CN101471129A - Device and method for adjusting chip output current - Google Patents
Device and method for adjusting chip output current Download PDFInfo
- Publication number
- CN101471129A CN101471129A CNA2007103054639A CN200710305463A CN101471129A CN 101471129 A CN101471129 A CN 101471129A CN A2007103054639 A CNA2007103054639 A CN A2007103054639A CN 200710305463 A CN200710305463 A CN 200710305463A CN 101471129 A CN101471129 A CN 101471129A
- Authority
- CN
- China
- Prior art keywords
- chip
- current
- voltage
- reference voltage
- regulating device
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Dram (AREA)
Abstract
Description
技术领域 technical field
本发明涉及一种电流的调整装置与方法,特别是一种芯片输出电流的调整装置与方法。The invention relates to a current adjusting device and method, in particular to a chip output current adjusting device and method.
背景技术 Background technique
一般来说,动态随机存取存储器(Dynamic Random Access Memory,DRAM)的设计上可分为SDR DRAM与DDR DRAM等数种。其中,SDR DRAM的数据,可在每个时钟周期存取一次,例如:在时钟的正缘传送一次数据组。因此,SDRDRAM称为单倍速数据传输(single data rate,SDR)存储器模块。此外针对DDR DRAM而言,其与SDR DRAM同样为动态随机存取存储器,但DDR DRAM对数据的存取乃是采用一种双倍速数据传输(double data rate,DDR)的技术。通过双倍速数据传输撷取的技术,DDR DRAM可在一个时钟周期中传送两次数据组,也就是在时钟的正缘与负缘各传送一次,而时钟周期的正缘称为上升时间(rising time);时钟周期的负缘称为下降时间(falling time)。其中,在DDR DRAM的应用中,须注意的一点为,上升时间与下降时间要维持近乎一致,否则将造成工作周期(duty cycle)的失真(亦即,duty cycle不为50%),进而影响到上升时间与下降时间的时钟裕量(timing margin)。因此,要维持上升时间与下降时间近乎一致,须调整充电电流与放电电流,也就是芯片中的驱动电路的输出电流需进行适当地校正(calibration)。Generally speaking, the design of Dynamic Random Access Memory (DRAM) can be divided into several types such as SDR DRAM and DDR DRAM. Among them, the data of SDR DRAM can be accessed once every clock cycle, for example: a data group is transmitted once at the positive edge of the clock. Therefore, SDRDRAM is called a single data rate (SDR) memory module. In addition, for DDR DRAM, it is also a dynamic random access memory like SDR DRAM, but DDR DRAM uses a double data rate (DDR) technology for data access. Through the technology of double-speed data transmission and extraction, DDR DRAM can transmit data groups twice in one clock cycle, that is, once on the positive edge and negative edge of the clock, and the positive edge of the clock cycle is called rising time (rising time). time); the negative edge of the clock cycle is called the falling time (falling time). Among them, in the application of DDR DRAM, one thing to pay attention to is that the rise time and fall time should be kept almost the same, otherwise it will cause distortion of the duty cycle (that is, the duty cycle is not 50%), which will affect the Timing margin to rise time and fall time. Therefore, in order to keep the rising time and the falling time nearly consistent, the charging current and the discharging current must be adjusted, that is, the output current of the driving circuit in the chip needs to be properly calibrated.
在公知校正输出电流的方法中,通常需外挂电阻于印刷电路板(PrintedCircuit Board,PCB)上,以供芯片进行电流效正。然而,此方式不仅需增加一个外挂电阻且需耗费额外的接脚才能达成校正的动作。如此,将增加成本的花费,对于半导体芯片微小化的趋势来说,芯片中每一个接脚皆极为珍贵,因此亟需提出新的校正方式以解决公知技术的不足。In the known method of calibrating the output current, it is usually necessary to add an external resistor on the printed circuit board (PCB) for the chip to perform current correction. However, this method not only needs to add an external resistor but also consumes extra pins to achieve the correcting action. In this way, the cost will be increased. For the trend of miniaturization of semiconductor chips, each pin in the chip is very precious. Therefore, it is urgent to propose a new calibration method to solve the shortcomings of the known technology.
