CN101464411A - Capillary array analyzer - Google Patents
Capillary array analyzer Download PDFInfo
- Publication number
- CN101464411A CN101464411A CNA200910095512XA CN200910095512A CN101464411A CN 101464411 A CN101464411 A CN 101464411A CN A200910095512X A CNA200910095512X A CN A200910095512XA CN 200910095512 A CN200910095512 A CN 200910095512A CN 101464411 A CN101464411 A CN 101464411A
- Authority
- CN
- China
- Prior art keywords
- capillary array
- fluorescence
- scanning
- analyzer
- light
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
Abstract
本发明属于生物分析技术领域,涉及毛细管阵列分析仪,光源发出的激发光由反射镜及荧光分离镜入射到振镜,振镜绕转轴往返摆动,激发光也往复摆动;后激发光入射到扫描物镜,扫描物镜将激发光聚到放置毛细管阵列的焦面,经过扫描物镜转换为焦面上的一维平动扫描,在扫描过程中,激发光依次激发毛细管中标记有荧光物质的样品,样品标记的荧光物质所发出的荧光由扫描物镜收集,并转换为与激发光同轴并反向传播的平行光束,平行光束被反射而与激发光束相分离,后入射到会聚透镜,后荧光平行光束经过色轮上的荧光滤色片滤除背景光,通过共焦小孔,由光探测器探测。本发明的毛细管阵列分析仪具有结构简单、体积小、成本低且性能优良的优点。
The invention belongs to the technical field of biological analysis, and relates to a capillary array analyzer. The excitation light emitted by a light source is incident on a vibrating mirror by a reflector and a fluorescent separation mirror, and the vibrating mirror swings back and forth around a rotation axis, and the excitation light also swings back and forth; The objective lens, the scanning objective lens gathers the excitation light to the focal plane where the capillary array is placed, and is transformed into a one-dimensional translational scanning on the focal plane through the scanning objective lens. The fluorescence emitted by the labeled fluorescent substance is collected by the scanning objective lens, and converted into a parallel beam that is coaxial with the excitation light and propagates in the opposite direction. The parallel beam is reflected and separated from the excitation beam, and then enters the converging lens. The background light is filtered out by the fluorescent filter on the color wheel, passed through the confocal aperture, and detected by the photodetector. The capillary array analyzer of the invention has the advantages of simple structure, small volume, low cost and excellent performance.
Description
技术领域 technical field
本发明属于生物分析技术领域,特别涉及一种毛细管阵列分析仪。The invention belongs to the technical field of biological analysis, in particular to a capillary array analyzer.
背景技术 Background technique
毛细管电泳是通过电场的作用,使样品在毛细管中迁移,而样品中不同的成份具有不同的迁移速度,从而实现分离,并在毛细管中的检测窗处进行探测,最后通过所得的探测信号对样品进行分析。这一技术广泛用于生物化学分析,如DNA、蛋白质分离分析,其具有分离效率高、样品消耗少、自动化程度高,其在DNA测序、生物与临床研究、法医鉴定、环境保护、分析化学和食品检测等领域有着广泛的应用。电泳样品的检测主要有同位素标记、化学发光方法、表面等离子共振和激光诱导荧光,通常采用光学检测,其中灵敏度最高,且应用最广的是激光诱导荧光检测。Capillary electrophoresis is to make the sample migrate in the capillary through the action of the electric field, and different components in the sample have different migration speeds, so as to achieve separation, and detect at the detection window in the capillary, and finally detect the sample through the obtained detection signal for analysis. This technology is widely used in biochemical analysis, such as DNA and protein separation analysis, which has high separation efficiency, low sample consumption and high degree of automation. It is widely used in DNA sequencing, biological and clinical research, forensic identification, environmental protection, analytical chemistry and Food testing and other fields have a wide range of applications. The detection of electrophoretic samples mainly includes isotope labeling, chemiluminescence methods, surface plasmon resonance, and laser-induced fluorescence. Optical detection is usually used, and laser-induced fluorescence detection is the most sensitive and widely used.
