CN101491856B - Large forgings compression arc and induction composite heat-source repair-welding device and method - Google Patents
Large forgings compression arc and induction composite heat-source repair-welding device and method Download PDFInfo
- Publication number
- CN101491856B CN101491856B CN200910025645XA CN200910025645A CN101491856B CN 101491856 B CN101491856 B CN 101491856B CN 200910025645X A CN200910025645X A CN 200910025645XA CN 200910025645 A CN200910025645 A CN 200910025645A CN 101491856 B CN101491856 B CN 101491856B
- Authority
- CN
- China
- Prior art keywords
- welding
- repair welding
- repair
- arc
- sensor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000003466 welding Methods 0.000 title claims abstract description 172
- 230000006835 compression Effects 0.000 title claims abstract description 40
- 238000007906 compression Methods 0.000 title claims abstract description 40
- 238000005242 forging Methods 0.000 title claims abstract description 38
- 230000006698 induction Effects 0.000 title claims abstract description 32
- 238000000034 method Methods 0.000 title claims abstract description 24
- 239000002131 composite material Substances 0.000 title claims description 14
- 230000008439 repair process Effects 0.000 claims abstract description 79
- 229910052751 metal Inorganic materials 0.000 claims abstract description 24
- 239000002184 metal Substances 0.000 claims abstract description 24
- 238000010438 heat treatment Methods 0.000 claims abstract description 17
- 239000003223 protective agent Substances 0.000 claims abstract description 15
- 239000000463 material Substances 0.000 claims abstract description 10
- 239000000203 mixture Substances 0.000 claims abstract description 8
- 230000008569 process Effects 0.000 claims description 15
- 238000001125 extrusion Methods 0.000 claims description 3
- 230000004048 modification Effects 0.000 claims description 3
- 238000012986 modification Methods 0.000 claims description 3
- 239000002245 particle Substances 0.000 claims description 2
- 150000001875 compounds Chemical class 0.000 abstract description 5
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 5
- 229910052721 tungsten Inorganic materials 0.000 description 5
- 239000010937 tungsten Substances 0.000 description 5
- 229910052799 carbon Inorganic materials 0.000 description 4
- 238000013461 design Methods 0.000 description 4
- 238000002844 melting Methods 0.000 description 4
- 230000008018 melting Effects 0.000 description 4
- 239000000843 powder Substances 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- 238000000151 deposition Methods 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000004927 fusion Effects 0.000 description 2
- 238000003825 pressing Methods 0.000 description 2
- 238000007711 solidification Methods 0.000 description 2
- 230000008023 solidification Effects 0.000 description 2
- 239000000956 alloy Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000010953 base metal Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 238000004663 powder metallurgy Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000002893 slag Substances 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Images
Landscapes
- Forging (AREA)
Abstract
本发明公开了一种大型锻件压缩电弧加感应复合热源补焊装置及其方法,补焊装置,包括六轴机器人,可上下、前后运动的操作架,工作台,焊枪;所述的操作架上设置六轴机器人,该机器人上设置感应器和焊枪,感应器旁设置温度传感器,焊枪可产生压缩电弧。本发明的补焊方法,包括以下步骤:首先根据大型锻件的材质成分,制备补焊用保护剂和熔敷金属;然后对程序和相关参数进行预设;接着将保护剂放置在补焊区域并对补焊区域进行感应加热;采集补焊区温度,并判断是否达到预设值,如果没有达到则继续加热;加热完后移走感应器,引燃压缩电弧开始焊接;焊接结束后再进行感应加热。本发明实现了补焊前的预热,补焊接头强度大于熔敷金属自身的强度。
The invention discloses a large-scale forging compression arc plus induction compound heat source repair welding device and its method. The repair welding device includes a six-axis robot, an operating frame that can move up and down, back and forth, a workbench, and a welding torch; A six-axis robot is set, an inductor and a welding torch are arranged on the robot, a temperature sensor is arranged next to the inductor, and the welding torch can generate a compression arc. The repair welding method of the present invention includes the following steps: first, prepare a protective agent for repair welding and deposited metal according to the material composition of the large forging; then preset the program and related parameters; then place the protective agent on the repair welding area and Conduct induction heating on the repair welding area; collect the temperature of the repair welding area, and judge whether it reaches the preset value, if not, continue heating; remove the sensor after heating, ignite the compression arc to start welding; conduct induction after welding heating. The invention realizes the preheating before the repair welding, and the strength of the repair welding joint is greater than that of the deposited metal itself.