发明内容 Contents of the invention
有鉴于此,本发明提出一种芯片输出电流的调整装置与方法。本发明所提出的装置与方法,可省去外部的电阻,并完成芯片所输出的驱动电流的控制。In view of this, the present invention proposes a device and method for adjusting chip output current. The device and method proposed by the present invention can save external resistors and complete the control of the drive current output by the chip.
本发明提出一种芯片输出电流的调整装置包含:一驱动电路,用以依据一控制信号以输出一驱动电流,其中该驱动电流流至另一芯片中的一参考电阻以产生一输出电压;以及一检测电路,耦接至该驱动电路,用以检测该输出电压与一参考电压以产生该控制信号;其中,该控制信号控制该驱动电路中的NMOS晶体管或PMOS晶体管的一并联数目,以调整该驱动电流的电流量。The present invention proposes a chip output current adjusting device comprising: a driving circuit for outputting a driving current according to a control signal, wherein the driving current flows to a reference resistor in another chip to generate an output voltage; and A detection circuit, coupled to the driving circuit, used to detect the output voltage and a reference voltage to generate the control signal; wherein, the control signal controls a parallel number of NMOS transistors or PMOS transistors in the driving circuit to adjust The current magnitude of the drive current.
本发明亦提出一种芯片输出电流的调整方法,包含下列步骤:依据一控制信号以输出一驱动电流,其中该驱动电流系流至另一芯片中的一参考电阻以产生一输出电压;以及检测该输出电压与一参考电压以产生该控制信号;其中,该控制信号控制NMOS晶体管或PMOS晶体管的一并联数目,以调整该驱动电流的电流量。The present invention also provides a method for adjusting the output current of a chip, which includes the following steps: outputting a driving current according to a control signal, wherein the driving current flows to a reference resistor in another chip to generate an output voltage; and detecting The output voltage and a reference voltage are used to generate the control signal; wherein, the control signal controls a parallel connection number of NMOS transistors or PMOS transistors to adjust the current amount of the driving current.
有关本发明的较佳实施例及其功效,兹配合附图说明如下。The preferred embodiments of the present invention and their effects are described below in conjunction with the accompanying drawings.
附图说明 Description of drawings
图1:本发明第一实施例示意图。Figure 1: Schematic diagram of the first embodiment of the present invention.
图2:本发明第二实施例示意图。Figure 2: Schematic diagram of the second embodiment of the present invention.
图3:本发明第三实施例示意图。Fig. 3: Schematic diagram of the third embodiment of the present invention.
图4:本发明电流调整方法流程图。Fig. 4: Flow chart of the current adjustment method of the present invention.
【主要组件符号说明】[Description of main component symbols]
Vdd:工作电压Vdd: working voltage
10:晶粒终端电阻10: Die termination resistor
20:数据信号接脚20: Data signal pin
30:检测电路30: detection circuit
32:输入端32: input terminal
34:输出端34: output terminal
36:比较器36: Comparator
361:PMOS用比较器361: Comparator for PMOS
362:NMOS用比较器362: Comparator for NMOS
38:逻辑控制电路38: Logic control circuit
381:PMOS用逻辑控制电路381: Logic control circuit for PMOS
382:NMOS用逻辑控制电路382: Logic control circuit for NMOS
40:驱动电路40: Drive circuit
42:PMOS42: PMOS
44:NMOS44: NMOS
具体实施方式 Detailed ways
首先,请参照图1,该图所示为本发明第一实施例的示意图。第一实施例中存储器输出电流的调整装置包含:晶粒终端电阻10、数据信号(DQ)接脚20、检测电路30与驱动电路40,其中,检测电路30更包含一比较器36与一逻辑控制电路38;检测电路30与输出驱动电路40设置于一存储器控制芯片中,而晶粒终端电阻10设置于一存储器芯片中。First, please refer to FIG. 1 , which is a schematic diagram of a first embodiment of the present invention. The device for adjusting the output current of the memory in the first embodiment includes: a die