为了实现高通量分析,可以将多根毛细管同时电泳,检测窗排成阵列,进行并行检测,通常为毛细管阵列电泳荧光检测。目前的毛细管阵列电泳检测方法主要有如下几种:(1)将毛细管平行排列,由成像物镜成像到CCD上进行非扫描非共焦检测,但非共焦方式的检测灵敏度受到限制。(2)将毛细管平行排列,并置于一个扫描平台上,通过扫描平台的运动实现扫描共焦检测,或者由镜头相对毛细管运动,实现对毛细管阵列的扫描。这种扫描方式的扫描速度受驱动器限制,且震动大。(3)将毛细管排列在一个圆柱上,镜头在圆柱内垂直于圆柱的中心轴配置,通过镜头绕中心轴做圆周运动实现扫描。这种方式需毛细管按圆周排列,从而给一些分析及应用带来不便。(4)将毛细管或微通道径向阵列排布于一个圆盘平面上,镜头垂直于圆盘配置,并绕圆盘中心转动,实现扫描。但毛细管的圆盘排布也会给分析及应用带来不便,且镜头旋转机构复杂,不易小型化。In order to achieve high-throughput analysis, multiple capillaries can be electrophoresed at the same time, and the detection windows can be arranged in an array for parallel detection, usually capillary array electrophoresis and fluorescence detection. The current capillary array electrophoresis detection methods mainly include the following: (1) The capillaries are arranged in parallel, and the imaging objective lens is imaged onto the CCD for non-scanning non-confocal detection, but the detection sensitivity of the non-confocal method is limited. (2) The capillaries are arranged in parallel and placed on a scanning platform, and the scanning confocal detection is realized through the movement of the scanning platform, or the scanning of the capillary array is realized by moving the lens relative to the capillaries. The scanning speed of this scanning method is limited by the drive, and the vibration is large. (3) The capillaries are arranged on a cylinder, the lens is arranged in the cylinder perpendicular to the central axis of the cylinder, and the scanning is realized through the circular movement of the lens around the central axis. This method requires capillaries to be arranged in a circle, which brings inconvenience to some analyzes and applications. (4) The radial array of capillaries or microchannels is arranged on a disk plane, and the lens is arranged perpendicular to the disk and rotates around the center of the disk to realize scanning. However, the disk arrangement of the capillary will also bring inconvenience to the analysis and application, and the lens rotation mechanism is complicated and difficult to miniaturize.
目前采用的共焦检测中,多色荧光检测技术采用滤色片分光方式,如4色荧光检测采用一块滤色片先将四个波长段的荧光按长波和短波分离为两个光路,然后每个光路再由滤色片分离为两个光路,每个光路采用一个光探测器探测。这种分光检测方式首先需要的光探测器多,增加了生产成本和检测仪的体积;其次,因滤色片多,荧光损耗多,因此限制了探测灵敏度;最后,由于多滤色片配置在光路中,因此,空间要求大,进一步增加了检测仪的体积。In the current confocal detection, the multi-color fluorescence detection technology adopts the color filter spectroscopic method. For example, the 4-color fluorescence detection uses a color filter to first separate the fluorescence of the four wavelength bands into two light paths according to the long-wave and short-wave, and then each The first optical path is separated into two optical paths by a color filter, and each optical path is detected by a photodetector. This spectroscopic detection method firstly requires many photodetectors, which increases the production cost and the volume of the detector; secondly, due to the large number of color filters and the loss of fluorescence, the detection sensitivity is limited; finally, due to the multi-color filter configuration in The optical path, therefore, requires large space, further increasing the volume of the detector.
发明内容 Contents of the invention
本发明提供一种结构简单、体积小、成本低且性能优良的毛细管阵列分析仪。The invention provides a capillary array analyzer with simple structure, small volume, low cost and excellent performance.