Description
技术领域technical field
本发明属于在大型锻件表面熔敷堆焊金属的特种焊接方法,特别是一种大型锻件压缩电弧加感应复合热源补焊方法。The invention belongs to a special welding method for depositing surfacing welding metal on the surface of large forgings, in particular to a repair welding method for large forgings with compression arc plus induction composite heat source.
背景技术Background technique
电弧堆焊技术是采用熔化极电弧、埋弧、TIG电弧、等离子弧等加热熔化金属丝、金属带、金属粉等,熔化的金属熔敷在基体表面,凝固后形成堆焊层。常规的堆焊方法如熔化极和埋弧堆焊,焊丝自动送进,电弧产生于焊丝和基体金属之间,电弧熔化焊丝形成熔滴,经自由、短路或渣壁过渡在基体表面熔敷,形成堆焊层,效率较高,基体熔化多;TIG堆焊和等离子堆焊电弧产生于钨电极和工件之间,焊丝送入电弧烁亮区下方获得加热并熔化滴入基体表面,凝固后形成堆焊层。Arc surfacing technology uses melting electrode arc, submerged arc, TIG arc, plasma arc, etc. to heat and melt metal wire, metal strip, metal powder, etc., and the molten metal is deposited on the surface of the substrate, and the surfacing layer is formed after solidification. Conventional surfacing welding methods such as melting electrode and submerged arc surfacing welding, the welding wire is automatically fed, the arc is generated between the welding wire and the base metal, and the arc melts the welding wire to form a droplet, which is deposited on the surface of the base through free, short circuit or slag wall transition. The surfacing layer is formed with high efficiency and more melting of the substrate; TIG surfacing and plasma surfacing arcs are generated between the tungsten electrode and the workpiece, and the welding wire is fed under the arc flashing area to be heated and melted and dripped onto the surface of the substrate, forming after solidification Overlay.
大型锻件一般重约数十至数百公斤,补焊面积一般较小,总体热输入不大,堆焊的快速加热和快速冷却易使锻件焊接接头产生冷裂纹,大型锻件体积大、热容量大,散热快,采用常规的堆焊工艺方法,锻件易产生未熔合缺陷,因而避免出现裂纹和未熔合缺陷是大型锻件补焊的主要难点之一。目前对于大型锻件没有自动压缩电弧+感应复合热源预制预置补焊材料的熔敷焊工艺方法的研究报道。Large-scale forgings generally weigh tens to hundreds of kilograms, the repair welding area is generally small, and the overall heat input is not large. Rapid heating and rapid cooling of surfacing welding can easily cause cold cracks in the welded joints of forgings. Large-scale forgings have large volume and large heat capacity. Fast heat dissipation, using conventional surfacing welding process, forgings are prone to non-fusion defects, so avoiding cracks and non-fusion defects is one of the main difficulties in repair welding of large forgings. At present, there is no research report on the deposition welding process method of automatic compression arc + induction composite heat source to prefabricate and preset repair welding materials for large forgings.
发明内容Contents of the invention
本发明的目的在于提供一种大型锻件自动压缩电弧加感应复合热源预制预置补焊材料的熔敷焊方法。The object of the present invention is to provide a deposition welding method for prefabricating and presetting repairing welding materials with automatic compression arc plus induction composite heat source for large forgings.
