CN101486794B - Preparation method of high antibacterial activity ε-poly-L-lysine component - Google Patents
Preparation method of high antibacterial activity ε-poly-L-lysine component Download PDFInfo
- Publication number
- CN101486794B CN101486794B CN200810153709XA CN200810153709A CN101486794B CN 101486794 B CN101486794 B CN 101486794B CN 200810153709X A CN200810153709X A CN 200810153709XA CN 200810153709 A CN200810153709 A CN 200810153709A CN 101486794 B CN101486794 B CN 101486794B
- Authority
- CN
- China
- Prior art keywords
- poly
- molecular weight
- lysine
- epsilon
- preparation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229920001351 ε-poly-L-lysine Polymers 0.000 title claims abstract description 16
- 238000002360 preparation method Methods 0.000 title claims abstract description 9
- 230000000844 anti-bacterial effect Effects 0.000 title abstract description 20
- 239000012528 membrane Substances 0.000 claims abstract description 43
- 238000000108 ultra-filtration Methods 0.000 claims abstract description 25
- 238000001471 micro-filtration Methods 0.000 claims abstract description 15
- 238000001728 nano-filtration Methods 0.000 claims abstract description 13
- 238000000926 separation method Methods 0.000 claims abstract description 10
- 238000009826 distribution Methods 0.000 claims abstract description 5
- 238000000855 fermentation Methods 0.000 claims description 12
- 230000004151 fermentation Effects 0.000 claims description 12
- 239000000706 filtrate Substances 0.000 claims description 11
- 230000003385 bacteriostatic effect Effects 0.000 claims description 7
- 239000007788 liquid Substances 0.000 claims description 7
- 239000000047 product Substances 0.000 claims description 7
- 238000001914 filtration Methods 0.000 claims description 6
- 239000000463 material Substances 0.000 claims description 5
- 241000894006 Bacteria Species 0.000 claims description 4
- 230000007935 neutral effect Effects 0.000 claims description 4
- 239000012141 concentrate Substances 0.000 claims description 3
- 229920002492 poly(sulfone) Polymers 0.000 claims description 3
- 239000004627 regenerated cellulose Substances 0.000 claims description 3
- 238000000746 purification Methods 0.000 claims description 2
- 238000001035 drying Methods 0.000 claims 2
- FRXSZNDVFUDTIR-UHFFFAOYSA-N 6-methoxy-1,2,3,4-tetrahydroquinoline Chemical compound N1CCCC2=CC(OC)=CC=C21 FRXSZNDVFUDTIR-UHFFFAOYSA-N 0.000 claims 1
- 150000001408 amides Chemical class 0.000 claims 1
- 229920002678 cellulose Polymers 0.000 claims 1
- 239000001913 cellulose Substances 0.000 claims 1
- 238000005507 spraying Methods 0.000 claims 1
- 238000004519 manufacturing process Methods 0.000 abstract description 11
- 238000000034 method Methods 0.000 abstract description 10
- 238000002474 experimental method Methods 0.000 abstract description 6
- 230000000694 effects Effects 0.000 abstract description 3
- 230000009286 beneficial effect Effects 0.000 abstract description 2
- 238000011160 research Methods 0.000 abstract description 2
- 239000012466 permeate Substances 0.000 description 12
- 239000012465 retentate Substances 0.000 description 9
- KDXKERNSBIXSRK-YFKPBYRVSA-N L-lysine Chemical compound NCCCC[C@H](N)C(O)=O KDXKERNSBIXSRK-YFKPBYRVSA-N 0.000 description 6
- 241000187747 Streptomyces Species 0.000 description 4
- 235000019766 L-Lysine Nutrition 0.000 description 3
- 239000004472 Lysine Substances 0.000 description 3
- 150000003839 salts Chemical class 0.000 description 3
- 229920002749 Bacterial cellulose Polymers 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- 239000004952 Polyamide Substances 0.000 description 2
- 239000005016 bacterial cellulose Substances 0.000 description 2
- 238000004042 decolorization Methods 0.000 description 2