电子工程设计发展联合协会(JEDEC),规定许多电子工程上相关的规范,其中关于存储器,例如DDR2方面,晶粒终端电阻(on die termination,ODT)为JEDEC所规定存储器中须拥有的组件之一。晶粒终端电阻主要为DDR信号的终端器,以维持信号的完整性,及提高系统的稳定性。随着存储器的速度日益提升,晶粒终端电阻直接移进存储器内,可缩短路程,减少存储器的工作时间。此外,晶粒终端电阻技术的另一项优点是,能降低存储器高速运作下的回授,提高存储器效能及时钟的极限值。The Joint Electronic Engineering Design and Development Association (JEDEC) stipulates many specifications related to electronic engineering. Among them, regarding memory, such as DDR2, the on die termination (ODT) is one of the components that must be included in the memory specified by JEDEC . Die termination resistors are mainly terminators for DDR signals to maintain signal integrity and improve system stability. As the speed of the memory increases day by day, the chip terminal resistor is directly moved into the memory, which can shorten the distance and reduce the working time of the memory. In addition, another advantage of the chip termination resistor technology is that it can reduce the feedback under the high-speed operation of the memory, and improve the performance of the memory and the limit value of the clock.
因此,依据本发明的一实施例,通过存储器芯片中内建的电阻,晶粒终端电阻(ODT),用以提供电流校正所需的电阻。如此,透过内建的晶粒终端电阻,用以校正存储器控制端的电流输出,不需于存储器模块旁多增加一颗电阻,如此可减少印刷电路板(传统作法,会将外加电阻另外焊接于一块印刷电路板上,以供校正用)与外加电阻的成本。Therefore, according to an embodiment of the present invention, an on-chip termination resistor (ODT) is used to provide the resistor required for current calibration through a built-in resistor in the memory chip. In this way, through the built-in chip termination resistor, it is used to correct the current output of the memory control terminal, and there is no need to add an additional resistor next to the memory module, which can reduce the number of printed circuit boards (traditionally, an additional resistor is soldered to the A printed circuit board for calibration) and the cost of external resistors.
于第一实施例中,利用存储器芯片内建的晶粒终端电阻(ODT),提供参考电阻值。于此,参考电阻值可为50欧姆,但不以此为限。此外,第二芯片可为动态随机存取存储器芯片(DRAM)。In the first embodiment, an on-die termination resistor (ODT) built into the memory chip is used to provide a reference resistance value. Herein, the reference resistance value may be 50 ohms, but not limited thereto. In addition, the second chip can be a dynamic random access memory chip (DRAM).
再者,依据本发明之一实施例,提出利用存储器芯片现有的数据信号接脚(Data pin)或时钟信号接脚(Clock Pin),来取代传统技术中需额外增加的接脚(底下以数据信号接脚为例作说明)。以8bit存储器而言,数据信号接脚为DQ0~DQ7;16bit存储器而言,数据信号接脚为DQ0~DQ15,而只需取其中一支DQ接脚,即可进行输出电流的校正。如此,可解决传统技术中,如果存储器控制端没有多余接脚可供使用时所产生的问题,同时也解决需增加一额外接脚的成本花费。Furthermore, according to one embodiment of the present invention, it is proposed to use the existing data signal pin (Data pin) or clock signal pin (Clock Pin) of the memory chip to replace the additional pin (referred to below as The data signal pin is used as an example for illustration). For 8bit memory, the data signal pins are DQ 0 ~ DQ 7 ; for 16bit memory, the data signal pins are DQ 0 ~ DQ 15 , and only one of the DQ pins is needed to control the output current. Correction. In this way, the problem in the conventional technology that the memory control terminal has no extra pins available can be solved, and at the same time, the cost of adding an extra pin can be solved.