实现本发明目的的技术解决方案为:一种大型锻件压缩电弧加感应复合热源补焊装置,包括六轴机器人,可上下、前后运动的操作架,工作台,焊枪;所述的操作架上设置六轴机器人,该机器人上设置感应器和焊枪,感应器旁设置温度传感器,焊枪可产生压缩电弧。The technical solution to realize the object of the present invention is: a large-scale forging compression arc plus induction composite heat source repair welding device, including a six-axis robot, an operating frame that can move up and down, back and forth, a workbench, and a welding torch; A six-axis robot is equipped with an inductor and a welding torch, a temperature sensor is arranged next to the sensor, and the welding torch can generate a compressed arc.
大型锻件压缩电弧加感应复合热源补焊装置的补焊方法,包括以下步骤:The repair welding method of the compression arc plus induction composite heat source repair welding device for large forgings comprises the following steps:
步骤1、根据大型锻件的材质成分,制备补焊用保护剂;按照补焊区域的大小和形态制备补焊用熔敷金属;
步骤2、对机器人控制器程序和压缩电弧参数进行预设;预设的控制程序包括:感应加热程序、感应器运行的轨迹、电弧运行的轨迹、焊枪姿态、焊接工艺程序;
步骤3、将保护剂放置在补焊区域;
步骤4、对补焊区域进行感应加热;通过六轴机器人控制感应器,使其按照预设的感应加热程序和运行的轨迹对补焊区域进行感应加热;Step 4. Inductively heat the repair welding area; control the sensor through a six-axis robot to inductively heat the repair welding area according to the preset induction heating program and running track;
步骤5、采集补焊区温度,并判断补焊区域的温度是否达到预设值,如果达到则执行步骤6,否则继续加热;
步骤6、移走感应器,将补焊熔敷金属预置在补焊区域,并将焊枪运动到补焊熔敷金属的位置,根据步骤2预设的压缩电弧参数和焊接工艺参数引燃压缩电弧,然后按照步骤2预设的电弧运行的轨迹以及焊枪姿态开始焊接;
步骤7、利用电流传感器、电压传感器采集焊接过程的电流、电压值,通过存储在控制器中的焊接工艺程序进行焊接参数测控,递减电流收弧,结束焊枪运动程序,并移走焊枪;
步骤8、对补焊区域进行感应加热,递减感应热源功率,移走感应器;
步骤9、对补焊后的锻件进行挤压成形改性,结束补焊。Step 9: Carry out extrusion molding modification to the forging after the repair welding, and end the repair welding.
本发明与现有技术相比,其显著优点:1)、采用了复合热源,在堆补焊前改善了锻件的温度场,实现了补焊前的预热;2)、能根据需补焊区域的形态大小和锻件成分,采用粉末预压的方法预制熔敷金属,保证形态尺寸和成分,成分和性能调整非常容易;3)、采用压缩电弧,可根据补焊材料材质、形态大小,改变压缩电弧的能量密度,获得优质的接头;4)、采用复合热源,可在焊后进行后热处理,调整冷却速度,获得要求的组织;5)、补焊接头强度大于熔敷金属自身的强度。Compared with the prior art, the present invention has significant advantages: 1), adopts composite heat source, improves the temperature field of the forging before repair welding, and realizes preheating before repair welding; 2), can repair welding according to needs The shape and size of the area and the composition of the forging are prefabricated by powder pre-pressing method to ensure the shape, size and composition, and the adjustment of composition and performance is very easy; Compress the energy density of the arc to obtain high-quality joints; 4) Using a composite heat source, post-heat treatment can be performed after welding to adjust the cooling rate to obtain the required structure; 5) The strength of the repair welding joint is greater than the strength of the deposited metal itself.
附图说明Description of drawings
图1是本发明的大型锻件压缩电弧加感应复合热源补焊装置的结构示意图。Fig. 1 is a structural schematic diagram of a large-scale forging compression arc plus induction composite heat source repair welding device of the present invention.
图2是本发明的大型锻件压缩电弧加感应复合热源补焊方法的流程图。Fig. 2 is a flow chart of the method for repairing welding of large forgings with compression arc plus induction composite heat source according to the present invention.