本发明所采取的技术方案如下:毛细管阵列分析仪,包括光源、反射镜、振镜、扫描物镜、荧光分离镜、会聚透镜、色轮、共焦小孔、光探测器,光源发出的激发光由反射镜反射,透过荧光分离镜入射到振镜,振镜绕转轴往返摆动,而使激发光也往复摆动;后激发光入射到扫描物镜,扫描物镜将激发光聚到放置毛细管阵列的焦面上,激发光的摆动经过扫描物镜转换为焦面上的一维平动扫描,在扫描过程中,激发光依次激发毛细管中标记有荧光物质的样品,样品标记的荧光物质所发出的荧光由扫描物镜收集,并转换为与激发光同轴并反向传播的荧光平行光束,荧光平行光束在荧光分离镜处被反射而与激发光束相分离,后入射到会聚透镜,会聚后的荧光平行光束经过色轮上的荧光滤色片滤除背景光,聚焦通过共焦小孔,由光探测器探测。The technical scheme adopted in the present invention is as follows: a capillary array analyzer, comprising a light source, a reflector, a vibrating mirror, a scanning objective lens, a fluorescent separation mirror, a converging lens, a color wheel, a confocal aperture, a light detector, and the excitation light emitted by the light source It is reflected by the reflector, and enters the vibrating mirror through the fluorescent separation mirror. The vibrating mirror swings back and forth around the rotation axis, so that the excitation light also swings back and forth; the excitation light is incident on the scanning objective lens, and the scanning objective lens focuses the excitation light to the focal point where the capillary array is placed. On the surface, the oscillation of the excitation light is converted into a one-dimensional translational scanning on the focal plane through the scanning objective lens. During the scanning process, the excitation light excites the samples marked with fluorescent substances in the capillary in turn, and the fluorescence emitted by the fluorescent substances marked by the samples is obtained by The scanning objective lens collects and converts the fluorescent parallel beam coaxial with the excitation light and propagates in the opposite direction. The fluorescent parallel beam is reflected at the fluorescent separation mirror and separated from the excitation beam, and then enters the converging lens. The converged fluorescent parallel beam The background light is filtered out by the fluorescent filter on the color wheel, focused through the confocal aperture, and detected by the photodetector.
所述的毛细管阵列分析仪,毛细管阵列的毛细管平行排列于一个平面,或毛细管阵列是蚀刻在芯片中的微通道阵列。In the capillary array analyzer, the capillaries of the capillary array are arranged in parallel on one plane, or the capillary array is a microchannel array etched in the chip.
所述的毛细管阵列分析仪,毛细管阵列夹于两基板间。In the capillary array analyzer, the capillary array is sandwiched between two substrates.
所述的毛细管阵列分析仪,光源采用激光或发光二极管。In the capillary array analyzer, the light source is a laser or a light emitting diode.
所述的毛细管阵列分析仪,光源、毛细管阵列、共焦小孔三者处于共轭位置,形成共焦检测。In the capillary array analyzer, the light source, the capillary array, and the confocal aperture are in a conjugate position to form a confocal detection.
所述的毛细管阵列分析仪,扫描物镜采用像方远心f-theta物镜。In the capillary array analyzer, the scanning objective adopts an image square telecentric f-theta objective lens.
所述的毛细管阵列分析仪,荧光分离镜与激发光的光轴成45°。In the capillary array analyzer, the fluorescence separation mirror is at an angle of 45° to the optical axis of the excitation light.
所述的毛细管阵列分析仪,荧光分离镜采用二向色镜或中心带孔的全反镜。In the capillary array analyzer, the fluorescence separation mirror is a dichroic mirror or a total reflection mirror with a hole in the center.
所述的毛细管阵列分析仪,光探测器采用光电倍增管,或雪崩光敏二极管,或本征光敏二极管。In the capillary array analyzer, the light detector adopts a photomultiplier tube, or an avalanche photodiode, or an intrinsic photodiode.