- 238000005374 membrane filtration Methods 0.000 description 2
- 229920002647 polyamide Polymers 0.000 description 2
- 238000006116 polymerization reaction Methods 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 108090000623 proteins and genes Proteins 0.000 description 2
- 238000010992 reflux Methods 0.000 description 2
- 241000193830 Bacillus <bacterium> Species 0.000 description 1
- 241000100664 Bactris militaris Species 0.000 description 1
- 241000192125 Firmicutes Species 0.000 description 1
- 241000233866 Fungi Species 0.000 description 1
- 241000700605 Viruses Species 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 235000001014 amino acid Nutrition 0.000 description 1
- 150000001413 amino acids Chemical class 0.000 description 1
- NCEXYHBECQHGNR-UHFFFAOYSA-N chembl421 Chemical compound C1=C(O)C(C(=O)O)=CC(N=NC=2C=CC(=CC=2)S(=O)(=O)NC=2N=CC=CC=2)=C1 NCEXYHBECQHGNR-UHFFFAOYSA-N 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 239000012776 electronic material Substances 0.000 description 1
- 238000010828 elution Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000003912 environmental pollution Methods 0.000 description 1
- 235000020776 essential amino acid Nutrition 0.000 description 1
- 239000003797 essential amino acid Substances 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000002921 fermentation waste Substances 0.000 description 1
- 239000005452 food preservative Substances 0.000 description 1
- 235000019249 food preservative Nutrition 0.000 description 1
- 238000004108 freeze drying Methods 0.000 description 1
- 229920001519 homopolymer Polymers 0.000 description 1
- 238000011031 large-scale manufacturing process Methods 0.000 description 1
- 230000000813 microbial effect Effects 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- 230000003505 mutagenic effect Effects 0.000 description 1
- 229920000729 poly(L-lysine) polymer Polymers 0.000 description 1
- 230000008092 positive effect Effects 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 239000003755 preservative agent Substances 0.000 description 1
- 230000002335 preservative effect Effects 0.000 description 1
- 235000018102 proteins Nutrition 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
- 239000002689 soil Substances 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 238000001694 spray drying Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Food Preservation Except Freezing, Refrigeration, And Drying (AREA)
Abstract
本发明涉及一种高抑菌活性ε-聚-L-赖氨酸(ε-PL)组分的制备方法,是采用微虑、超滤和纳滤组合多级分离技术获取不同分子量分布的ε-PL,经抑菌实验确定最佳抑菌活性组分分子量范围,进而收集干燥获得高抑菌活性组分ε-PL产品。应用本发明的方法可以获得不同分子量范围的高纯度的ε-PL,由于采用的是膜分离技术,不会对ε-PL的活性产生任何影响,而且有利于各种不同分子量的ε-PL的研究。The present invention relates to a preparation method of ε-poly-L-lysine (ε-PL) component with high antibacterial activity, which adopts microfiltration, ultrafiltration and nanofiltration combined multistage separation technology to obtain ε with different molecular weight distributions -PL, through antibacterial experiments to determine the molecular weight range of the best antibacterial active components, and then collect and dry to obtain high antibacterial active component ε-PL products. Applying the method of the present invention can obtain high-purity ε-PL in different molecular weight ranges, because the membrane separation technology is used, it will not have any impact on the activity of ε-PL, and it is beneficial to the production of ε-PL with various molecular weights. Research.
Description
技术领域technical field
本发明属于生物化工技术领域,尤其是一种高抑菌活性ε-聚-L-赖氨酸组分的制备方法。The invention belongs to the technical field of biochemical industry, in particular to a preparation method of ε-poly-L-lysine component with high antibacterial activity.