于第一实施例中,数据信号(DQ)接脚20一端耦接至晶粒终端电阻10,另一耦接至接驱动电路(output driver)40。且数据信号接脚20会输出驱动电流,而驱动电流可用以驱动存储器而存取数据。其中,当驱动电流流经参晶粒终端电阻10时,于晶粒终端电阻10上会产生输出电压。In the first embodiment, one end of the data signal (DQ)
检测电路30包含比较器36及逻辑控制电路38。比较器36具有输入端32与输出端34。其中,输入端32接收晶粒终端电阻10上的输出电压与参考电压,用以比较输出电压与参考电压,以输出逻辑值,而输出端34连接逻辑控制电路38。逻辑控制电路38耦接至比较器36,用以依据该逻辑值以产生控制信号,并将该控制信号传送至驱动电路40。其中,上述的逻辑控制电路38可为有限状态机(Finite State Machine)。The
于此,参考电压为可程序化的参考电压。其中,参考电压可为1/2工作电压(Vdd)、3/4工作电压或1/4工作电压,于后将有更详细的说明,而参考电压并不以上述为限。Here, the reference voltage is a programmable reference voltage. Wherein, the reference voltage can be 1/2 of the working voltage (Vdd), 3/4 of the working voltage or 1/4 of the working voltage, which will be described in more detail later, and the reference voltage is not limited to the above.
驱动电路40本身具有电阻值,晶粒终端电阻10提供一参考电阻值,而检测电路30输入端32所接收的输出电压,即为驱动电路40与晶粒终端电阻10所组成的线路中,晶粒终端电阻10的分压。所以,参考电压可设定为驱动电路40与晶粒终端电阻10的线路,两者平均分压后的电压值。因此,检测电路30会比较输出电压与参考电压,用来调整数据信号接脚20所输出的驱动电流。也就是说,当检测电路30比较输出电压与参考电压,发现两电压值不同时,便会由输出端34发出逻辑值。而逻辑控制电路38便依据该逻辑值产生控制信号予驱动电路40,可让数据信号接脚20输出不同的驱动电流值。当不同的驱动电流值再流经晶粒终端电阻10时,即会产生不同的输出电压,此时透过检测电路30,再将新的输出电压与参考电压做比较,重复上述动作,而对数据信号接脚20所输出的驱动电流做调整。而当输出电压与参考电压近乎一致时,表示驱动电路40的电阻值与晶粒终端电阻10的参考电阻值近乎相同,如此数据信号接脚20所输出的驱动电流,即为所需的存储器驱动电流。The driving
另外,如图1所示,电流调整装置设置于存储器控制芯片中,而存储器控制芯片具有校正模式与工作模式。当存储器控制芯片操作于校正模式时,电流调整装置被使能(enable)。相对的,当存储器控制芯片操作于工作模式时,电流调整装置被禁止(disable)。因此,于初始状态时,存储器控制芯片系先操作于校正模式,即,电流调整装置进行存储器控制芯片的输出电流校正,经过一预定时间后,存储器控制芯片进入工作模式,此时,存储器控制芯片则对存储器芯片进行数据存取,如此,可通过存储器控制芯片不同模式的切换,来启动电流调整装置的运作。In addition, as shown in FIG. 1 , the current adjusting device is disposed in the memory control chip, and the memory control chip has a calibration mode and an operation mode. When the memory control chip operates in the calibration mode, the current regulating device is enabled. In contrast, when the memory control chip operates in the working mode, the current regulating device is disabled. Therefore, in the initial state, the memory control chip is operated in the correction mode first, that is, the current adjustment device performs the output current correction of the memory control chip. After a predetermined time, the memory control chip enters the working mode. At this time, the memory control chip Data access is performed on the memory chip. In this way, the operation of the current adjustment device can be started by switching between different modes of the memory control chip.