所述的毛细管阵列分析仪,荧光滤色片是安装在色轮上的滤色片组,色轮转动使不同光谱特性的滤色片处于光路中,探测不同波长的荧光。In the capillary array analyzer, the fluorescent color filter is a color filter group installed on the color wheel, and the rotation of the color wheel makes the color filters with different spectral characteristics in the optical path to detect the fluorescence of different wavelengths.
工作过程中,毛细管两端插入缓冲液池,并分别与电源的正负极连接,毛细管中充入筛分介质,正负极加电压对毛细管进行预电泳,待电流稳定后,根据样品的带电性质,在正极或负极进样。进样后,对毛细管中的样品进行电泳分离,带有荧光物质的样品迁移到检测窗口时,被扫描到该毛细管的激发光斑所激发,发出的荧光经扫描物镜收集,振镜和荧光分离镜反射,在会聚物镜上会聚,通过色轮上的荧光滤色片滤色,被光探测器探测到。During the working process, the two ends of the capillary are inserted into the buffer pool and connected to the positive and negative poles of the power supply respectively. The capillary is filled with sieving medium, and the positive and negative poles apply voltage to the capillary for pre-electrophoresis. After the current is stable, according to the charge of the sample properties, sample injection at the positive or negative electrode. After sample injection, the sample in the capillary is separated by electrophoresis. When the sample with fluorescent substance migrates to the detection window, it is excited by the excitation spot scanned to the capillary, and the emitted fluorescence is collected by the scanning objective lens, vibrating mirror and fluorescent separation mirror. The reflections, converged on the converging objective, are filtered through a fluorescent filter on the color wheel and detected by a photodetector.
为保证扫描时对每根毛细管的均匀性,扫描物镜采用远心f-theta物镜,使其每个扫描位置的主光线均平行于光轴,且系统无渐晕,从而保证每个扫描位置收集荧光的一致性。f-theta镜头使扫描过程中振镜反射向扫描物镜光束的角度变化转变为毛细管阵列所在面上的线性位移变化,保证扫描速度的均匀性。本发明中采用振镜结合远心f-theta物镜的毛细管阵列激光诱导荧光检测的方式,具有扫描惯量小、运动部件少、检测仪性能稳定、探测均匀性高、结构紧凑等优点。In order to ensure the uniformity of each capillary during scanning, the scanning objective lens adopts a telecentric f-theta objective lens, so that the chief ray of each scanning position is parallel to the optical axis, and the system has no vignetting, so as to ensure that each scanning position collects Consistency of fluorescence. The f-theta lens converts the angular change of the beam reflected from the galvanometer to the scanning objective lens into a linear displacement change on the surface where the capillary array is located during the scanning process, ensuring the uniformity of the scanning speed. In the present invention, the method of capillary array laser-induced fluorescence detection with a vibrating mirror combined with a telecentric f-theta objective lens has the advantages of small scanning inertia, few moving parts, stable performance of the detector, high detection uniformity, and compact structure.
本发明采用色轮旋转,使多个滤色片时分复用地进行多色荧光检测,降低了荧光能量的损耗,减少了使用的光探测器的个数,从而既降低制造成本,又减小体积。The present invention adopts color wheel rotation to make multiple color filters time-division multiplexed for multi-color fluorescence detection, which reduces the loss of fluorescence energy and the number of photodetectors used, thus reducing both the manufacturing cost and the volume.
附图说明 Description of drawings
图1是本发明的结构示意图。Fig. 1 is a structural schematic diagram of the present invention.
图2是毛细管阵列排列示意图。Fig. 2 is a schematic diagram of capillary array arrangement.
图3是色轮旋转多色荧光检测示意图。Fig. 3 is a schematic diagram of multi-color fluorescence detection by color wheel rotation.
具体实施方式 Detailed ways
下面结合附图对本发明作详细说明。The present invention will be described in detail below in conjunction with the accompanying drawings.