背景技术Background technique
ε-聚-L-赖氨酸(ε-poly-L-lysine,简称ε-PL)是由白色链霉菌等菌种生物合成的一种氨基酸同型聚和物,是由单体L-赖氨酸的ε-氨基和另一单体L-赖氨酸的α-羧基形成的酰胺键连接而成。ε-PL水溶性好,微溶于乙醇,热稳定性高,抑菌谱广,能够抗革兰氏阳性菌、革兰氏阴性菌、真菌、耐热芽孢杆菌及病毒的活性,在人体内分解为L-赖氨酸。L-赖氨酸是人体必须的八种氨基酸之一,因此是一种安全高效的天然生物防腐剂。此外,ε-PL还可用做基因运输载体、药物包被材料、电子材料,环保材料等,具有十分广泛的应用前景。近年来,随着菌种性能的改造和发酵调控手段的改进,ε-PL的发酵生产效率不断的提高。ε-poly-L-lysine (ε-poly-L-lysine, referred to as ε-PL) is an amino acid homopolymer biosynthesized by Streptomyces albicans and other strains. The ε-amino group of the acid is connected with the amide bond formed by the α-carboxyl group of another monomer L-lysine. ε-PL has good water solubility, slightly soluble in ethanol, high thermal stability, broad antibacterial spectrum, and can resist the activity of Gram-positive bacteria, Gram-negative bacteria, fungi, heat-resistant bacillus and viruses. Break down into L-lysine. L-Lysine is one of the eight essential amino acids for the human body, so it is a safe and efficient natural biological preservative. In addition, ε-PL can also be used as a gene transport carrier, drug coating material, electronic material, environmental protection material, etc., and has a very wide application prospect. In recent years, with the improvement of strain performance and fermentation control means, the fermentation production efficiency of ε-PL has been continuously improved.
目前,我国公布的有关ε-PL生产的主要专利有:At present, the main patents related to the production of ε-PL published in my country are:
1.2000年7月12日,国家知识产权局公布了日本国岩田敏志等人在中国申请的名称为“大量产生ε-聚-L-赖氨酸的菌株和生产方法”的发明专利,专利号为97182253.0。此专利提供一种较常规的提高菌株ε-PL的生成能力以及大规模生产ε-PL的方法。1. On July 12, 2000, the State Intellectual Property Office announced the invention patent titled "Strain and Production Method for Large-scale Production of ε-poly-L-lysine" applied by Japan's Toshishi Iwata and others in China. The patent number is 97182253.0. This patent provides a relatively conventional method for improving the production capacity of strain ε-PL and producing ε-PL on a large scale.
2.2005年11月16日,国家知识产权局公布了由南京工业大学申请的“利用北里孢菌PL6-3制备ε-PL及其盐的方法”发明专利,申请号为200510037774.2。该专利提出了一种通过筛选获得的北里孢菌PL-3发酵生产ε-PL的方法。2. On November 16, 2005, the State Intellectual Property Office announced the invention patent of "Method for Preparing ε-PL and Its Salts Using Lispora militaris PL6-3" applied by Nanjing University of Technology, the application number is 200510037774.2. This patent proposes a method for producing ε-PL by fermenting PL-3 obtained from B. militaris through screening.
