悬浊液加入步骤4制备的络合物,控制质量比为:TiO2∶敏化剂=1∶0.040,在不断的搅拌下避光放置,调节体系pH值为6即得胶状产品。静置24h后,过滤、低温真空干燥可得粉状产品。5. Drop the ethanol solution of TiCl 4 into the ethanol solution of NaOH and TEA (n TiCl 4 : n TEA : n NaOH = 1: 1: 4), remove the generated sodium chloride by suction filtration, then drop heated water into it, and distill Adjust the pH value of the system to 2.5 after removing ethanol. After heating in water at 100°C for 2 hours, then raise the pH to neutral, pour out the supernatant after natural sedimentation, and repeat the
6、在图3所示的自制光催化反应器中,加入15mg·L-1甲基橙溶液600mL及光催化剂粉体产品0.6g,使其浓度为1g·L-1。甲基橙溶液在1h内的降解率见表1。6. Add 600 mL of 15 mg·L -1 methyl orange solution and 0.6 g of photocatalyst powder to the self-made photocatalytic reactor shown in Figure 3 to make the concentration 1 g·L -1 . The degradation rate of methyl orange solution within 1h is shown in Table 1.
实施例2:Example 2:
1、将8-羟基喹啉-5-磺酸溶于1M的NaOH热溶液中,控制8-羟基喹啉-5-磺酸与NaOH的摩尔比为nHQS∶nNaOH=1∶1.1,生成8-羟基喹啉-5-磺酸钠溶液;1. Dissolve 8-hydroxyquinoline-5-sulfonic acid in 1M NaOH hot solution, control the molar ratio of 8-hydroxyquinoline-5-sulfonic acid to NaOH to be n HQS :n NaOH =1:1.1, generate 8-hydroxyquinoline-5-sulfonate sodium solution;
2、在步骤1中滴入0.5M的FeCl3溶液,控制8-羟基喹啉-5-磺酸与FeCl3的摩尔比为nHQS∶nFeCl3=3∶1;然后将溶液的pH值调节至4.5;2, in step 1, drop into 0.5M FeCl 3 solution, control 8-hydroxyquinoline-5-sulfonic acid and FeCl The mol ratio is n HQS : n FeCl 3 =3: 1; Then the pH value of the solution is adjusted to 4.5;
3、在沸水浴中搅拌加热4小时后再蒸干溶液可制得8-羟基喹啉-5-磺酸铁(III)配合物(分子式是:(C9H6NSO4)3Fe·2H2O)的粗产品;3. Stir and heat in a boiling water bath for 4 hours and then evaporate the solution to obtain 8-hydroxyquinoline-5-sulfonate iron (III) complex (molecular formula: (C 9 H 6 NSO 4 ) 3 Fe·2H 2 O) crude product;
4、用无水乙醇抽提以除去氯化钠等杂质,60℃下干燥即可以得到(C9H6NSO4)3Fe·2H2O络合物;4. Extract with absolute ethanol to remove impurities such as sodium chloride, and dry at 60°C to obtain (C 9 H 6 NSO 4 ) 3 Fe·2H 2 O complex;
5、将TiCl4的乙醇溶液滴入NaOH和TEA的乙醇溶液中(n TiCl4∶nTEA∶nNaOH=1∶1∶4),抽滤除去生成的氯化钠后向其中滴加热水,蒸馏出乙醇后调节体系pH值至2.8。100℃下水热3h后,再升高pH至中性,自然沉降后倾出上层清液,重复操作2~3次后再进一步将其蒸发浓缩到含一定浓度TiO2的悬浊液。再向新制的TiO2悬浊液加入步骤4制备的络合物,控制质量比为:TiO2∶敏化剂=1∶0.035,在不断的搅拌下避光放置,调节体系pH为5即得胶状产品。5. Drop the ethanol solution of TiCl 4 into the ethanol solution of NaOH and TEA (n TiCl 4 : n TEA : n NaOH = 1: 1: 4), remove the generated sodium chloride by suction filtration, then drop heated water into it, and distill Adjust the pH value of the system to 2.8 after removing ethanol. After heating in water at 100°C for 3 hours, raise the pH to neutral, pour out the supernatant after natural sedimentation, and repeat the
6、在图3所示的自制光催化反应器中,加入15mg·L-1甲基橙溶液600mL及光催化剂胶体产品,使其浓度为1g·L-1。甲基橙溶液在1h内的降解率见表1。6. In the self-made photocatalytic reactor shown in Figure 3, add 600mL of 15mg·L -1 methyl orange solution and photocatalyst colloid product to make the concentration 1g·L -1 . The degradation rate of methyl orange solution within 1h is shown in Table 1.