图1是本发明的结构示意图。光源1采用激光,光源1的出射光方向安装反射镜3,光源1发出的激发光2由反射镜3反射,该反射镜3可以用于激发光2的光路调节。反射镜3的出射光方向安装荧光分离镜4,荧光分离镜4与激发光2的光轴成45°角。荧光分离镜4是一个中心有孔的全反镜,中心孔用于穿过激发光2,而全反镜用于反射荧光。通过反射后的激发光2透过荧光分离镜4的中心孔而入射到振镜5,振镜5安装在转轴501上,可以绕轴往复摆动。振镜镜片也是一个全反镜,激发光2被振镜5反射,随着振镜5绕转轴501的摆动,反射后的激发光2也在摆动,摆动的激发光2再入射到扫描物镜6,扫描物镜6采用像方远心f-theta物镜,扫描物镜6将激发光会聚到该物镜的焦面上。由毛细管组成的毛细管阵列7置于扫描物镜6的焦面上,激发光2的摆动经过扫描物镜6变换为焦面上的一维平动扫描。扫描过程中,激发光2顺序地激发各毛细管中标记有荧光物质的样品,标记样品的荧光物质所发出的荧光8由扫描物镜6收集,并变换为与激发光同轴并反向传播的平行光,荧光平行光束8在荧光分离镜4处被反射而与激发光束2分离,然后入射到会聚透镜9,会聚后的荧光经过色轮10上的荧光滤色片101滤除背景光,聚焦通过共焦小孔11,由光探测器12探测,光探测器12采用光电倍增管。光源1、毛细管阵列7、光探测器12前的共焦小孔11三者处于共轭位置,形成共焦检测。Fig. 1 is a structural schematic diagram of the present invention. The
图2是毛细管阵列7的排列示意图,多根毛细管71平行排列在一个平面上,这些毛细管定位于刻有V型槽的毛细管固定基板72,基板72中间有一个孔用于透过激发光和荧光,基板73通过螺丝74与基板72固定,将毛细管71固定在两块基板72、73中间,基板73与毛细管7的接触面为平面。2 is a schematic diagram of the arrangement of the capillary array 7. A plurality of
图3是色轮旋转时分复用检测多色荧光的示意图,色轮10上固定多块透过光谱不同的滤色片101,滤色片101的滤色面与荧光束8的中心轴垂直,并且色轮的转轴中心102与荧光束8的中心偏离,使色轮10旋转的过程中,每个滤色片101的中心轴正好可以和荧光束8的中心轴重合。通过旋转色轮10,每个滤色片101对荧光束8滤色时,有不同光谱成分即不同颜色的荧光透过滤色片101到达光探测器12,实现时分复用的多色荧光信号探测。3 is a schematic diagram of color wheel rotation time-division multiplexing detection of multicolor fluorescence. A plurality of
当然,本领域的普通技术人员应该认识,上述只是对本发明一个具体实施例的解释说明,而并非对本发明的限定,如光源可采用发光二极管,毛细管阵列可以是蚀刻在芯片中的微通道阵列,荧光分离镜可采用二向色镜,光探测器可采用雪崩光敏二极管或本征光敏二极管等等,凡是在本发明的实质范围内,对以上实施例的变化、变型都将落入本发明的保护范围之内。Of course, those of ordinary skill in the art should recognize that the above is only an explanation of a specific embodiment of the present invention, but not a limitation of the present invention. For example, a light emitting diode can be used as a light source, and the capillary array can be a microchannel array etched in a chip. Fluorescence splitting mirror can adopt dichroic mirror, photodetector can adopt avalanche photodiode or intrinsic photodiode etc., all will fall within the scope of the present invention to the change of above embodiment, modification all will fall into within the scope of protection.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNA200910095512XA CN101464411A (en) | 2009-01-15 | 2009-01-15 | Capillary array analyzer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNA200910095512XA CN101464411A (en) | 2009-01-15 | 2009-01-15 | Capillary array analyzer |
Publications (1)
Publication Number | Publication Date |
---|---|
CN101464411A true CN101464411A (en) | 2009-06-24 |
Family
ID=40805087
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNA200910095512XA Pending CN101464411A (en) | 2009-01-15 | 2009-01-15 | Capillary array analyzer |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101464411A (en) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103063646A (en) * | 2013-01-14 | 2013-04-24 | 武汉大学 | Dual-purpose laser-induced fluorescence detecting system |
CN107741411A (en) * | 2017-10-13 | 2018-02-27 | 中国科学院上海技术物理研究所 | A Frozen Serum Analyzer with Equidistant Helical Multipoint Ultraviolet Spectrum |
CN107907523A (en) * | 2017-10-13 | 2018-04-13 | 中国科学院上海技术物理研究所 | A kind of perseverance low temperature isometric helix multiple spot ultraviolet spectra freezes serum analysis method |
