CN101492442A - Complex diaryl fluorene material, preparation and application method thereof - Google Patents
Complex diaryl fluorene material, preparation and application method thereof Download PDFInfo
- Publication number
- CN101492442A CN101492442A CNA2009100244611A CN200910024461A CN101492442A CN 101492442 A CN101492442 A CN 101492442A CN A2009100244611 A CNA2009100244611 A CN A2009100244611A CN 200910024461 A CN200910024461 A CN 200910024461A CN 101492442 A CN101492442 A CN 101492442A
- Authority
- CN
- China
- Prior art keywords
- complex
- fluorene
- organic
- phenyl
- light
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Electroluminescent Light Sources (AREA)
- Photovoltaic Devices (AREA)
Abstract
复杂二芳基芴材料及其制备和应用方法属有机光电材料科技领域,具体为一种非平面复杂二多环杂芳基芴材料及付-克制备方法,并将该类材料作为空穴传输材料、电子传输材料以及三基色发光材料应用于有机闪存器件和有机发光显示等有机电子领域,该材料具有如上结构,该材料具有:(1)通过付-克反应,步骤简单、条件温和;(2)表现为无定形玻璃态,表现出高热稳定性和玻璃化温度;(3)具有高的空穴或电子迁移率等优点。复杂二芳基芴材料将成为有商业化潜力的有机光电功能材料。
The complex diaryl fluorene material and its preparation and application methods belong to the field of organic photoelectric material science and technology, specifically a non-planar complex bi-polycyclic heteroaryl fluorene material and a Friedel-Crafts preparation method, and use this type of material as a hole transport The material, the electron transport material and the three-primary-color light-emitting material are applied in organic electronic fields such as organic flash memory devices and organic light-emitting displays. 2) It is in an amorphous glass state, showing high thermal stability and glass transition temperature; (3) It has the advantages of high hole or electron mobility. Complex diarylfluorene materials will become organic optoelectronic functional materials with commercial potential.
Description
技术领域 technical field
本发明属于有机光电材料技术领域。具体涉及一种非平面多环杂芳烃有机半导体材料及其制备方法,并涉及这些材料在有机电致发光、光伏电池、有机电存储、有机非线性光学、化学与生物传感和有机激光等领域的应用。The invention belongs to the technical field of organic photoelectric materials. It specifically relates to a non-planar polycyclic heteroaromatic organic semiconductor material and its preparation method, and relates to the application of these materials in the fields of organic electroluminescence, photovoltaic cells, organic electrical storage, organic nonlinear optics, chemical and biological sensing, and organic lasers. Applications.
技术背景 technical background
自1987年美国柯达公司Tang研究小组[Tang,C.W.;Van Slyke,S.A.Appl.Phys.Lett.1987,57,913.]和1990年英国剑桥大学[Burroughes,J.H.;Bradley,D.D.C.;Brown,A.B.;Marks,R.N.;Mackay,K.;Friend,R.H.;Burn,P.L.;Holmes,A.B.Nature 1990,347,539.]分别发表了以有机和聚合物荧光材料制成薄膜型有机电致发光器件(Organic Light-emittingDiodes)和聚合物发光二极管(Polymeric Light-emitting Diodes)以来,有机平板显示成为继液晶显示之后的又一代市场化的显示产品。与此同时其他有机电子和光电子产业,包括有机场效应管、有机太阳能电池、非线性光学、生物传感和激光等领域以及非线性光学材料也正走向市场化。有机和塑料电子产品的优点在于材料制备成本低、工艺简单、具有通用高分子的柔韧性和可塑性。因此,开发具有实用性的市场潜力新型有机光电信息材料吸引了许多国内外大学不同学科的科学家以及研究机构和公司的关注和投入。到目前为止,开发新型高度稳定的载流子传输材料和发光材料成为提高有机电子、电光以及光电器件效率和寿命关键因素。Since 1987, the Tang Research Group of Kodak Company in the United States [Tang, C.W.; Van Slyke, S.A.Appl.Phys. Lett. 1987, 57, 913.] and the University of Cambridge in 1990 [Burruges, J.H.; Bradley, D.D.C.; Brown, A.B.; Marks, R.N.; Mackay, K.; Friend, R.H.; Burn, P.L.; Holmes, A.B.Nature 1990, 347, 539.] published thin-film organic electroluminescent devices (Organic Light -emitting Diodes) and Polymeric Light-emitting Diodes (Polymeric Light-emitting Diodes), organic flat panel display has become another generation of market-oriented display products after liquid crystal display. At the same time, other organic electronics and optoelectronic industries, including fields such as organic field effect transistors, organic solar cells, nonlinear optics, biosensing and lasers, and nonlinear optical materials are also moving toward marketization. The advantages of organic and plastic electronics lie in the low cost of material preparation, simple process, and the flexibility and plasticity of general-purpose polymers. Therefore, the development of new organic optoelectronic information materials with practical market potential has attracted the attention and investment of many scientists from different disciplines in universities at home and abroad, as well as research institutions and companies. So far, the development of new and highly stable carrier transport materials and light-emitting materials has become a key factor to improve the efficiency and lifetime of organic electronics, electro-optic and optoelectronic devices.
到目前为止,含经过二芳基修饰9位芴结构基元作为核构建光电材料表现出高的热稳定性和高的玻璃化温度,因此成为一类有希望的实用有机光电子材料,已经形成相当的文章和专利。然而,将苯基芴或杂芴作为封端单元对易结晶的有机半导体材料进行修饰使之成为高稳定的无定形材料的专利很少,而且制备方法复杂。因此,本发明论述通过简单的处理方法开发一系列封端的含硫、氮、氧等杂原子芳烃的光电材料,同时具有高的溶解度、阻隔发色团聚集或稳定性结构链等优点,该类材料将在有机电子、光电子、或光电材料中有广泛的应用空间。So far, optoelectronic materials containing 9-position fluorene modified by diaryl groups as core construction exhibit high thermal stability and high glass transition temperature, so they have become a promising class of practical organic optoelectronic materials, and have formed considerable articles and patents. However, there are few patents on using phenylfluorene or heterofluorene as a capping unit to modify easily crystallized organic semiconductor materials to make them highly stable amorphous materials, and the preparation methods are complicated. Therefore, the present invention discusses the development of a series of end-capped photoelectric materials containing heteroatom aromatics such as sulfur, nitrogen, and oxygen through simple processing methods, and has the advantages of high solubility, blocking chromophore aggregation, or stabilizing structural chains. The material will have a wide application space in organic electronics, optoelectronics, or optoelectronic materials.