3.2007年11月28日,国家知识产权局公布了由申请人自己申请的“回流工艺生产ε-聚-L-赖氨酸的方法”发明专利,申请号为200610013800.2。该专利提出了一种回流工艺生产ε-PL的方法,即在ε-PL的发酵过程中,将提取过程的后期穿透液作为流加液,进行流加发酵生产ε-PL。后期穿透液作为流加液使用,提高了ε-PL的产率,减少了发酵废液和洗脱用盐酸废液的排放,减轻了环境兀然。2007年4月9日,申请人在已有专利的基础上继续申请了“一种大量产生ε-PL的诱变菌株白色链霉菌TUST2及利用该诱变菌株TUST2采用发酵法生产ε-PL及其盐的方法”的发明专利,申请号200710057098.4。该专利利用从我国海南省土壤中筛选、诱变并鉴定的ε-PL的生产菌株白色链霉菌TUST2(CGMCC No.1986)发酵生产ε-PL,产量在10~30g/L。3. On November 28, 2007, the State Intellectual Property Office announced the invention patent of "method for producing ε-poly-L-lysine by reflow process" applied by the applicant himself, and the application number is 200610013800.2. This patent proposes a method for producing ε-PL by a reflux process, that is, during the fermentation process of ε-PL, the breakthrough liquid in the later stage of the extraction process is used as a fed-in solution for fed-batch fermentation to produce ε-PL. The later breakthrough liquid is used as feed liquid, which improves the yield of ε-PL, reduces the discharge of fermentation waste liquid and hydrochloric acid waste liquid for elution, and reduces environmental pollution. On April 9, 2007, the applicant continued to apply for "a mutagenous strain Streptomyces albicans TUST2 that produces a large amount of ε-PL and uses the mutagenized strain TUST2 to produce ε-PL and The method of its salt", the invention patent, application number 200710057098.4. This patent utilizes Streptomyces albicans TUST2 (CGMCC No.1986), a production strain of ε-PL that was screened, mutated and identified from the soil in Hainan Province, my country, to ferment and produce ε-PL with a yield of 10-30 g/L.
已有研究表明,微生物发酵生产的ε-PL分子量分布范围较广,不同聚合度的ε-PL有着不同的理化性质和用途;另外,ε-PL分子量不同,它的抑菌效果有很大差别。Studies have shown that the molecular weight distribution of ε-PL produced by microbial fermentation is wide, and ε-PL with different degrees of polymerization has different physical and chemical properties and uses; in addition, the molecular weight of ε-PL is different, and its antibacterial effect is very different .
发明内容Contents of the invention
本发明的目的在于克服现有技术的不足,提供一种高抑菌活性ε-聚-L-赖氨酸组分的制备方法,该方法将现有工艺生产的ε-PL按照不同分子量(不同聚和度)进行分级处理,并收集具有高抑菌活性的ε-PL组分。The purpose of the present invention is to overcome the deficiencies in the prior art, to provide a kind of preparation method of high bacteriostatic activity epsilon-poly-L-lysine component, the epsilon-PL that this method produces according to existing technology according to different molecular weight (different Polymerization degree) was graded, and the ε-PL fraction with high antibacterial activity was collected.
本发明的技术方案是:Technical scheme of the present invention is:
一种高抑菌活性ε-聚-L-赖氨酸组分的制备方法,其制备方法的步骤是:A kind of preparation method of high bacteriostatic activity epsilon-poly-L-lysine component, the steps of its preparation method are:
(1).将ε-PL发酵液经离心去除菌体和蛋白后,通过脱色得到ε-PL滤液;(1). After centrifuging the ε-PL fermentation broth to remove bacteria and protein, obtain the ε-PL filtrate by decolorization;
(2).将ε-PL滤液加入到事先组装好的各种截留分子量的微滤、超滤和纳滤膜组合分离装置中,进行分离并分别获得各种分子量分布的ε-PL组分滤液;(2). Add the ε-PL filtrate to the pre-assembled microfiltration, ultrafiltration and nanofiltration membrane combination separation device with various molecular weight cut-offs, separate and obtain ε-PL component filtrates with various molecular weight distributions ;
(3).验证ε-PL滤液分子量范围在2KDa~5KDa内,并通过浓缩、低温冷冻干燥或喷雾干燥得到高抑菌活性的ε-PL产品。(3). Verify that the molecular weight of the ε-PL filtrate ranges from 2KDa to 5KDa, and obtain ε-PL products with high antibacterial activity through concentration, low-temperature freeze-drying or spray drying.