请参照图2,该图所示为本发明第二实施例示意图。第二实施例中更清楚说明驱动电路40包含至少一个PMOS 42与至少一个NMOS 44。于第二实施中,多个PMOS 42彼此间互相并联,而多个NMOS 44彼此间同样互相并联,且每一个PMOS 42与每一个NMOS 44彼此间为串连。Please refer to FIG. 2 , which is a schematic diagram of a second embodiment of the present invention. The second embodiment clearly shows that the driving
当时钟周期为正缘也就是位于上升时间时,PMOS 42为on属于充电状态,此时NMOS 44为off;相对的,当时钟周期为负缘也就是位于下降时间时,NMOS 44为on属于放电状态,此时PMOS 42为off。于此,将对充电状态与放电状态,分别说明如下。When the clock cycle is positive, that is, at the rising time, the
当处于充电状态时,由于PMOS 42为on而NMOS 44为off,所以此时所需调整即为PMOS 42的并联电阻值。假设:晶粒终端电阻10所提供的参考电阻值为50欧姆;工作电压(Vdd)为1.8伏特;由于晶粒终端电阻10一端接地,所以参考电压设为1/2工作电压,即0.9伏特。理想状态下,当PMOS 42的并联电阻值近乎50欧姆,此时数据信号接脚20所输出的驱动电流流经晶粒终端电阻10时,由于PMOS 42的并联电阻值与晶粒终端电阻10的参考电阻值近乎相同,分压后的结果将造成晶粒终端电阻10上的输出电压会近乎1/2工作电压,也就和参考电压近乎一致。When in the charging state, since the
然而实际状况由于半导体制程量产上的诸多因素,会导致PMOS 42的并联电阻值无法如预期中准确,这也就是为何存储器控制端在使用前必须先做校正的原因。续参照图2,假设数据信号接脚20所输出的驱动电流流经晶粒终端电阻10后,所产生的输出电压为1.0伏特。此时,检测电路30的输入端32接收到输入电压(1.0V)后,与参考电压(0.9V)做比较,发现输入电压大于参考电压,也就是说晶粒终端电阻10的参考电阻值大于PMOS 42的并联电阻值。此时,检测电路30的输出端34会发出逻辑值,而逻辑控制电路38便依据该逻辑值产生控制信号予驱动电路40。以目前的例子而言,由于PMOS42的并联电阻值偏小,所以会控制关掉其中几个PMOS 42来提高整体PMOS 42的并联电阻值。此时,由于PMOS 42的并联电阻值改变,因此数据信号接脚20所输出的驱动电流也跟着改变,调整后的驱动电流再流经晶粒终端电阻10的输出电压也跟着改变。再通过检测电路30比较调整后的输出电压与参考电压,再进一步调整PMOS 42的并联电阻值,反复上述步骤直到PMOS 42的并联电阻值近乎等于参考电阻值。而此时便完成驱动电路40中充电状态的驱动电流校正。However, due to many factors in the mass production of the semiconductor process, the actual situation will cause the parallel resistance value of the
另一方面于放电状态下,NMOS 44为on而PMOS 42为off,调整方式与上述充电状态类似,差别在于放电状态所调整的为NMOS 44的并联电阻值,进而达成驱动电路40中充电状态的驱动电流校正。On the other hand, in the discharge state, the
由上述说明可整理出,检测电路30分别调整PMOS 42与NMOS 44的并联数量,藉以分别调整PMOS 42与NMOS 44的并联电阻值,进而调整数据信号接脚20所输出的驱动电流。From the above description, it can be concluded that the
此外,参考电压亦可设计为一可程序化的参考电压,即,若晶粒终端电阻10一端不接地或发生制程飘移时,可通过使用者改变参考电压值以完成正确的输出电流校正。In addition, the reference voltage can also be designed as a programmable reference voltage, that is, if one end of the
请参照图4,本发明第三实施例示意图。上述第二实施例中,晶粒终端电阻10一端接地,因此参考电压设为1/2工作电压。而实际应用上,晶粒终端电阻10一端并大部份接1/2工作电压,所以第三实施例说明晶粒终端电阻10一端连接1/2工作电压的情形。第三实施例中,PMOS 42到晶粒终端电阻10的线路中,PMOS 42连接Vdd而晶粒终端电阻10连接1/2Vdd,所以参考电压设为相对的,NMOS 44到晶粒终端电阻10的线路中,NMOS 42接地而晶粒终端电阻10连接1/2Vdd,所以参考电压设为1/4Vdd。Please refer to FIG. 4 , which is a schematic diagram of a third embodiment of the present invention. In the above-mentioned second embodiment, one end of the
由图3所示,第三实施例具备两个比较器,分别为PMOS用比较器361与NMOS用比较器362。同时也具备两个逻辑控制电路,分别为PMOS用逻辑控制电路381与NMOS用逻辑控制电路382。其中,PMOS用比较器361接收的参考电压为3/4工作电压,且透过PMOS用逻辑控制电路381负责调整PMOS 42的并联电阻值,进而调整充电状态的驱动电流。NMOS用比较器362接收的参考电压为1/4工作电压,且透过NMOS用逻辑控制电路382负责调整NMOS44的并联电阻值,进而调整放电状态的驱动电流。As shown in FIG. 3 , the third embodiment has two comparators, namely a
请参照图4,本发明电流调整方法流程图的一实施例,适用于一第一芯片中,包含下列步骤。Please refer to FIG. 4 , an embodiment of the flowchart of the current adjustment method of the present invention is applicable to a first chip, and includes the following steps.