发明内容 Contents of the invention
技术问题:本发明的目的在于提出非平面多环杂芳烃有机半导体材料具有高度的环境稳定性与形态稳定性,同时具有特殊的光电性质。另外,指出了该类材料在有机电致发光、有机激光、光伏电池和有机电存储器件等有机电子领域的应用。Technical problem: The purpose of the present invention is to propose a non-planar polycyclic heteroaromatic organic semiconductor material with high environmental stability and morphological stability, as well as special photoelectric properties. In addition, the application of this kind of materials in the field of organic electronics such as organic electroluminescence, organic laser, photovoltaic cells and organic electrical storage devices is pointed out.
技术方案:本发明的一种复杂二芳基芴材料,其特征在于该材料以非平面的芳基芴或氮杂芴作为封端基团杂多环芳烃共轭分子,具有为如下结构:Technical solution: A complex diaryl fluorene material of the present invention is characterized in that the material uses non-planar aryl fluorene or azafluorene as a capping group heteropolycyclic aromatic hydrocarbon conjugated molecule, and has the following structure:
化合物材料ICompound material I
式中:R1、R2出现时相同或者不同,并为氢或具有1至22个碳原子的直链、支链或者环状烷基链或者烷氧基链;n,m分别为0,1,2,3,4中任意数字;X为碳或氮;Ar为含杂原子的多环芳烃共轭结构单元;Ar具体为如下列结构中的一种:In the formula: R 1 and R 2 are the same or different when they appear, and are hydrogen or straight, branched or cyclic alkyl chains or alkoxy chains with 1 to 22 carbon atoms; n, m are 0, Any number in 1, 2, 3, 4; X is carbon or nitrogen; Ar is a heteroatom-containing polycyclic aromatic hydrocarbon conjugated structural unit; Ar is specifically one of the following structures:
式中:l为0,1,2,3,4中任意数字;Ar1、Ar2、Ar3、Ar4是为氢或者是如下列结构中的一种:In the formula: l is any number among 0, 1, 2, 3, 4; Ar 1 , Ar 2 , Ar 3 , Ar 4 are hydrogen or one of the following structures:
所述的化合物材料I中Ar为含氧、硫或氮的芳环,具有如下结构:Ar in the compound material I is an aromatic ring containing oxygen, sulfur or nitrogen, and has the following structure:
所述的化合物材料I具有如下结构:The compound material I has the following structure:
通过付-克反应制备,反应具体如下:其中,Prepared by Friedel-Crafts reaction, the reaction is as follows: wherein,
方法1付-克反应作为最后的封端过程实现含苯基芴的非平面多环杂芳烃有机半导体Approach 1 Friedel-Crafts Reaction as the Final Capping Process to Realize Nonplanar Polycyclic Heteroaromatic Organic Semiconductors Containing Phenylfluorene
方法2付-克反应作为开始的封端过程实现含苯基芴的非平面多环杂芳烃有机半导体
其付-克反应条件具体是杂芳烃和叔醇按摩尔比例混合,在温度25-150摄氏度下,加入等摩尔比例的盐酸/冰醋酸、甲烷磺酸/四氯化碳、三氟甲烷磺酸/四氯化碳、或三氟化硼乙醚络合物/二氯甲烷催化剂,反应时间在30分钟~48小时之间。The Friedel-Crafts reaction conditions are specifically that heteroaromatics and tertiary alcohols are mixed in a molar ratio, and at a temperature of 25-150 degrees Celsius, hydrochloric acid/glacial acetic acid, methanesulfonic acid/carbon tetrachloride, and trifluoromethanesulfonic acid are added in equimolar ratios. / carbon tetrachloride, or boron trifluoride ether complex / dichloromethane catalyst, the reaction time is between 30 minutes and 48 hours.
复杂二芳基芴材料应用于信息存储的有机半导体器件,其中器件的结构为透明阳极/电双稳态层/阴极,其中复杂二多环杂芳基芴材料作为电双稳态层通过真空蒸镀、溶液旋涂或喷墨打印方式制备、阴极通过真空镀膜技术制备。Complex diaryl fluorene materials are applied to organic semiconductor devices for information storage, in which the structure of the device is a transparent anode/electric bistable layer/cathode, in which the complex bi-polycyclic heteroaryl fluorene material is used as an electric bistable layer by vacuum evaporation It is prepared by plating, solution spin coating or inkjet printing, and the cathode is prepared by vacuum coating technology.
复杂二芳基芴材料应用于发光二极管器件或光伏电池器件,其中器件的结构为透明阳极/空穴传输层/发光层/电子传输层/阴极,其中,发光层在光伏电池器件中省略,复杂二多环杂芳基芴材料作为空穴传输层、发光层或电子传输层中之一的活性材料。Complex diarylfluorene materials are used in light-emitting diode devices or photovoltaic cell devices, where the structure of the device is transparent anode/hole transport layer/light-emitting layer/electron transport layer/cathode, wherein the light-emitting layer is omitted in the photovoltaic cell device, complex The bipolycyclic heteroaryl fluorene material is used as an active material in one of the hole transport layer, light emitting layer or electron transport layer.
有益效果:通过元素分析、红外光谱(FTIR)、核磁共振(NMR)、色质联机(GCMS)、基质辅助激光解析时间飞行质谱(MALDI-TOF-MS)、凝胶色谱(GPC)表征了芳基芴材料结构,通过热重分析和差热分析测试了材料的热稳定性,通过循环伏安法表征了它们的电化学性质。Beneficial effects: Characterize the aromatics by elemental analysis, infrared spectroscopy (FTIR), nuclear magnetic resonance (NMR), chromatography-mass on-line (GCMS), matrix-assisted laser desorption time-of-flight mass spectrometry (MALDI-TOF-MS), and gel chromatography (GPC). Based on the structure of fluorene materials, the thermal stability of the materials was tested by thermogravimetric analysis and differential thermal analysis, and their electrochemical properties were characterized by cyclic voltammetry.
其中该类材料的热重分析和差热分析测试,表现出了较高的热稳定性与玻璃化温度,因此该类材料组成的器件可以有效的消除结晶和针孔等缺陷问题;循环伏安法表征的电化学性质表明氧化电势没有明显改变,保持了多环杂芳烃良好的空穴或电子注入能力。修饰的发光材料,量子效率明确提高。因此,该类材料可以作为高效的空穴传输材料、电子传输材料、发光材料、异质结掺杂材料以及主体材料。Among them, the thermogravimetric analysis and differential thermal analysis tests of this type of material show high thermal stability and glass transition temperature, so devices composed of this type of material can effectively eliminate defects such as crystallization and pinholes; cyclic voltammetry The electrochemical properties characterized by the method showed that the oxidation potential did not change significantly, and the good hole or electron injection ability of polycyclic heteroaromatics was maintained. The quantum efficiency of the modified luminescent material is clearly improved. Therefore, such materials can be used as efficient hole transport materials, electron transport materials, light emitting materials, heterojunction doping materials and host materials.