实施例3:Example 3:
1、将8-羟基喹啉-5-磺酸溶于0.5M的NaOH热溶液中,控制8-羟基喹啉-5-磺酸与NaOH的摩尔比为nHQS∶nNaOH=1∶0.9,生成8-羟基喹啉-5-磺酸钠溶液;1. Dissolve 8-hydroxyquinoline-5-sulfonic acid in 0.5M NaOH hot solution, control the molar ratio of 8-hydroxyquinoline-5-sulfonic acid to NaOH to be n HQS :n NaOH =1:0.9, Generate 8-hydroxyquinoline-5-sodium sulfonate solution;
2、在步骤1中滴入0.1M的FeCl3溶液,控制8-羟基喹啉-5-磺酸与FeCl3的摩尔比为nHQS∶nFeCl3=3∶0.9;然后将溶液的pH值调节至4;2. Add 0.1M FeCl3 solution dropwise in step 1, and control the mol ratio of 8-hydroxyquinoline-5-sulfonic acid to FeCl3 to be n HQS : n FeCl3 = 3: 0.9; then adjust the pH value of the solution to 4;
3、在沸水浴中搅拌加热1小时后再蒸干溶液可制得8-羟基喹啉-5-磺酸铁(III)配合物(分子式是:(C9H6NSO4)3Fe·2H2O)的粗产品;3. Stir and heat in a boiling water bath for 1 hour, then evaporate the solution to obtain 8-hydroxyquinoline-5-sulfonate iron (III) complex (molecular formula: (C 9 H 6 NSO 4 ) 3 Fe·2H 2 O) crude product;
4、用无水乙醇抽提以除去氯化钠等杂质,80℃下干燥即可以得到(C9H6NSO4)3Fe·2H2O络合物;4. Extract with absolute ethanol to remove impurities such as sodium chloride, and dry at 80°C to obtain (C 9 H 6 NSO 4 ) 3 Fe·2H 2 O complex;
5、将TiCl4的乙醇溶液滴入NaOH和TEA的乙醇溶液中(n TiCl4∶nTEA∶nNaOH=1∶1∶4),抽滤除去生成的氯化钠后向其中滴加热水,蒸馏出乙醇后调节体系pH值至2.7。100℃下水热1h后,再升高pH至中性,自然沉降后倾出上层清液,重复操作2~3次后再进一步将其蒸发浓缩到含一定浓度TiO2的悬浊液。再向新制的TiO2悬浊液加入步骤4制备的络合物,控制质量比为:TiO2∶敏化剂=1∶0.042,在不断的搅拌下避光放置,调节体系pH为4.5即得胶状产品。5. Drop the ethanol solution of TiCl 4 into the ethanol solution of NaOH and TEA (n TiCl 4 : n TEA : n NaOH = 1: 1: 4), remove the generated sodium chloride by suction filtration, then drop heated water into it, and distill Adjust the pH value of the system to 2.7 after removing ethanol. After heating in water at 100°C for 1 hour, raise the pH to neutral, pour out the supernatant after natural sedimentation, and repeat the
6、在图3所示的自制光催化反应器中,加入15mg·L-1甲基橙溶液600mL及步骤5的光催化剂胶体产品,使其浓度为1g·L-1。甲基橙溶液在1h内的降解率见表1。6. In the self-made photocatalytic reactor shown in Figure 3, add 600mL of 15mg·L -1 methyl orange solution and the photocatalyst colloid product in step 5 to make the concentration 1g·L -1 . The degradation rate of methyl orange solution within 1h is shown in Table 1.