而且,所述滤膜的材质为聚砜、聚酰胺、细菌纤维素、再生纤维素或者其他适宜pH值在2~14的滤膜,其微滤膜的孔径为0.2μm,超滤和纳滤膜的截留分子量分别为25KDa、10kDa、5kDa、2kDa、1kDa,采用微滤、超滤和纳滤膜组合分离装置进行分离纯化。Moreover, the material of the filter membrane is polysulfone, polyamide, bacterial cellulose, regenerated cellulose or other filter membranes with a suitable pH value of 2 to 14, the pore size of the microfiltration membrane is 0.2 μm, ultrafiltration and nanofiltration The molecular weight cut-offs of the membranes are 25KDa, 10kDa, 5kDa, 2kDa, and 1kDa, respectively. Microfiltration, ultrafiltration and nanofiltration membrane combination separation devices are used for separation and purification.
而且,所述过滤分级处理的工作压力可在0.05~1.0MPa,发酵液过滤的pH为中性,温度为20~40℃。Moreover, the working pressure of the filtration and classification treatment can be 0.05-1.0 MPa, the pH of the fermentation broth filtration is neutral, and the temperature is 20-40°C.
本发明的优点和积极效果是:Advantage and positive effect of the present invention are:
本发明对ε-聚-L-赖氨酸按分子量大小进行膜组合技术分级处理,通过抑菌实验来确定具有高抑菌活性的分子量部分,从而制备具有高抑菌活性的合适分子量分布的ε-聚-L-赖氨酸产品。应用本发明的方法可以获得不同分子量范围的高纯度的ε-PL滤液,由于采用的是膜分离技术,不会对ε-PL的活性产生任何影响,而且有利于各种不同分子量的ε-PL的研究。In the present invention, ε-poly-L-lysine is graded according to the molecular weight of the membrane combination technology, and the molecular weight part with high bacteriostatic activity is determined through antibacterial experiments, so as to prepare ε with a suitable molecular weight distribution with high bacteriostatic activity. - Poly-L-lysine products. Applying the method of the present invention can obtain high-purity ε-PL filtrates in different molecular weight ranges, because the membrane separation technology is used, it will not have any impact on the activity of ε-PL, and it is beneficial to the ε-PL of various molecular weights Research.
具体实施方式Detailed ways
下面结合实施例对本发明进一步说明;下述实施例是说明性的,不是限定性的,不能以下述实施例来限定本发明的保护范围。The present invention is further described below in conjunction with embodiment; Following embodiment is illustrative, not limiting, can not limit protection scope of the present invention with following embodiment.
需要说明的是,本发明发酵液是按照“回流工艺生产ε-聚-L-赖氨酸的方法”专利中的方法制备的,所用菌种为“一种大量产生ε-PL的诱变菌株白色链霉菌TUST2及利用该诱变菌株TUST2采用发酵法生产ε-PL及其盐的方法”专利中的菌种。It should be noted that the fermentation broth of the present invention is prepared according to the method in the patent "Method for producing ε-poly-L-lysine by reflux process", and the strain used is "a mutagenized strain that produces a large amount of ε-PL Streptomyces albicans TUST2 and the method for producing ε-PL and its salts by fermentation using the mutagenized strain TUST2" are strains in the patent.
本发明所用滤膜的材质可以为聚砜、聚酰胺、细菌纤维素、再生纤维素或者其他适宜pH值在2~14的滤膜,微滤膜的孔径为0.2μm,超滤和纳滤膜的截留分子量分别为25KDa、10kDa、5kDa、2kDa、1kDa,采用微滤、超滤和纳滤膜组合分离装置进行分离纯化。The material of the filter membrane used in the present invention can be polysulfone, polyamide, bacterial cellulose, regenerated cellulose or other filter membranes with a suitable pH value of 2 to 14, the pore size of the microfiltration membrane is 0.2 μm, ultrafiltration and nanofiltration membranes The molecular weight cut-offs are 25KDa, 10kDa, 5kDa, 2kDa, 1kDa, respectively, and are separated and purified by a combination of microfiltration, ultrafiltration and nanofiltration membrane separation devices.
本发明过滤分级处理的工作压力可在0.05~1.0MPa,发酵液过滤的pH为中性,温度为25℃。The working pressure of the filtration and classification treatment of the present invention can be 0.05-1.0 MPa, the pH of fermentation broth filtration is neutral, and the temperature is 25 DEG C.