该类分子材料可以应用于有机半导体器件等有机电子领域。化合物材料I适用于有机发光二极管器件、有机电存储器件、有机太阳能电池、有机激光二极管器件、有机场效应管等。This type of molecular material can be applied in the field of organic electronics such as organic semiconductor devices. Compound material I is suitable for organic light emitting diode devices, organic electrical storage devices, organic solar cells, organic laser diode devices, organic field effect transistors, and the like.
在此基础上,设计了初步的发光二极管器件评价非平面多环杂芳烃有机半导体材料的载流子传输性质。其中器件的结构为透明阳极/化合物材料I/喹啉铝/阴极,其中化合物材料I作为空穴传输层通过真空蒸镀、溶液旋涂或喷墨打印方式制备、喹啉铝和阴极通过真空镀膜技术制备。实验结果表明:这些非平面多环杂芳烃有机半导体材料显示了稳定与高效的空穴传输能力。On this basis, a preliminary light-emitting diode device was designed to evaluate the carrier transport properties of non-planar polycyclic heteroaromatic organic semiconductor materials. The structure of the device is transparent anode/compound material I/quinoline aluminum/cathode, wherein compound material I is prepared as a hole transport layer by vacuum evaporation, solution spin coating or inkjet printing, and quinoline aluminum and cathode are prepared by vacuum coating technical preparation. Experimental results show that these non-planar polycyclic heteroaromatic organic semiconductor materials exhibit stable and efficient hole transport capabilities.
本发明的主要优点在于:The main advantages of the present invention are:
1.付-克反应合成步骤简单、条件温和;1. The Friedel-Crafts reaction has simple synthesis steps and mild conditions;
2.具有高热稳定性和玻璃化温度。2. High thermal stability and glass transition temperature.
3.保持高的空穴或电子迁移率。3. Maintain high hole or electron mobility.
附图说明: Description of drawings:
图1.2,5-二(9-苯基-芴-9-基)噻吩热分析表征。其中图1(a)表示热重分析结果;图1(b)表示DSC示差量热扫描分析结果。Figure 1. Thermal analysis characterization of 2,5-bis(9-phenyl-fluoren-9-yl)thiophene. Wherein Fig. 1 (a) represents thermogravimetric analysis result; Fig. 1 (b) represents DSC differential calorimetry scanning analysis result.
图2.5,5″-二(9-苯基-芴-9-基)-2,2′:5′,2″-三噻吩热分析表征。其中图2(a)表示热重分析结果;图2(b)表示DSC示差量热扫描分析结果。Figure 2.5, Thermal analysis and characterization of 5″-bis(9-phenyl-fluoren-9-yl)-2,2′:5′,2″-trithiophene. Wherein Fig. 2 (a) represents thermogravimetric analysis result; Fig. 2 (b) represents DSC differential calorimetry scanning analysis result.
图3.2-(9-苯基-芴-9-基)-螺[茚[2,1-b]噻吩-8,9′-芴]热分析表征。其中图3(a)表示热重分析结果;图3(b)表示DSC示差量热扫描分析结果。Figure 3. Thermal analysis characterization of 2-(9-phenyl-fluoren-9-yl)-spiro[indene[2,1-b]thiophene-8,9'-fluorene]. Wherein Fig. 3 (a) represents thermogravimetric analysis result; Fig. 3 (b) represents DSC differential calorimetry scanning analysis result.
图4.三(4-(9-苯基-芴-9-基)苯)胺的热分析表征。其中图4(a)表示热重分析结果;图4(b)表示DSC示差量热扫描分析结果。Figure 4. Thermal analytical characterization of tris(4-(9-phenyl-fluoren-9-yl)phenyl)amine. Wherein Fig. 4 (a) represents thermogravimetric analysis result; Fig. 4 (b) represents DSC differential calorimetry scanning analysis result.
图5.5,5″-二(9-苯基-芴-9-基)-2,2′:5′,2″-三噻吩的电压-亮度曲线和器件电致发光光谱。其中图5(a)电压-亮度曲线;图5(b)表示ALQ3的发光光谱。Figure 5.5, Voltage-brightness curve and device electroluminescence spectrum of 5"-bis(9-phenyl-fluoren-9-yl)-2,2':5',2"-trithiophene. Among them, Fig. 5(a) voltage-brightness curve; Fig. 5(b) shows the emission spectrum of ALQ3.
图6.三(4-(9-苯基-芴-9-基)苯)胺的电压-亮度曲线和器件电致发光光谱。其中图6(a)电压-亮度曲线;图6(b)表示ALQ3的发光光谱。Figure 6. Voltage-brightness curve and device electroluminescence spectrum of tris(4-(9-phenyl-fluoren-9-yl)phenyl)amine. Among them, Fig. 6(a) voltage-brightness curve; Fig. 6(b) shows the emission spectrum of ALQ3.
具体实施方式 Detailed ways
本发明非平面复杂二芳基芴有机半导体材料是以芳基芴或者杂芳基芴作为封端基团的有机半导体材料,具有如下结构:The non-planar complex diarylfluorene organic semiconductor material of the present invention is an organic semiconductor material with arylfluorene or heteroarylfluorene as a capping group, and has the following structure:
实施例1、以9-苯基-芴单元后修饰的噻吩材料制备:Example 1. Preparation of thiophene material post-modified with 9-phenyl-fluorene unit:
9-苯基-芴-9-醇9-Phenyl-fluoren-9-ol
取溴-苯(2.1mmol)与镁(0.502g,2.1mmol)反应生成格氏试剂,与溶于16mL四氢呋喃中芴酮(2.1mmol)在60℃反应24小时,生成大量白色沉淀,最后加入饱和色NHCl4将格氏盐转化为醇。反应完毕后,乙醚萃取,干燥旋蒸,石油醚∶二氯甲烷混合溶剂(3∶2)硅胶柱纯化,得到略带淡黄色的固体叔醇(产率为90%)。GC-MS(EI-m/z):258.1(M+).1H NMR(400MHz,CDCl3,ppm):δ7.691-7.672(d,J=7.6Hz,2H),7.406-7.325(m,6H),7.292-7.236(m,5H),2.508(s,1H).13C NMR(CDCl3,ppm):δ150.658,143.391,139.82,129.339,128.698,128.459,127.462,125.633,125.037,120.343,83.85.Take bromo-benzene (2.1mmol) and magnesium (0.502g, 2.1mmol) to react to generate Grignard reagent, and react with fluorenone (2.1mmol) dissolved in 16mL tetrahydrofuran at 60°C for 24 hours, a large amount of white precipitate is formed, and finally add saturated Chromatic NHCl 4 converts the Grignard salt to alcohol. After the reaction was completed, ether was extracted, dried and rotary evaporated, and purified on a silica gel column with a mixed solvent of petroleum ether:dichloromethane (3:2) to obtain a slightly pale yellow solid tertiary alcohol (yield 90%). GC-MS (EI-m/z): 258.1 (M + ). 1 H NMR (400MHz, CDCl 3 , ppm): δ7.691-7.672 (d, J=7.6Hz, 2H), 7.406-7.325 (m , 6H), 7.292-7.236 (m, 5H), 2.508 (s, 1H). 13 C NMR (CDCl 3 , ppm): δ150.658, 143.391, 139.82, 129.339, 128.698, 128.459, 127.462, 125.633, 125.037, 120.343, 83.85.