WO2018082136A1 (en) * | 2016-11-07 | 2018-05-11 | 中国科学院光电研究院 | Scanning type laser-induced spectral plane range analysis and detection system |
CN108362258A (en) * | 2018-02-09 | 2018-08-03 | 滁州职业技术学院 | A kind of rotary measurement device applied to grooving processing |
CN109813692A (en) * | 2019-01-02 | 2019-05-28 | 北京科技大学 | A Capillary Analysis and Detection Method Based on Ultrasonic Aggregation |
US20210341420A1 (en) * | 2020-04-30 | 2021-11-04 | Promega Corporation | Laser illumination techniques for capillary electrophoresis |
CN114002196A (en) * | 2016-02-22 | 2022-02-01 | 株式会社日立高新技术 | Luminescence detection device |
GB2599049A (en) * | 2017-02-20 | 2022-03-23 | Hitachi High Tech Corp | Analysis system and analysis method |
CN114317698A (en) * | 2021-12-17 | 2022-04-12 | 青岛松辉光电有限公司 | Reflective PCR instrument |
CN115747035A (en) * | 2023-01-05 | 2023-03-07 | 苏州和迈精密仪器有限公司 | Continuous scanning monitoring analysis system based on discrete three-dimensional fluorescence technology |
US11860094B2 (en) | 2017-02-20 | 2024-01-02 | Hitachi High-Tech Corporation | Analysis system and analysis method |
-
2009
- 2009-01-15 CN CNA200910095512XA patent/CN101464411A/en active Pending
Cited By (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103063646B (en) * | 2013-01-14 | 2015-04-29 | 武汉大学 | Dual-purpose laser-induced fluorescence detecting system |
CN103063646A (en) * | 2013-01-14 | 2013-04-24 | 武汉大学 | Dual-purpose laser-induced fluorescence detecting system |
CN114002196B (en) * | 2016-02-22 | 2025-03-28 | 株式会社日立高新技术 | Luminescence detection device |
CN114002196A (en) * | 2016-02-22 | 2022-02-01 | 株式会社日立高新技术 | Luminescence detection device |
US10823679B2 (en) | 2016-11-07 | 2020-11-03 | Academy Of Opto-Electronics Chinese Academy Of Sciences | Scanning type laser induced spectrum analysis and detection system |
DE112016007086B4 (en) | 2016-11-07 | 2024-08-22 | Academy Of Opto-Electronics Chinese Academy Of Sciences | SCANNING LASER-BASED SPECTRAL SURFACE AREA ANALYSIS AND DETECTION SYSTEM |
WO2018082136A1 (en) * | 2016-11-07 | 2018-05-11 | 中国科学院光电研究院 | Scanning type laser-induced spectral plane range analysis and detection system |
US11860094B2 (en) | 2017-02-20 | 2024-01-02 | Hitachi High-Tech Corporation | Analysis system and analysis method |
GB2599049A (en) * | 2017-02-20 | 2022-03-23 | Hitachi High Tech Corp | Analysis system and analysis method |
GB2599049B (en) * | 2017-02-20 | 2022-11-09 | Hitachi High Tech Corp | Capillary electrophoresis device |
CN107907523A (en) * | 2017-10-13 | 2018-04-13 | 中国科学院上海技术物理研究所 | A kind of perseverance low temperature isometric helix multiple spot ultraviolet spectra freezes serum analysis method |
CN107741411A (en) * | 2017-10-13 | 2018-02-27 | 中国科学院上海技术物理研究所 | A Frozen Serum Analyzer with Equidistant Helical Multipoint Ultraviolet Spectrum |
CN108362258A (en) * | 2018-02-09 | 2018-08-03 | 滁州职业技术学院 | A kind of rotary measurement device applied to grooving processing |