步骤S10:依据控制信号以输出驱动电流,其中驱动电流流至第二芯片中的参考电阻以产生输出电压。于此,第一芯片可为控制芯片,而第二芯片可为存储器芯片或动态随机存取存储器芯片(DRAM)。Step S10 : outputting a driving current according to the control signal, wherein the driving current flows to a reference resistor in the second chip to generate an output voltage. Here, the first chip may be a control chip, and the second chip may be a memory chip or a dynamic random access memory (DRAM).
其中,参考电阻依据本发明的一实施例,为一晶粒终端电阻(ODT),其设置于一存储器芯片中,因此不需额外增加一个外部电阻。且驱动电流流经存储器芯片的数据信号接脚(Data Pin)或时钟信号接脚(Clock Pin)。Wherein, according to an embodiment of the present invention, the reference resistor is an on-chip termination resistor (ODT), which is set in a memory chip, so there is no need to add an additional external resistor. And the driving current flows through the data signal pin (Data Pin) or the clock signal pin (Clock Pin) of the memory chip.
步骤S20:检测输出电压与参考电压以产生控制信号,而该控制信号控制NMOS晶体管或PMOS晶体管的并联数目,以调整驱动电流的电流量。其中,该参考电压为可程序化的参考电压。或者,上述的第一芯片具有一工作电压,而该参考电压实质上等于1/2工作电压。Step S20: Detect the output voltage and the reference voltage to generate a control signal, and the control signal controls the number of NMOS transistors or PMOS transistors connected in parallel to adjust the amount of the driving current. Wherein, the reference voltage is a programmable reference voltage. Alternatively, the above-mentioned first chip has an operating voltage, and the reference voltage is substantially equal to 1/2 of the operating voltage.
上述的步骤S20更可包含下列步骤:比较输出电压与参考电压,以输出一逻辑值;依据该逻辑值以产生该控制信号。The above step S20 may further include the following steps: comparing the output voltage with the reference voltage to output a logic value; and generating the control signal according to the logic value.
虽然本发明的技术内容已经以较佳实施例揭露如上,然其并非用以限定本发明,任何熟习此技术的人员,在不脱离本发明的精神所作些许的更动与润饰,皆应涵盖于本发明的范畴内,因此本发明的保护范围当视所附的权利要求的范围所界定者为准。Although the technical content of the present invention has been disclosed above with preferred embodiments, it is not intended to limit the present invention, and any modifications and modifications made by those skilled in the art without departing from the spirit of the present invention should be included in the present invention. Within the scope of the present invention, therefore, the scope of protection of the present invention should be defined by the scope of the appended claims.