2,5-二(9-苯基-芴-9-基)噻吩2,5-bis(9-phenyl-fluoren-9-yl)thiophene
按2∶1当量取9-苯基-芴-9-醇和噻吩溶解于二氯甲烷中,在室温的条件下滴加数三氟化硼.乙醚络合物反应30分钟,加入乙醇和水淬灭反应,二氯甲烷萃取,干燥旋蒸,石油醚硅胶柱纯化,用四氢呋喃和石油醚重结晶得到白色粉末固体2,5-二(9-苯基-芴-9-基)噻吩(产率为90.1%)。1H NMR(400MHz,CDCl3,ppm):δ7.755-7.737(d,J=7.6Hz,4H),7.478-7.459(d,J=7.6Hz,4H),7.384-7.344(td,J=7.6Hz,J=1.2Hz,4H),7.291-7.251(td,J=7.6Hz,J=1.2Hz,4H),7.173(s,5H),6.624(s,2H).13C NMR(CDCl3,ppm):δ151.092,148.197,145.761,139.998,128.346,127.949,127.89,127.768,127.096,126.405,125.817,120.367,62.559.Dissolve 9-phenyl-fluorene-9-alcohol and thiophene in dichloromethane at a ratio of 2:1, add boron trifluoride-ether complex dropwise at room temperature for 30 minutes, add ethanol and water to quench Quenching reaction, dichloromethane extraction, drying rotary evaporation, petroleum ether silica gel column purification, recrystallization with tetrahydrofuran and petroleum ether to obtain white powder solid 2,5-bis(9-phenyl-fluorene-9-yl)thiophene (yield was 90.1%). 1 H NMR (400MHz, CDCl 3 , ppm): δ7.755-7.737 (d, J=7.6Hz, 4H), 7.478-7.459 (d, J=7.6Hz, 4H), 7.384-7.344 (td, J= 7.6Hz, J=1.2Hz, 4H), 7.291-7.251(td, J=7.6Hz, J=1.2Hz, 4H), 7.173(s, 5H), 6.624(s, 2H). 13 C NMR (CDCl 3 , ppm): δ151.092, 148.197, 145.761, 139.998, 128.346, 127.949, 127.89, 127.768, 127.096, 126.405, 125.817, 120.367, 62.559.
实施例2、9-苯基-芴-9-醇作为封端剂处理2,2′-二噻吩的封端材料制备:Example 2, 9-phenyl-fluoren-9-ol as a capping agent to treat 2,2'-dithiophene capping material preparation:
5,5′-二(9-苯基-芴-9-基)-2,2′-二噻吩5,5'-bis(9-phenyl-fluoren-9-yl)-2,2'-dithiophene
按2∶1当量取9-苯基-芴-9-醇和2,2′-二噻吩溶解于二氯甲烷中,在室温的条件下滴加数三氟化硼.乙醚络合物反应30分钟,加入乙醇和水淬灭反应,二氯甲烷萃取,干燥旋蒸,石油醚∶二氯甲烷硅胶柱纯化,用四氢呋喃和石油醚重结晶得到白色粉末固体5,5′-二(9-苯基-芴-9-基)-2,2′-二噻吩(产率为92.1%)。MALDI-TOF-MS(m/z):646.2(M+).1H NMR(400MHz,CDCl3,ppm):δ7.759-7.74(d,J=7.6Hz,4H),7.491-7.472(d,J=7.6Hz,4H),7.392-7.352(td,J=7.2Hz,J=1.2Hz,4H),7.303-7.257(td,J=7.6Hz,J=1.2Hz,4H),7.228-7.188(m,10H),6.817-6.808(d,J=3.6Hz,2H),6.694-6.685(d,J=3.6Hz2H).13C NMR(100MHz,CDCl3,ppm):δ150.865,148.486,145.11,139.956,136.674,128.441,128.117,127.961,127.826,127.291,127.258,126.267,122.661,120.445,62.492.Dissolve 9-phenyl-fluorene-9-ol and 2,2'-dithiophene in dichloromethane at a ratio of 2:1, add boron trifluoride-ether complex dropwise at room temperature for 30 minutes , adding ethanol and water to quench the reaction, dichloromethane extraction, drying and rotary evaporation, petroleum ether: dichloromethane silica gel column purification, recrystallization with tetrahydrofuran and petroleum ether to obtain white powder solid 5,5'-bis(9-phenyl -Fluoren-9-yl)-2,2'-dithiophene (92.1% yield). MALDI-TOF-MS (m/z): 646.2 (M + ). 1 H NMR (400MHz, CDCl 3 , ppm): δ7.759-7.74 (d, J=7.6Hz, 4H), 7.491-7.472 (d , J=7.6Hz, 4H), 7.392-7.352(td, J=7.2Hz, J=1.2Hz, 4H), 7.303-7.257(td, J=7.6Hz, J=1.2Hz, 4H), 7.228-7.188 (m, 10H), 6.817-6.808 (d, J=3.6Hz, 2H), 6.694-6.685 (d, J=3.6Hz2H). 13 C NMR (100MHz, CDCl3, ppm): δ150.865, 148.486, 145.11 , 139.956, 136.674, 128.441, 128.117, 127.961, 127.826, 127.291, 127.258, 126.267, 122.661, 120.445, 62.492.