对比例1:Comparative example 1:
未敏化的TiO2制备方法是在钟永科等人(钟永科、唐国凤,朱万强等.功能材料,2003,34(1):86)基础上的改进,即将TiCl4的乙醇溶液滴入NaOH和TEA的乙醇溶液中(n TiCl4∶nTEA∶nNaOH=1∶1∶4),抽滤除去生成的氯化钠后向其中滴加热水,蒸馏出乙醇后调节体系pH值至3以下。100℃下水热2.5h后,再升高pH至中性,自然沉降后倾出上层清液,重复操作2~3次后再进一步将其蒸发浓缩到含一定浓度TiO2的悬浊液,真空干燥后,在350℃煅烧1h即得产品。The preparation method of unsensitized TiO2 is an improvement on the basis of Zhong Yongke et al. in the ethanol solution (n TiCl4 :n TEA :n NaOH = 1:1:4), remove the generated sodium chloride by suction filtration, then drop hot water into it, and adjust the pH value of the system to below 3 after distilling off the ethanol. After heating in water at 100°C for 2.5 hours, raise the pH to neutral, pour out the supernatant after natural sedimentation, repeat the
由上述自制的TiO2的XRD谱(图3)可见,2θ为25.2、38.709和48.62等衍射角处出现了锐钛矿型TiO2的特征峰,在2θ为25.3、30.83,36.28和48.02处有很弱的板钛矿相峰存在。图4显示,TiO2的粒径均匀、约为50nm。It can be seen from the XRD spectrum (Fig. 3) of the self-made TiO 2 mentioned above that the characteristic peaks of anatase TiO 2 appear at diffraction angles such as 2θ of 25.2, 38.709 and 48.62, and there are A very weak brookite phase peak is present. Figure 4 shows that TiO 2 has a uniform particle size of about 50 nm.
在图3所示的自制光催化反应器中,加入15mg·L-1甲基橙溶液600mL及自制的TiO2粉体0.6g,使其浓度为1g·L-1。甲基橙溶液在1h内的降解率见表1。In the self-made photocatalytic reactor shown in Figure 3, 600 mL of 15 mg·L -1 methyl orange solution and 0.6 g of self-made TiO 2 powder were added to make the concentration 1 g·L -1 . The degradation rate of methyl orange solution within 1h is shown in Table 1.
表1:各实施例甲基橙溶液在1h内的降解率值Table 1: The degradation rate value of each embodiment methyl orange solution within 1h
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 200910058202 CN101492477B (en) | 2009-01-21 | 2009-01-21 | Photosensitizer, composite photocatalyst and method for preparing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 200910058202 CN101492477B (en) | 2009-01-21 | 2009-01-21 | Photosensitizer, composite photocatalyst and method for preparing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101492477A CN101492477A (en) | 2009-07-29 |
CN101492477B true CN101492477B (en) | 2011-11-09 |
Family
ID=40923284
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN 200910058202 Expired - Fee Related CN101492477B (en) | 2009-01-21 | 2009-01-21 | Photosensitizer, composite photocatalyst and method for preparing the same |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101492477B (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111054442B (en) * | 2019-12-19 | 2022-06-07 | 东北师范大学 | Preparation method of titanium dioxide-based nano composite photocatalyst for rapidly removing phenolic organic pollutants in water |
CN114917191B (en) * | 2022-04-08 | 2023-07-28 | 南通大学 | A preparation method and application of vitamin B2-based acoustic (light) sensitive nanoparticle VFNS |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB911488A (en) * | 1960-04-29 | 1962-11-28 | Ilford Ltd | Improvements in or relating to photographic materials |
US4714614A (en) * | 1981-12-30 | 1987-12-22 | Colorado State University | Process for inducing suppressiveness to fusarium vascular wilt diseases |
WO1994004497A1 (en) * | 1992-08-21 | 1994-03-03 | Ecole polytechnique fédérale de Lausanne (EPFL) | Organic compounds |
CN101235043A (en) * | 2007-01-30 | 2008-08-06 | 南京大学 | A kind of synthesis method and application of visible/near-infrared porphyrin for dye-sensitized solar cells |
-
2009
- 2009-01-21 CN CN 200910058202 patent/CN101492477B/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB911488A (en) * | 1960-04-29 | 1962-11-28 | Ilford Ltd | Improvements in or relating to photographic materials |
US4714614A (en) * | 1981-12-30 | 1987-12-22 | Colorado State University | Process for inducing suppressiveness to fusarium vascular wilt diseases |
WO1994004497A1 (en) * | 1992-08-21 | 1994-03-03 | Ecole polytechnique fédérale de Lausanne (EPFL) | Organic compounds |