图3是本发明的大型锻件压缩电弧加感应复合热源补焊装置的压缩电弧喷嘴结构示意图。Fig. 3 is a schematic diagram of the structure of the compression arc nozzle of the compression arc plus induction composite heat source repair welding device for large forgings of the present invention.
具体实施方式Detailed ways
下面结合附图对本发明作进一步详细描述。The present invention will be described in further detail below in conjunction with the accompanying drawings.
结合图1,本发明的一种大型锻件压缩电弧加感应复合热源补焊装置包括六轴机器人1,焊枪2,可上下、前后运动的操作架5,焊接系统6,机器人控制器7,工作台8,温度传感器9;所述的操作架5上设置六轴机器人1,该机器人上设置感应器2-2和焊枪2,感应器2-2旁设置温度传感器9,焊枪2内设置钨极2-3和喷嘴2-4,钨极2-3和喷嘴2-4可产生压缩电弧2-1。Referring to Fig. 1, a large-scale forging compression arc plus induction compound heat source repair welding device of the present invention includes a six-
补焊前按照大型锻件3材质和大小设计制造补焊熔敷金属4和保护剂4-1,调整压缩电弧2-1的参数,设计压缩电弧运动轨迹和焊枪姿态程序,设计复合感应热源运动程序,并将相关数据存储于机器人控制器7中。补焊时先将保护剂4-1放置在补焊区域,通过六轴机器人1控制的感应器2-2按照预设的轨迹对补焊区域进行感应加热,温度传感器9工作,检测温度达到要求值时,6轴机器人1运动,移走感应器2-2;同时预置补焊熔敷金属4,钨极2-3和喷嘴2-4之间产生压缩电弧2-1,焊枪2带动压缩电弧2-1随6轴机器人1和操作架5运动,将焊枪2运动到补焊熔敷金属4的位置,开始焊接;焊枪运动结束后,熄弧并通过6轴机器人1移走焊枪,然后将感应器2-2移入补焊区域,进行加热移动,并逐步递减加热功率,移走感应器2。Before repair welding, design and manufacture repair welding deposited metal 4 and protective agent 4-1 according to the material and size of
结合图2,本发明的大型锻件压缩电弧加感应复合热源补焊方法包括以下步骤:In conjunction with Fig. 2, the large-scale forging compression arc plus induction compound heat source repair welding method of the present invention comprises the following steps:
步骤1、根据大型锻件的材质成分,制备补焊用保护剂;按照补焊区域的大小和形态制备补焊用熔敷金属;
步骤2、对机器人控制器程序和压缩电弧参数进行预设;预设的内容包括:感应加热程序、感应器运行的轨迹、电弧运行的轨迹、焊枪姿态、焊接工艺程序;压缩电弧参数可以设为喷嘴孔径2mm,第一压缩角α1为100°,第二压缩角α2为90°,半径R为25mm,第一喷嘴孔道长度h值为2mm,第二喷嘴孔道长度h1值为1.5mm,第三喷嘴孔道长度h2值为1.5mm。
步骤3、将保护剂放置在补焊区域;
步骤4、对补焊区域进行感应加热;通过六轴机器人控制感应器,使其按照预设的感应加热程序和运行的轨迹对补焊区域进行感应加热;Step 4. Inductively heat the repair welding area; control the sensor through a six-axis robot to inductively heat the repair welding area according to the preset induction heating program and running track;
步骤5、采集补焊区温度,并判断补焊区域的温度是否达到预设值,如果达到则执行步骤6,否则继续加热;
步骤6、移走感应器,将补焊熔敷金属预置在补焊区域,并将焊枪运动到补焊熔敷金属的位置,根据步骤2预设的压缩电弧参数和焊接工艺参数引燃压缩电弧,然后按照步骤2预设的电弧运行的轨迹以及焊枪姿态开始焊接;在焊接过程中,焊枪带动压缩电弧运动到距大型锻件边缘0.3-0.8mm处,停留0.2-2秒。
步骤7、利用电流传感器、电压传感器采集焊接过程的电流、电压值,通过存储在控制器中的焊接工艺程序进行焊接参数测控,递减电流收弧,结束焊枪运动程序,并移走焊枪;
步骤8、对补焊区域进行感应加热,递减感应热源功率,移走感应器;
步骤9、对补焊后的锻件进行挤压成形改性,结束补焊。Step 9: Carry out extrusion molding modification to the forging after the repair welding, and end the repair welding.