实施例3、9-苯基-芴-9-醇作为封端剂处理2,2′:5′,2″-三噻吩的封端材料制备:Example 3, 9-phenyl-fluorene-9-ol as a capping agent to treat 2,2':5',2"-trithiophene capping material preparation:
5,5″-二(9-苯基-芴-9-基)-2,2′:5′,2″-三噻吩5,5″-bis(9-phenyl-fluoren-9-yl)-2,2′: 5′,2″-trithiophene
按2∶1当量取9-苯基-芴-9-醇和2,2′:5′,2″-三噻吩溶解于二氯甲烷中,在室温的条件下滴加数三氟化硼.乙醚络合物反应30分钟,加入乙醇和水淬灭反应,二氯甲烷萃取,干燥旋蒸,石油醚∶二氯甲烷硅胶柱纯化,用四氢呋喃和石油醚重结晶得到白色粉末固体5,5″-二(9-苯基-芴-9-基)-2,2′:5′,2″-三噻吩(产率为81.2%)。MALDI-TOF-MS(m/z):728.2(M+).1HNMR(400MHz,CDCl3,ppm):δ7.774-7.755(d,J=7.6Hz,4H),7.519-7.5(d,J=7.6Hz,4H),7.404-7.367(t,J=7.6Hz,4H),7.32-7.283(t,J=7.6Hz,4H),7.271-7.215(m,10H),6.899-6.886(dd,J=4.0Hz,J=1.6Hz,2H),6.868-6.864(d,J=1.6Hz,2H),6.76-6.746(dd,J=3.6Hz,J=1.6Hz,2H).13C NMR(CDCl3,ppm):δ150.853,148.8,145.017,136.329,136.153,128.491,128.188,128.009,127.847,127.423,127.342,126.254,124.095,122.935,120.49,139.974,62.525.Dissolve 9-phenyl-fluoren-9-ol and 2,2':5',2"-trithiophene in dichloromethane at a ratio of 2:1, and add boron trifluoride-ether dropwise at room temperature The complex was reacted for 30 minutes, added ethanol and water to quench the reaction, extracted with dichloromethane, dried and rotary evaporated, petroleum ether: dichloromethane silica gel column purification, recrystallized with tetrahydrofuran and petroleum ether to obtain a white powder solid 5,5″- Bis(9-phenyl-fluoren-9-yl)-2,2': 5',2"-trithiophene (81.2% yield). MALDI-TOF-MS (m/z): 728.2 (M + ). 1 HNMR (400MHz, CDCl 3 , ppm): δ7.774-7.755(d, J=7.6Hz, 4H), 7.519-7.5(d, J=7.6Hz, 4H), 7.404-7.367(t, J =7.6Hz, 4H), 7.32-7.283(t, J=7.6Hz, 4H), 7.271-7.215(m, 10H), 6.899-6.886(dd, J=4.0Hz, J=1.6Hz, 2H), 6.868 -6.864 (d, J=1.6Hz, 2H), 6.76-6.746 (dd, J=3.6Hz, J=1.6Hz, 2H). 13 C NMR (CDCl 3 , ppm): δ150.853, 148.8, 145.017, 136.329, 136.153, 128.491, 128.188, 128.009, 127.847, 127.423, 127.342, 126.254, 124.095, 122.935, 120.49, 139.974, 62.525.
实施例4、9-苯基-芴-9-醇作为封端剂处理三苯胺的封端材料制备:Example 4, 9-phenyl-fluoren-9-ol as a capping agent for the preparation of capping materials for triphenylamine:
N,N-二苯基-4-(9-苯基-芴-9-基)苯胺N,N-Diphenyl-4-(9-phenyl-fluoren-9-yl)aniline
按1∶1当量取9-苯基-芴-9-醇和三苯胺溶解于二氯甲烷中,在室温的条件下滴加数滴三氟化硼.乙醚络合物反应30分钟,加入乙醇和水淬灭反应,二氯甲烷萃取,干燥旋蒸,石油醚∶二氯甲烷的混合溶剂作为淋洗液的硅胶柱纯化,用四氢呋喃和石油醚重结晶得到白色粉末固体N,N-二苯基-4-(9-苯基-芴-9-基)苯胺(产率为92.5%)。GC-MS(EI-m/z):485(M+).Dissolve 9-phenyl-fluorene-9-alcohol and triphenylamine in dichloromethane at 1:1 equivalent, and add a few drops of boron trifluoride. Ether complex to react for 30 minutes at room temperature, add ethanol and Quenching the reaction with water, extracting with dichloromethane, drying and rotary evaporation, using a mixed solvent of petroleum ether:dichloromethane as the eluent for silica gel column purification, recrystallization with tetrahydrofuran and petroleum ether to obtain a white powder solid N,N-diphenyl - 4-(9-Phenyl-fluoren-9-yl)aniline (92.5% yield). GC-MS (EI-m/z): 485 (M + ).
实施例5、9-苯基-芴-9-醇作为封端剂处理三苯胺的封端材料制备:Example 5, 9-phenyl-fluoren-9-ol as a capping agent for the preparation of capping materials for triphenylamine:
N,N-二(-4-(9-苯基-芴-9-基)苯基)苯胺N,N-bis(-4-(9-phenyl-fluoren-9-yl)phenyl)aniline
按2∶1当量取9-苯基-芴-9-醇和三苯胺溶解于二氯甲烷中,在室温的条件下滴加数滴三氟化硼.乙醚络合物反应30分钟,加入乙醇和水淬灭反应,二氯甲烷萃取,干燥旋蒸,石油醚∶二氯甲烷的混合溶剂作为淋洗液的硅胶柱纯化,用四氢呋喃和石油醚重结晶得到淡黄色粉末固体N,N-二(-4-(9-苯基-芴-9-基)苯基)苯胺(产率为91%)。MALDI-TOF-MS(m/z):725.4(M+).Dissolve 9-phenyl-fluorene-9-alcohol and triphenylamine in dichloromethane at 2:1 equivalent, and add a few drops of boron trifluoride. Ether complex to react for 30 minutes at room temperature, add ethanol and Quench the reaction with water, extract with dichloromethane, dry and rotary evaporate, petroleum ether: the mixed solvent of dichloromethane is used as the silica gel column purification of the eluent, recrystallize with tetrahydrofuran and petroleum ether to obtain light yellow powder solid N, N-bis( -4-(9-Phenyl-fluoren-9-yl)phenyl)aniline (91% yield). MALDI-TOF-MS (m/z): 725.4 (M + ).