本发明收集抑菌活性最高的分子量段为2KDa~5KDa的ε-PL溶液,经喷雾干燥或冷冻干燥制成ε-PL产品,用做食品防腐剂。The invention collects the ε-PL solution with the highest antibacterial activity and the molecular weight range of 2KDa to 5KDa, and sprays or freezes it to make the ε-PL product, which is used as a food preservative.
下面给出本发明的实施例:Provide the embodiment of the present invention below:
实施例1:Example 1:
含量20g/L ε-PL发酵液离心分离菌体,经脱色后所得溶液即可进行膜组合分离装置分离。Content 20g/L ε-PL fermentation broth was centrifuged to separate bacteria, and the solution obtained after decolorization could be separated by membrane combination separation device.
取2000ml ε-PL滤液,逐级经过0.2μm微滤膜、25KDa、10KDa、5KDa、2KDa,1KDa超滤膜和纳滤膜。其中微滤的操作压力为0.05MPa,截留分子量为25KDa、10KDa、5KDa的超滤膜的操作压力为0.15MPa,截留分子量为2KDa的超滤膜的操作压力为0.2MPa,1KDa的纳滤膜的操作压力为0.7MPa。Take 2000ml ε-PL filtrate and pass through 0.2μm microfiltration membrane, 25KDa, 10KDa, 5KDa, 2KDa, 1KDa ultrafiltration membrane and nanofiltration membrane step by step. Among them, the operating pressure of microfiltration is 0.05MPa, the operating pressure of ultrafiltration membrane with molecular weight cut off of 25KDa, 10KDa and 5KDa is 0.15MPa, the operating pressure of ultrafiltration membrane with molecular weight cut off of 2KDa is 0.2MPa, and the operating pressure of ultrafiltration membrane with molecular weight cut off of 1KDa is 0.2MPa. The operating pressure is 0.7MPa.
微滤膜对ε-PL滤液的截留率为0,透过液体积约为2000ml;通过25KDa超滤膜之后,透过液与浓缩液的体积比约为10:1;通过10KDa超滤膜之后,透过液与截留液的体积比约为7:1;通过5KDa超滤膜之后,透过液与截留液的体积比约为7:1;通过2KDa超滤膜之后,透过液与截留液的体积比约为2:1;最后通过1KDa纳滤膜之后,透过液与浓缩液的体积比约为1:1。The rejection rate of the microfiltration membrane to ε-PL filtrate is 0, and the volume of the permeate is about 2000ml; after passing through the 25KDa ultrafiltration membrane, the volume ratio of the permeate to the concentrate is about 10:1; after passing through the 10KDa ultrafiltration membrane , the volume ratio of the permeate to the retentate is about 7:1; after passing through the 5KDa ultrafiltration membrane, the volume ratio of the permeate to the retentate is about 7:1; after passing through the 2KDa ultrafiltration membrane, the ratio of the permeate to the retentate The volume ratio of the liquid is about 2:1; after finally passing through the 1KDa nanofiltration membrane, the volume ratio of the permeate to the concentrate is about 1:1.
然后针对各个不同组分做抑菌实验。Then antibacterial experiments were carried out for each of the different components.
通过抑菌实验验证的结果(见附表1),得出抑菌效果最好的分子量段为2KDa~5KDa,收集这一部分的溶液,进行浓缩经冷冻干燥制成高抑菌活性ε-PL产品。Through the results of antibacterial experiment verification (see attached table 1), it is concluded that the molecular weight segment with the best antibacterial effect is 2KDa ~ 5KDa. This part of the solution is collected, concentrated and freeze-dried to make a high antibacterial activity ε-PL product .