上述步骤1中的保护剂颗粒度为60-180目。保护剂可保护感应加热过程大型锻件不被氧化,同时可保护补焊熔敷金属熔化产生的熔池不被氧化,熔敷金属采用粉末预压的方法制备,其合金成分与大型锻件大致相同,碳含量比大型锻件低10-40%,碳当量低20-50%。压缩电弧参数,可根据补焊材料材质、形态大小、厚度以及锻件的大小等,改变等离子孔道直径和长度,调整压缩电弧的能量密度,获得优质的锻件补焊接头。The particle size of the protective agent in the
下面结合实施例,对本发明做进一步的描述。Below in conjunction with embodiment, the present invention is further described.
以1500mm直径40Cr圆盘形端面补焊Φ60mm深3mm锻件为例。根据补焊区域Φ60mm深3mm的形态尺寸和40Cr材料,采用铁粉、Cr粉形成中碳含Cr补焊熔敷金属,碳含量控制在0.25-0.3%,并压制成Φ59.8mm高3.3mm的未烧结的粉末冶金块,选用能去除Cr、Fe、Si、Mn元素的保护剂(J05-2),目数120。Take 1500mm diameter 40Cr disc-shaped end face repair welding Φ60mm deep 3mm forging as an example. According to the shape and size of the repair welding area Φ60mm deep 3mm and 40Cr material, iron powder and Cr powder are used to form medium-carbon and Cr-containing repair welding deposits, and the carbon content is controlled at 0.25-0.3%, and pressed into Φ59.8mm and 3.3mm high. For unsintered powder metallurgy blocks, a protective agent (J05-2) capable of removing Cr, Fe, Si, and Mn elements is selected, and the mesh number is 120.
将保护剂(J05-2)20g放入待补焊区域,设定了圆形感应器Φ40mm,作圆形运动,轨迹直径Φ54mm,设定了焊枪2补焊运动为沿玄运动的轨迹,分成12条直线运动,摆动幅度为2mm,数据存储于系统控制器7中。Put 20g of the protective agent (J05-2) into the area to be repaired, set the circular sensor Φ40mm, make a circular motion, and the trajectory diameter Φ54mm, set the
设计压缩电弧2-1参数,结合图3,本发明的电弧参数可以为:喷嘴孔径2mm,第一压缩角α1为100°,第二压缩角α2角度为90°,半径R为25mm,第一喷嘴孔道长度h值为2mm,第二喷嘴孔道长度h1值为1.5mm,第三喷嘴孔道长度h2值为1.5mm。Design compression arc 2-1 parameter, in conjunction with Fig. 3, arc parameter of the present invention can be: nozzle aperture 2mm, the first compression angle α 1 is 100 °, the second compression angle α 2 angle is 90 °, radius R is 25mm, The length h of the first nozzle hole is 2 mm, the length h 1 of the second nozzle hole is 1.5 mm, and the length h 2 of the third nozzle hole is 1.5 mm.