实施例6、9-苯基-芴-9-醇作为封端剂处理三苯胺的封端材料制备:Example 6, 9-phenyl-fluoren-9-ol as a capping agent for the preparation of capping materials for triphenylamine:
三(4-(9-苯基-芴-9-基)苯)胺Tris(4-(9-phenyl-fluoren-9-yl)phenyl)amine
按3∶1当量取9-苯基-芴-9-醇和三苯胺溶解于二氯甲烷中,在室温的条件下滴加数滴三氟化硼.乙醚络合物反应30分钟,加入乙醇和水淬灭反应,二氯甲烷萃取,干燥旋蒸,石油醚∶二氯甲烷的混合溶剂作为淋洗液的硅胶柱纯化,用四氢呋喃和石油醚重结晶得到淡黄色粉末固体三(四(9-苯基-芴-9-基)苯)胺(产率为90%)。MALDI-TOF-MS(m/z):965.3(M+).1HNMR(400MHz,CDCl3,ppm):δ7.74-7.721(d,J=7.6Hz,6H),7.38-7.361(d,J=7.6Hz,6H),7.346-7.308(t,J=7.6Hz,6H),7.259-7.219(t,J=7.6Hz,6H),7.174(s,15H),6.995-6.974(d,J=8.4Hz,6H),6.841-6.82(d,J=7.6Hz,6H).13C NMR(100MHz,CDCl3,ppm):δ151.482,146.145,146.037,140.218,139.937,128.984,128.317,128.229,127.805,127.554,126.706,126.362,123.681,120.257,65.131.Dissolve 9-phenyl-fluorene-9-alcohol and triphenylamine in dichloromethane at a ratio of 3:1, add a few drops of boron trifluoride-ether complex dropwise at room temperature for 30 minutes, add ethanol and Quenching the reaction with water, extracting with dichloromethane, drying and rotary evaporating, petroleum ether: dichloromethane mixed solvent as the silica gel column purification of the eluent, recrystallization with tetrahydrofuran and petroleum ether to obtain light yellow powder solid three (tetra(9- Phenyl-fluoren-9-yl)phenyl)amine (90% yield). MALDI-TOF-MS (m/z): 965.3 (M + ). 1 HNMR (400MHz, CDCl 3 , ppm): δ7.74-7.721 (d, J=7.6Hz, 6H), 7.38-7.361 (d, J=7.6Hz, 6H), 7.346-7.308(t, J=7.6Hz, 6H), 7.259-7.219(t, J=7.6Hz, 6H), 7.174(s, 15H), 6.995-6.974(d, J =8.4Hz, 6H), 6.841-6.82 (d, J=7.6Hz, 6H). 13 C NMR (100MHz, CDCl 3 , ppm): δ151.482, 146.145, 146.037, 140.218, 139.937, 128.984, 128.317, 128.229 , 127.805, 127.554, 126.706, 126.362, 123.681, 120.257, 65.131.
实施例7、非平面多环杂芳烃有机半导体材料的光致发光光谱和量子效率测定:Example 7, Photoluminescence Spectrum and Quantum Efficiency Measurement of Non-planar Polycyclic Heteroaromatic Organic Semiconductor Materials:
把产物配成准确的1μM的三氯甲烷稀溶液,并通过氩气冲洗去掉氧气。采用岛津UV-3150紫外可见光谱仪和RF-530XPC荧光光谱仪进行吸收光谱和发射光谱测定。光致发光光谱是在紫外吸收的最大吸收波长下测定的。固体膜的光致发光光谱是通过真空蒸镀的石英片进行,膜厚为300nm。溶液的荧光量子效率是通过在环己酮中的1μM 9,10-二苯蒽溶液作为标准进行测量。The product was made into a precise 1 μM dilute solution in chloroform and flushed with argon to remove oxygen. The absorption and emission spectra were measured by Shimadzu UV-3150 ultraviolet-visible spectrometer and RF-530XPC fluorescence spectrometer. The photoluminescence spectrum is measured at the wavelength of maximum absorption of ultraviolet absorption. The photoluminescence spectrum of the solid film was carried out through a vacuum-evaporated quartz plate with a film thickness of 300 nm. The fluorescence quantum efficiencies of the solutions were measured with 1 μM 9,10-diphenylanthracene in cyclohexanone as a standard.
实施例8、非平面多环杂芳烃有机半导体材料的热分析测定:Example 8, thermal analysis and determination of non-planar polycyclic heteroaromatic organic semiconductor materials:
热重分析(TGA))在岛津公司(Shimadzu)DTG-60H热重分析仪上进行,加热扫描速度为10℃/min并且氮气流速为20cm3/min。示差扫描量热分析(DSC)在岛津公司(Shimadzu)DSC-60A测试仪上进行,样品首先以10℃/min的速度加热到样品分解温度低十度的状态,然后,在液氮条件下降温回到开始温度,同样第二次以10℃/min的速度加热升温扫描。Thermogravimetric analysis (TGA)) was performed on a Shimadzu DTG-60H thermogravimetric analyzer with a heating scan rate of 10°C/min and a nitrogen flow rate of 20 cm 3 /min. Differential scanning calorimetry (DSC) was carried out on a Shimadzu DSC-60A tester. The sample was first heated at a rate of 10°C/min to a state ten degrees lower than the decomposition temperature of the sample, and then, under liquid nitrogen conditions The temperature was lowered back to the starting temperature, and the temperature was scanned at a rate of 10°C/min for the second time.
2,5-二(9-苯基-芴-9-基)噻吩、5,5′-二(9-苯基-芴-9-基)-2,2′-二噻吩、5,5″-二(9-苯基-芴-9-基)-2,2′:5′,2″-三噻吩的热分解温度大于350℃,分别见附图1、附图2、附图3;三(4-(9-苯基-芴-9-基)苯)胺的热分解温度大于500℃,见附图4。2,5-bis(9-phenyl-fluoren-9-yl)thiophene, 5,5'-bis(9-phenyl-fluoren-9-yl)-2,2'-dithiophene, 5,5" - The thermal decomposition temperature of bis(9-phenyl-fluoren-9-yl)-2,2':5',2"-trithiophene is greater than 350°C, see accompanying
实施例9、非平面多环杂芳烃有机半导体材料的电化学测定:Embodiment 9. Electrochemical determination of non-planar polycyclic heteroaromatic organic semiconductor materials:
电化学循环伏安(CV)实验在一个Eco Chemie B.V.AUTOLAB potentiostat伏安分析仪上完成,采用三电极体系,包括铂碳工作电极、Ag/Ag+为参比电极、铂丝为对电极。氧化过程采用二氯甲烷作为溶剂,还原过程采用四氢呋喃作为溶剂,六氟磷四丁基铵(Bu4N+PF6 -)作为支持电解质,浓度为0.1M。所有的电化学实验都是在常温条件氮气气氛下进行,电压扫描速度0.1V/s。使用二茂铁(FOC)作为基准,通过测量氧化和还原过程的开始电压可以计算材料的HOMO和LUMO能级。Electrochemical cyclic voltammetry (CV) experiments were performed on an Eco Chemie BVAUTOLAB potentiostat voltammetry analyzer using a three-electrode system, including a platinum-carbon working electrode, Ag/Ag + as a reference electrode, and a platinum wire as a counter electrode. Dichloromethane was used as a solvent in the oxidation process, tetrahydrofuran was used as a solvent in the reduction process, tetrabutylammonium hexafluorophosphine (Bu 4 N + PF 6 - ) was used as a supporting electrolyte, and the concentration was 0.1M. All electrochemical experiments were carried out under nitrogen atmosphere at room temperature, and the voltage scanning speed was 0.1V/s. Using ferrocene (FOC) as a benchmark, the HOMO and LUMO energy levels of the material can be calculated by measuring the onset voltages of the oxidation and reduction processes.