Claims (18)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNA2007103054639A CN101471129A (en) | 2007-12-28 | 2007-12-28 | Device and method for adjusting chip output current |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNA2007103054639A CN101471129A (en) | 2007-12-28 | 2007-12-28 | Device and method for adjusting chip output current |
Publications (1)
Publication Number | Publication Date |
---|---|
CN101471129A true CN101471129A (en) | 2009-07-01 |
Family
ID=40828512
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNA2007103054639A Pending CN101471129A (en) | 2007-12-28 | 2007-12-28 | Device and method for adjusting chip output current |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101471129A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103631294A (en) * | 2013-11-28 | 2014-03-12 | 中国科学院微电子研究所 | Automatic power supply voltage adjusting device and method |
CN110532207A (en) * | 2018-05-24 | 2019-12-03 | 新唐科技股份有限公司 | Bus system and its detection method |
CN114550775A (en) * | 2020-11-24 | 2022-05-27 | 瑞昱半导体股份有限公司 | Memory controller and control method thereof |
CN114583927A (en) * | 2022-04-20 | 2022-06-03 | 成都功成半导体有限公司 | Drive current adjustable power device drive circuit |
-
2007
- 2007-12-28 CN CNA2007103054639A patent/CN101471129A/en active Pending
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103631294A (en) * | 2013-11-28 | 2014-03-12 | 中国科学院微电子研究所 | Automatic power supply voltage adjusting device and method |
CN103631294B (en) * | 2013-11-28 | 2016-03-02 | 中国科学院微电子研究所 | Automatic power supply voltage adjusting device and method |
CN110532207A (en) * | 2018-05-24 | 2019-12-03 | 新唐科技股份有限公司 | Bus system and its detection method |
CN114550775A (en) * | 2020-11-24 | 2022-05-27 | 瑞昱半导体股份有限公司 | Memory controller and control method thereof |
CN114583927A (en) * | 2022-04-20 | 2022-06-03 | 成都功成半导体有限公司 | Drive current adjustable power device drive circuit |
CN114583927B (en) * | 2022-04-20 | 2022-07-08 | 成都功成半导体有限公司 | Drive current adjustable power device drive circuit |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100596781B1 (en) | Termination Voltage Regulator with On Die Termination | |
KR100744039B1 (en) | Semiconductor memory device that can adjust impedance of data output driver | |
US8508251B2 (en) | Semiconductor devices having on-die termination structures for reducing current consumption and termination methods performed in the semiconductor devices | |
US7525337B2 (en) | On-die termination circuit and method for semiconductor memory apparatus | |
US20070094428A1 (en) | Scalable I/O Signaling Topology Using Source-Calibrated Reference Voltages | |
US8120381B2 (en) | Impedance adjusting device | |
US7612579B2 (en) | Output circuit of semiconductor device and semiconductor device including thereof | |
US11030141B2 (en) | Apparatuses for independent tuning of on-die termination impedances and output driver impedances, and related methods, semiconductor devices, and systems | |
JP2011101266A (en) | Semiconductor device and information processing system | |
US20080100333A1 (en) | Impedance matching circuit of semiconductor memory device | |
EP3203475B1 (en) | Memory interface circuit capable of controlling driving ability and associated control method | |
US20140132309A1 (en) | Self-calibration of output buffer driving strength | |
JP2007028600A (en) | Low voltage differential signal receiver and method of setting termination resistance value thereof | |
US9608632B1 (en) | Resistance calibration method and related calibration system | |
US20160258997A1 (en) | Testing impedance adjustment | |
US7227376B2 (en) | Dynamic impedance compensation circuit and method | |
CN101471129A (en) | Device and method for adjusting chip output current | |
CN104978297A (en) | Adaptive input/output buffer and methods thereof | |
US7714600B2 (en) | Load fluctuation correction circuit, electronic device, testing device, and timing generating circuit | |
KR100861373B1 (en) | Skew signal generation circuit and semiconductor memory device using same | |
US12166485B2 (en) | Methods and circuits for slew-rate calibration | |
WO2009139101A1 (en) | Electronic equipment system and semiconductor integrated circuit controller | |
CN101449333B (en) | Voltage stabilizer memory module | |
TWI650752B (en) | Controller and a method for generating reference voltages | |
US8436640B1 (en) | Area optimized output impedance controlled driver |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
WD01 | Invention patent application deemed withdrawn after publication |
Open date: 20090701 |