采用本专利装置6轴机器人1控制的感应器2-2按照Φ59.8mm大小和圆形形态,作轨迹直径Φ54mm的圆形运动,温度检测器9检测到锻件3补焊区域温度达到180-200℃时,停止感应加热;引燃焊枪2钨极2-3与喷嘴2-4之间的压缩电弧2-1,焊枪2带动压缩电弧2-1随6轴机器人1和操作架5运动,将焊枪2运动到补焊熔敷金属4的圆心位置,开始焊接,电弧随操作架5和六轴机器人1运动、其轨迹和姿态根据补焊区域和补焊熔敷金属4的大小、形态及位置事先确定,即按照12条直线运动,摆动幅度为2mm,焊枪运动到补焊圆边时保持焊枪与边缘距离0.5mm,停留0.3s,焊接电流220-230A,弧压23-23.5V,焊速15cm/min,焊接结束,移走焊枪2,启动感应加热,感应器2-2在六轴机器人1的带动下再作Φ54mm的圆周运动,其最大功率为预热功率的2/3,感应加热30秒后,逐步降低复合感应加热功率,30秒后关闭复合感应加热电源。The sensor 2-2 controlled by the 6-
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN200910025645XA CN101491856B (en) | 2009-03-05 | 2009-03-05 | Large forgings compression arc and induction composite heat-source repair-welding device and method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN200910025645XA CN101491856B (en) | 2009-03-05 | 2009-03-05 | Large forgings compression arc and induction composite heat-source repair-welding device and method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101491856A CN101491856A (en) | 2009-07-29 |
CN101491856B true CN101491856B (en) | 2010-11-03 |
Family
ID=40922743
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN200910025645XA Active CN101491856B (en) | 2009-03-05 | 2009-03-05 | Large forgings compression arc and induction composite heat-source repair-welding device and method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101491856B (en) |
Families Citing this family (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11072035B2 (en) * | 2010-05-21 | 2021-07-27 | Illinois Tool Works Inc. | Auxiliary welding heating system |
CN102489845A (en) * | 2011-11-18 | 2012-06-13 | 南京理工大学 | Hybrid heat source stud welding method using welding robot and hybrid heat source stud welding system with welding robot |
ITTO20130430A1 (en) | 2013-05-28 | 2014-11-29 | Illinois Tool Works | DEVICE FOR INDUCTION HEATING PRE-HEATING AND HEAD HEAD WELDING OF LEMBI ADJACENT OF AT LEAST ONE ELEMENT TO BE SOLD |
US10543549B2 (en) * | 2013-07-16 | 2020-01-28 | Illinois Tool Works Inc. | Additive manufacturing system for joining and surface overlay |
US20150083710A1 (en) * | 2013-09-25 | 2015-03-26 | Illinois Tool Works Inc. | Metal heating and working system and method |
US9913320B2 (en) | 2014-05-16 | 2018-03-06 | Illinois Tool Works Inc. | Induction heating system travel sensor assembly |
US11510290B2 (en) | 2014-05-16 | 2022-11-22 | Illinois Tool Works Inc. | Induction heating system |
US11076454B2 (en) | 2014-05-16 | 2021-07-27 | Illinois Tool Works Inc. | Induction heating system temperature sensor assembly |
US11197350B2 (en) | 2014-05-16 | 2021-12-07 | Illinois Tool Works Inc. | Induction heating system connection box |
US10863591B2 (en) | 2014-05-16 | 2020-12-08 | Illinois Tool Works Inc. | Induction heating stand assembly |
US11172549B2 (en) | 2014-10-14 | 2021-11-09 | Illinois Tool Works Inc. | High-productivity hybrid induction heating/welding assembly |
US10638554B2 (en) | 2014-12-23 | 2020-04-28 | Illinois Tool Works Inc. | Systems and methods for interchangeable induction heating systems |
US10974337B2 (en) | 2015-08-17 | 2021-04-13 | Illinois Tool Works Inc. | Additive manufacturing systems and methods |
CN106392348A (en) * | 2016-12-02 | 2017-02-15 | 广东省智能制造研究所 | Additive manufacturing method and additive manufacturing device for aluminum alloy based on laser-double-MIG composite heat source |
US10792682B2 (en) | 2017-10-02 | 2020-10-06 | Illinois Tool Works Inc. | Metal manufacturing systems and methods using mechanical oscillation |
CN108284299B (en) * | 2017-12-25 | 2020-04-28 | 北京航星机器制造有限公司 | A kind of aluminum alloy complex component arc additive and hot extrusion composite manufacturing method |
CN108115304A (en) * | 2017-12-30 | 2018-06-05 | 安徽泉盛化工有限公司 | A kind of Intelligentized regulating and controlling method of welding process |