实施例10、非平面多环杂芳烃有机半导体材料的发光器件的制备与表征:Example 10. Preparation and characterization of light-emitting devices based on non-planar polycyclic heteroaromatic organic semiconductor materials:
一个以9-苯基-芴单元后修饰的聚乙烯基咔唑材料为主体材料的发光器件制备,其结构为:ITO/5,5″-二(9-苯基-芴-9-基)-2,2′:5′,2″-三噻吩(60nm)或三(4-(9-苯基-芴-9-基)苯)胺(60nm)/ALQ3(80nm)/Mg:Ag(250nm),其中ITO是方块电阻为10-20Ω/□的透明电极;5,5″-二(9-苯基-芴-9-基)-2,2′:5′,2″-三噻吩或三(4-(9-苯基-芴-9-基)苯)胺作为作为空穴传输材料,膜厚60nm,通过真空蒸镀技术制备,ALQ3为三喹啉铝,作为发光层,采用真空蒸镀技术,薄膜厚度为60nm;最后,再蒸镀Mg:Ag阴极,250nm。A light-emitting device prepared with a polyvinylcarbazole material modified after the 9-phenyl-fluorene unit as the host material, its structure is: ITO/5,5″-bis(9-phenyl-fluorene-9-yl) -2,2′:5′,2″-trithiophene (60nm) or tris(4-(9-phenyl-fluoren-9-yl)phenyl)amine (60nm)/ALQ 3 (80nm)/Mg:Ag (250nm), where ITO is a transparent electrode with a sheet resistance of 10-20Ω/□; 5,5″-bis(9-phenyl-fluorene-9-yl)-2,2′:5′,2″-three Thiophene or three (4-(9-phenyl-fluorene-9-yl) phenyl) amine as hole transport material, film thickness 60nm, prepared by vacuum evaporation technology, ALQ3 is triquinoline aluminum, as light-emitting layer, Using vacuum evaporation technology, the film thickness is 60nm; finally, Mg:Ag cathode is evaporated to 250nm.
5,5″-二(9-苯基-芴-9-基)-2,2′:5′,2″-三噻吩的电压-亮度曲线、ALQ3的发光光谱见附图5;三(4-(9-苯基-芴-9-基)苯)胺的电压-亮度曲线、ALQ3的发光光谱见附图6。5,5″-bis(9-phenyl-fluoren-9-yl)-2,2′:5′,2″-trithiophene’s voltage-brightness curve and ALQ3 luminescence spectrum are shown in Figure 5; three (4 The voltage-brightness curve of -(9-phenyl-fluoren-9-yl)phenyl)amine and the luminescence spectrum of ALQ3 are shown in Figure 6.
实施例11、非平面多环杂芳烃有机半导体材料的电存储器件的制备与表征:Example 11. Preparation and characterization of electrical storage devices based on non-planar polycyclic heteroaromatic organic semiconductor materials:
首先,铟锡金属氧化物(ITO)玻璃基片在纯净水、丙酮、和2-异丙醇浴中朝声15分钟。复杂二芳基芴(10mg/mL)的甲苯溶液旋涂到ITO基片上,随后在10-5Torr的真空室中常温下除掉溶剂。材料薄膜厚度控制在50nm左右。最后,390-nm厚的Al电极在10-7Torr压力下通过热蒸镀加掩膜板来实现。测量在大小0.15cm×0.15cm、0.2cm×0.2cm、和0.4cm×0.4cm的器件上进行。电流密度-电压曲线(J-V)在0.2cm×0.2cm大小的器件上进行.电开关和开关时间分别在惠普4156A半导体参数分析仪上和安捷伦16440A SMU/示波器进行。First, an indium tin oxide (ITO) glass substrate was sonicated in a bath of purified water, acetone, and 2-isopropanol for 15 minutes. A toluene solution of complex diarylfluorene (10 mg/mL) was spin-coated onto an ITO substrate, and then the solvent was removed in a vacuum chamber at 10 -5 Torr at room temperature. The material film thickness is controlled at about 50nm. Finally, a 390-nm-thick Al electrode was realized by thermal evaporation with a mask under a pressure of 10 -7 Torr. Measurements were performed on devices of size 0.15 cm x 0.15 cm, 0.2 cm x 0.2 cm, and 0.4 cm x 0.4 cm. Current density-voltage curves (JV) were performed on a device with a size of 0.2cm×0.2cm. Electrical switching and switching times were performed on a Hewlett-Packard 4156A Semiconductor Parameter Analyzer and an Agilent 16440A SMU/oscilloscope, respectively.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNA2009100244611A CN101492442A (en) | 2009-02-23 | 2009-02-23 | Complex diaryl fluorene material, preparation and application method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNA2009100244611A CN101492442A (en) | 2009-02-23 | 2009-02-23 | Complex diaryl fluorene material, preparation and application method thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
CN101492442A true CN101492442A (en) | 2009-07-29 |
Family
ID=40923251
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNA2009100244611A Pending CN101492442A (en) | 2009-02-23 | 2009-02-23 | Complex diaryl fluorene material, preparation and application method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101492442A (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20110044159A (en) * | 2009-10-22 | 2011-04-28 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | Fluorene derivatives, light emitting devices, light emitting devices, electronic devices and lighting devices |
CN102786375A (en) * | 2012-07-31 | 2012-11-21 | 烟台万润精细化工股份有限公司 | 9-alkyl alkenyl-2,7-diaryl fluorene derivate and application of 9-alkyl alkenyl-2,7-diaryl fluorene derivate |
CN102898316A (en) * | 2011-07-25 | 2013-01-30 | 海洋王照明科技股份有限公司 | Organic semiconductor material, preparation method and applications thereof |
CN103509016A (en) * | 2012-09-24 | 2014-01-15 | Tcl集团股份有限公司 | Bipyridine fluorene derivatives, preparation method and application thereof, and electroluminescent device |
CN103709159A (en) * | 2014-01-06 | 2014-04-09 | 南京邮电大学 | Preparation method of 4,5-diazafluoren-9-alcohol and Friedel-Craft reaction post-modification material thereof |
CN104250551A (en) * | 2013-06-26 | 2014-12-31 | 海洋王照明科技股份有限公司 | Bipolar blue light phosphorescent compound, preparation method thereof and organic electroluminescent device |
JP2016082205A (en) * | 2014-10-22 | 2016-05-16 | 三星ディスプレイ株式會社Samsung Display Co.,Ltd. | Material for organic electroluminescence device and organic electroluminescence device using the same |
CN109400575A (en) * | 2018-10-17 | 2019-03-01 | 浙江理工大学 | The preparation method of double fluorenylidene quinoid thiophene |
CN109761878A (en) * | 2019-01-04 | 2019-05-17 | 南京邮电大学 | A kind of H-Shape cyanide photoelectric transmission type material and its preparation method and application |
-
2009
- 2009-02-23 CN CNA2009100244611A patent/CN101492442A/en active Pending
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101880025B1 (en) * | 2009-10-22 | 2018-07-20 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | Fluorene derivative, light-emitting element, light-emitting device, electronic device, and lighting device |