实施例2:Example 2:
ε-PL产品粉末配置成20g/L溶液2L(pH为中性,温度为25℃),再依次通过微滤、超滤和纳滤组合膜分离装置进行膜过滤分离。其中微滤的操作压力为0.1MPa,截留分子量为25KDa、10KDa、5KDa的超滤膜的操作压力为0.2MPa,截留分子量为2KDa的超滤膜的操作压力为0.25MPa,1KDa的纳滤膜的操作压力为1MPa。The ε-PL product powder is prepared into 2L of 20g/L solution (pH is neutral, temperature is 25°C), and then separated by membrane filtration through microfiltration, ultrafiltration and nanofiltration combined membrane separation device in sequence. Among them, the operating pressure of microfiltration is 0.1MPa, the operating pressure of ultrafiltration membrane with molecular weight cut off of 25KDa, 10KDa and 5KDa is 0.2MPa, the operating pressure of ultrafiltration membrane with molecular weight cut off of 2KDa is 0.25MPa, and the operating pressure of ultrafiltration membrane with molecular weight cut off of 1KDa is 0.25MPa. The operating pressure is 1MPa.
上述2000ml的ε-PL溶液完全透过微滤膜;之后,通过25KDa超滤膜,透过液与截留液的体积比约为10:1;再通过10KDa超滤膜,透过液与截留液的体积比约为8:1;然后通过5KDa超滤膜之后,透过液与截留液的体积比约为7:1;接着通过2KDa超滤膜,透过液与截留液的体积比约为2:1;最后通过1KDa纳滤膜之后,透过液与截留液的体积比约为1:1。The above 2000ml ε-PL solution completely permeated the microfiltration membrane; after that, it passed through the 25KDa ultrafiltration membrane, and the volume ratio of the permeate to the retentate was about 10:1; then passed through the 10KDa ultrafiltration membrane, the permeate to the retentate The volume ratio of the permeate to the retentate is about 8:1; then after passing through the 5KDa ultrafiltration membrane, the volume ratio of the permeate to the retentate is about 7:1; then through the 2KDa ultrafiltration membrane, the volume ratio of the permeate to the retentate is about 2:1; after finally passing through the 1KDa nanofiltration membrane, the volume ratio of the permeate to the retentate is about 1:1.
然后针对各个不同组分做抑菌实验。Then antibacterial experiments were carried out for each of the different components.
通过抑菌实验结果,即可得出抑菌效果最好的分子量段为2KDa~5KDa,收集这一部分的溶液,进行浓缩后经冷冻干燥制成高抑菌活性ε-PL产品。According to the results of antibacterial experiments, it can be concluded that the molecular weight segment with the best antibacterial effect is 2KDa ~ 5KDa. This part of the solution is collected, concentrated and then freeze-dried to produce a high antibacterial activity ε-PL product.
表1Table 1
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN200810153709XA CN101486794B (en) | 2008-12-03 | 2008-12-03 | Preparation method of high antibacterial activity ε-poly-L-lysine component |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN200810153709XA CN101486794B (en) | 2008-12-03 | 2008-12-03 | Preparation method of high antibacterial activity ε-poly-L-lysine component |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101486794A CN101486794A (en) | 2009-07-22 |
CN101486794B true CN101486794B (en) | 2010-11-17 |
Family
ID=40889866
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN200810153709XA Active CN101486794B (en) | 2008-12-03 | 2008-12-03 | Preparation method of high antibacterial activity ε-poly-L-lysine component |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101486794B (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105778118B (en) * | 2016-03-30 | 2018-09-28 | 浙江新银象生物工程有限公司 | A kind of preparation method of epsilon-polylysine |
CN106380592B (en) * | 2016-11-04 | 2018-10-16 | 江南大学 | A method of extracting epsilon-polylysine and its hydrochloride from zymotic fluid |
CN111777760A (en) * | 2020-07-03 | 2020-10-16 | 中国科学院过程工程研究所 | A kind of ε-polylysine separation and purification process and application |
CN112237844A (en) * | 2020-10-28 | 2021-01-19 | 江南大学 | A kind of method for improving high polymerization degree ε-polylysine in product |
-
2008
- 2008-12-03 CN CN200810153709XA patent/CN101486794B/en active Active
Also Published As
Publication number | Publication date |
---|---|