CN108544151B (en) * | 2018-03-26 | 2020-06-09 | 北京石油化工学院 | Surfacing robot and ring-type partition surfacing system |
CN108817611A (en) * | 2018-06-29 | 2018-11-16 | 山东大学 | It is a kind of to force to restrain type electric arc metal increasing material manufacturing device |
CN112122815A (en) * | 2020-09-30 | 2020-12-25 | 江苏逸飞激光设备有限公司 | Welding system and module side plate welding method |
-
2009
- 2009-03-05 CN CN200910025645XA patent/CN101491856B/en active Active
Also Published As
Publication number | Publication date |
---|---|
CN101491856A (en) | 2009-07-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101491856B (en) | Large forgings compression arc and induction composite heat-source repair-welding device and method | |
CN104625412B (en) | Copper alloy laser-cold metal transition compound heat source material increase manufacturing method | |
CN102049591B (en) | Dissimilar metal spot welding system of light metal and coated steel and welding method thereof | |
CN105855705B (en) | A kind of stainless steel titanium alloy dissimilar metal method for laser welding | |
CN101856757B (en) | Powder Diffusion Reaction Resistance Brazing Method of Aluminum Alloy | |
CN102896398A (en) | Aluminum alloy arc spot welding method based on CMT (Cold Metal Transmission Welding) and welding system | |
CN101468419A (en) | Induction and electrical arc composite heat source stud welding method | |
CN102151959B (en) | High-speed welding production process and device for thin-walled steel tubes | |
CN106862771B (en) | A kind of laser assisted melt pole electrical arc increasing material connection method for high temperature alloy | |
CN100558490C (en) | A Rapid Prototyping Method of Selective Solder Mask Melting Powder | |
JP2010201507A (en) | Method of joining two metallic portions by tungsten inert gas welding and apparatus for carrying out this method | |
CN101282814A (en) | Hybrid laser and resistance welding system and method | |
CN108788385B (en) | Welding method of stainless steel composite plate with Q345R low alloy steel as base layer and 904L stainless steel as multiple layers | |
CN102962543A (en) | Welding process for red copper and stainless steel dissimilar materials | |
CN102371421A (en) | Cold metal transition welding method and device thereof | |
CN102941405B (en) | Flash welding forming method of alpha-beta two-phase titanium alloy thin-wall ring piece | |
CN103817414A (en) | Tungsten electrode argon arc hot wire surfacing technique of main pump motor shaft and flywheel | |
CN103008830A (en) | CMT (Cold Metal Transfer)-based light metal arc spot welding method and device thereof | |
CN108188582A (en) | A laser-arc composite filler wire welding method for preparing magnesium/steel dissimilar metal tailor welded blanks | |
CN101468420A (en) | Hollow stud composite turn arc heat source welding method | |
CN102935550A (en) | Flash welding forming method of iron-based superalloy thin-wall ring member | |
CN102962570B (en) | Flash welding forming method of bearing steel thin-wall ring member | |
CN102581497A (en) | Method for welding by fused metal filling | |
CN105880807A (en) | TIG filler wire narrow-gap welding method utilizing bypass arc induction | |
CN101549430A (en) | Tungsten electrode argon arc welding technology of zinc base alloy |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C56 | Change in the name or address of the patentee | ||
CP03 | Change of name, title or address |
Address after: 213300 No. 8, Zhongguancun Avenue, Liyang, Jiangsu Patentee after: Jiangsu Jinyuan High-end Equipment Co., Ltd. Patentee after: Nanjing University of Science and Technology Address before: 213376 No. 868 Ling Ling West Road, Jiangsu, Liyang Patentee before: Jiangsu Jinyuan Forging Co., Ltd. Patentee before: Nanjing University of Science and Technology |