CN101235043A (en) * | 2007-01-30 | 2008-08-06 | 南京大学 | A kind of synthesis method and application of visible/near-infrared porphyrin for dye-sensitized solar cells |
Non-Patent Citations (1)
Title |
---|
Suwaru Hoshi等.《Spectrophotometric Determination of Trace Iron after Collection and Elution as Its 8-Hydroxyquinoline-5-sulfonate Chelate on Protonated Chitin》.《ANALYTICAL SCIENCES》.1995,第11卷729. * |
Also Published As
Publication number | Publication date |
---|---|
CN101492477A (en) | 2009-07-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Min et al. | Enhanced electron transfer from the excited eosin Y to mpg-C3N4 for highly efficient hydrogen evolution under 550 nm irradiation | |
Qu et al. | Chemically binding carboxylic acids onto TiO2 nanoparticles with adjustable coverage by solvothermal strategy | |
JP5491419B2 (en) | Polymer extinction coefficient metal dye | |
CN102335602B (en) | Bismuth tungstate composite photocatalyst, preparation method thereof, and application thereof | |
CN103708424B (en) | { the preparation method of the square nanometer sheet of BiOBr that 001} crystal face exposes | |
Chen et al. | Ultralong rutile TiO2 nanorod arrays with large surface area for CdS/CdSe quantum dot-sensitized solar cells | |
Jiang et al. | Fabrication of spherical multi-hollow TiO2 nanostructures for photoanode film with enhanced light-scattering performance | |
Pu et al. | Self-assembly of a gC 3 N 4-based 3D aerogel induced by N-modified carbon dots for enhanced photocatalytic hydrogen production | |
CN102008980A (en) | Metalloporphyrin-sensitized titanium dioxide photocatalyst and preparation method thereof | |
CN102417511B (en) | Acylhydrazone zinc protoporphyrin, and synthesis and application of complex thereof | |
Mir et al. | Effect of tertiary amines on the synthesis and photovoltaic properties of TiO2 nanoparticles in dye sensitized solar cells | |
CN108355719A (en) | A kind of monatomic palladium load covalent triazine organic polymer composite photocatalyst material and its preparation and application | |
CN104646037A (en) | BiOXs pholocatalyst, grapheme-compounded BiOXs pholocatalyst and preparation method thereof | |
CN103551145A (en) | Nanometer silver/graphene/P25 composite material preparation method | |
CN115121241B (en) | Indium oxide and lanthanum titanate heterojunction photocatalyst and preparation method thereof | |
Wu et al. | Fullerene-cored star-shaped polyporphyrin-incorporated TiO2 as photocatalysts for the enhanced degradation of rhodamine B | |
CN106423223B (en) | A kind of cake-like porous structure MoSe2@TiO2 photocatalyst and preparation method thereof | |
Sasikumar et al. | Economically applicable Ti2O3 decorated m-aminophenol-formaldehyde resin microspheres for dye-sensitized solar cells (DSSCs) | |
Zhang et al. | Multifunctional composite photoanode containing a TiO2 microarchitecture with near-infrared upconversion nanoparticles for dye-sensitized solar cells | |
Dun et al. | Upconversion photoluminescence enhancement by Gd-doped NaYF4: Yb, Er@ SiO2 nanoparticles and their application in dye-sensitized solar cells | |
CN111686821A (en) | Ruthenium complex and molybdenum-sulfur cluster dye-sensitized photocatalytic hydrogen production system reaction liquid | |
CN104425135B (en) | Preparation method and applications of the redox graphene to electrode | |
CN102658104A (en) | Preparation method of TiO2 catalyst with photocatalytic activity under visible light | |
CN101492477B (en) | Photosensitizer, composite photocatalyst and method for preparing the same | |
CN105694525B (en) | Axial-coordination self-assembly metalloporphyrin dye sensitizer and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C17 | Cessation of patent right | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20111109 Termination date: 20140121 |