CN101486794A (en) | 2009-07-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103224571B (en) | Method for purifying polysaccharide iron complex based on ultrafiltration membrane method | |
CN101708063B (en) | Method for concentrating extraction liquid in production of tobacco sheet by papermaking process | |
CN104119456B (en) | Method for separation and purification of edible (medicinal) mushroom active components by multistage membrane process | |
CN103214533A (en) | Method for continuously preparing cordycepin and cordyceps polysaccharide by using membrane separation technology | |
TW201231673A (en) | Method for preparing concentrated aqueous solution of sugar | |
CN101486794B (en) | Preparation method of high antibacterial activity ε-poly-L-lysine component | |
CN101487034A (en) | Preparation f beta-poly malic acid and salt thereof | |
CN101665448B (en) | Method for extracting coronatine from fermentation liquor by using membrane separation technique | |
WO2022077853A1 (en) | Method for extracting grifola frondosa active polysaccharide, and extracted active polysaccharide and use thereof | |
CN101538593A (en) | Method for coupling production of Gamma-polyglutamic acid by technologies of microbial fermentation and membrane separation | |
CN102432643B (en) | Separation method of rhamnolipid by using ultrafiltration membrane | |
CN101492408A (en) | Method for separating tryptophane from fermentation liquor | |
CN100526333C (en) | Method for purifying concentrated polysaccharide of male agaric by using isolation technique of composition filmes | |
CN103130664A (en) | Process method of extracting gamma-aminobutyric acid through membrane separation technique | |
CN203079886U (en) | Large membrane separation integrated resin purification device | |
CN103830298A (en) | Method for preparing panax notoginseng saponins by adopting membrane coupling technology | |
JP6903622B2 (en) | Manufacturing method of red perilla leaf extract | |
CN101941937A (en) | Method for concentrating 5-hydroxytrophan | |
US20230227487A1 (en) | Improved demineralization of fermentation broths and purification of fine chemicals such as oligosaccharides | |
CN103815405B (en) | The production system of cistanche extracts | |
CN110156853A (en) | A method for obtaining high-purity acarbose combined with medium-pressure preparative liquid chromatography | |
CN106799167A (en) | The method that a kind of double films of ultrafiltration/nanofiltration efficiently purify pumpkin oligosaccharide | |
CN101921343A (en) | Method for extracting polysaccharide from fresh hedgehog hydnum | |
WO2024250372A1 (en) | LOW-ENDOTOXIN γ-POLYGLUTAMIC ACID, AND SEPARATION AND EXTRACTION METHOD THEREFOR AND USE THEREOF | |
CN102812050A (en) | Purification method of hyaluronic acid and/or its salt |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
ASS | Succession or assignment of patent right |
Owner name: ZHEJIANG SILVER ELEPHANT BIOENGINEERING CO., LTD. Free format text: FORMER OWNER: TIANJIN UNIVERSITY OF SCIENCE + TECHNOLOGY Effective date: 20120327 Free format text: FORMER OWNER: YINXIANG BIOLOGICAL ENGINEERING CO., LTD., ZHEJIANG PROV. Effective date: 20120327 |
|
C41 | Transfer of patent application or patent right or utility model | ||
COR | Change of bibliographic data |
Free format text: CORRECT: ADDRESS; FROM: 300457 HANGU, TIANJIN TO: 317200 TAIZHOU, ZHEJIANG PROVINCE |
|
TR01 | Transfer of patent right |
Effective date of registration: 20120327 Address after: 317200, Tiantai County, Zhejiang province hi tech Industrial Park, Feng Lu / South Ring Road Patentee after: ZHEJIANG SILVER-ELEPHANT BIO-ENGINEERING CO., LTD. Address before: 300457 Tianjin economic and Technological Development Zone, No. thirteenth Main Street, No. 29 Co-patentee before: Yinxiang Biological Engineering Co., Ltd., Zhejiang Prov. Patentee before: Tianjin University of Science & Technology |