US10050207B2 (en) | 2009-10-22 | 2018-08-14 | Semiconductor Energy Laboratory Co., Ltd. | Fluorene derivative, light-emitting element, light-emitting device, electronic device, and lighting device |
KR20110044159A (en) * | 2009-10-22 | 2011-04-28 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | Fluorene derivatives, light emitting devices, light emitting devices, electronic devices and lighting devices |
CN102898316A (en) * | 2011-07-25 | 2013-01-30 | 海洋王照明科技股份有限公司 | Organic semiconductor material, preparation method and applications thereof |
CN102898316B (en) * | 2011-07-25 | 2014-08-13 | 海洋王照明科技股份有限公司 | Organic semiconductor material, preparation method and applications thereof |
CN102786375A (en) * | 2012-07-31 | 2012-11-21 | 烟台万润精细化工股份有限公司 | 9-alkyl alkenyl-2,7-diaryl fluorene derivate and application of 9-alkyl alkenyl-2,7-diaryl fluorene derivate |
CN102786375B (en) * | 2012-07-31 | 2015-02-11 | 烟台万润精细化工股份有限公司 | 9-alkyl alkenyl-2,7-diaryl fluorene derivate and application of 9-alkyl alkenyl-2,7-diaryl fluorene derivate |
CN103509016A (en) * | 2012-09-24 | 2014-01-15 | Tcl集团股份有限公司 | Bipyridine fluorene derivatives, preparation method and application thereof, and electroluminescent device |
CN103509016B (en) * | 2012-09-24 | 2015-05-20 | Tcl集团股份有限公司 | Bipyridine fluorene derivatives, preparation method and application thereof, and electroluminescent device |
CN104250551A (en) * | 2013-06-26 | 2014-12-31 | 海洋王照明科技股份有限公司 | Bipolar blue light phosphorescent compound, preparation method thereof and organic electroluminescent device |
CN103709159A (en) * | 2014-01-06 | 2014-04-09 | 南京邮电大学 | Preparation method of 4,5-diazafluoren-9-alcohol and Friedel-Craft reaction post-modification material thereof |
JP2016082205A (en) * | 2014-10-22 | 2016-05-16 | 三星ディスプレイ株式會社Samsung Display Co.,Ltd. | Material for organic electroluminescence device and organic electroluminescence device using the same |
CN109400575A (en) * | 2018-10-17 | 2019-03-01 | 浙江理工大学 | The preparation method of double fluorenylidene quinoid thiophene |
CN109761878A (en) * | 2019-01-04 | 2019-05-17 | 南京邮电大学 | A kind of H-Shape cyanide photoelectric transmission type material and its preparation method and application |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103232473B (en) | A kind of fluorenyl organic framework materials and methods for making and using same thereof | |
Liu et al. | Volatile electrical switching and static random access memory effect in a functional polyimide containing oxadiazole moieties | |
Kwon et al. | n-type conjugated dendrimers: Convergent synthesis, photophysics, electroluminescence, and use as electron-transport materials for light-emitting diodes | |
CN101440082A (en) | Spirofluorene xanthene material, and preparation and use thereof | |
CN101492442A (en) | Complex diaryl fluorene material, preparation and application method thereof | |
Ren et al. | Star-shaped donor-π-acceptor conjugated oligomers with 1, 3, 5-triazine cores: convergent synthesis and multifunctional properties | |
CN106467549B (en) | A kind of compound containing benzimidazole and its application on organic electroluminescence device | |
Yu et al. | Simple is best: a p-phenylene bridging methoxydiphenylamine-substituted carbazole hole transporter for high-performance perovskite solar cells | |
Hu et al. | Reduced interface losses in inverted perovskite solar cells by using a simple dual-functional phenanthroline derivative | |
Domínguez et al. | Pyrrolo [3, 2‐b] pyrrole as the Central Core of the Electron Donor for Solution‐Processed Organic Solar Cells | |
Zhao et al. | Synthesis, Physical Properties, and Self‐Assembly of A Novel Asymmetric Aroyleneimidazophenazine | |
CN101139317A (en) | Organic semiconductor materials containing carbazole units and their synthesis | |
Qu et al. | Flexible multifunctional aromatic polyimide film: highly efficient photoluminescence, resistive switching characteristic, and electroluminescence | |
CN101492443B (en) | Complex whorl aryl fluorene material, preparation and application method thereof | |
Gu et al. | Anionic water-soluble poly (phenylenevinylene) alternating copolymer: High-efficiency photoluminescence and dual electroluminescence | |
Zhao et al. | Oligo (2, 7-fluorene ethynylene) s with pyrene moieties: synthesis, characterization, photoluminescence, and electroluminescence | |
CN101161698B (en) | Interrupted conjugated hyperbranched polymer material, preparation method and application | |
Chen et al. | A non-fullerene acceptor with all “A” units realizing high open-circuit voltage solution-processed organic photovoltaics | |
Schmidt et al. | Radical anion yield, stability, and electrical conductivity of naphthalene diimide copolymers n-doped with tertiary amines | |
Lu et al. | Electrochemical polymerization of benzanthrone and characterization of its excellent green-light-emitting polymer | |
Igci et al. | Highly Planar Benzodipyrrole‐Based Hole Transporting Materials with Passivation Effect for Efficient Perovskite Solar Cells | |
Wei et al. | Star‐Shaped Organic Semiconductor with Extraordinary Thermomechanical Property and Solution Processability for Stable Perovskite Solar Cells | |
US10636974B2 (en) | Molecular compositions, materials, and methods for efficient multiple exciton generation | |
Li et al. | Electropolymerized AIE‐active polymer film with high quantum efficiency and its application in OLED | |
CN100582129C (en) | Rear modified polyvinyl carbazole material and preparation method and uses thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20090729 |