CN109813692A (en) * | 2019-01-02 | 2019-05-28 | 北京科技大学 | A Capillary Analysis and Detection Method Based on Ultrasonic Aggregation |
US20210341420A1 (en) * | 2020-04-30 | 2021-11-04 | Promega Corporation | Laser illumination techniques for capillary electrophoresis |
JP2023527115A (en) * | 2020-04-30 | 2023-06-27 | プロメガ・コーポレーション | Laser illumination technique for capillary electrophoresis |
US12019046B2 (en) * | 2020-04-30 | 2024-06-25 | Promega Corporation | Laser illumination techniques for capillary electrophoresis |
CN114317698A (en) * | 2021-12-17 | 2022-04-12 | 青岛松辉光电有限公司 | Reflective PCR instrument |
CN115747035A (en) * | 2023-01-05 | 2023-03-07 | 苏州和迈精密仪器有限公司 | Continuous scanning monitoring analysis system based on discrete three-dimensional fluorescence technology |
US11988632B1 (en) | 2023-01-05 | 2024-05-21 | Suzhou Helmen Precision Instruments Co., Ltd. | Systems for continuous scanning monitoring and analysis based on discrete three-dimensional fluorescence technology |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101464411A (en) | Capillary array analyzer | |
US5483075A (en) | Rotary scanning apparatus | |
US6100535A (en) | Rotary confocal scanner for detection of capillary arrays | |
US7518727B2 (en) | Multicapillary multilaser detection system | |
WO2005096749A2 (en) | Polychromic laser scanning system and method of use | |
EP1036371A4 (en) | HIGH-THROUGHPUT OPTICAL SCANNER | |
JP6058977B2 (en) | Fluorescence detection device | |
US20070131870A1 (en) | Multiplexed CE fluorescence system | |
CN103033493B (en) | A kind of tunable fluorescence quantitative PCR detection system | |
WO2018000663A1 (en) | Capillary electrophoresis detection system and detection method | |
CN101196465A (en) | A laser multi-mode micro-volume sample analysis method and device used therefor | |
EP1674852A1 (en) | Time-multiplexed scanning light source for multi-probe, multi-laser fluorescence detection systems | |
CN117405649A (en) | Cell Raman flow spectrum imaging analysis system and analysis method | |
Yu et al. | A simple and highly sensitive masking fluorescence detection system for capillary array electrophoresis and its application to food and medicine analysis | |
CN1200269C (en) | Multiprobe optical fibre evanescent wave biological sensor | |
WO2018000664A1 (en) | Capillary electrophoresis detection system and detection method | |
CN101493413B (en) | Rotating Scanning Capillary Array Analyzer | |
US20070139652A1 (en) | Fiber optical assembly for fluorescence spectrometry | |
US20050206900A1 (en) | Fluorescent light detection | |
WO2023135367A1 (en) | An apparatus and a method for fluorescence imaging | |
CN206002443U (en) | Capillary electrophoresis detection system | |
US20050161329A1 (en) | Multiplexed capillary electrophoresis systems | |
CN205879793U (en) | Capillary electrophoresis detection system | |
CN205879858U (en) | Capillary electrophoresis detection system | |
Lee et al. | [19] Capillary electrophoresis detectors: Lasers |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C12 | Rejection of a patent application after its publication | ||
RJ01 | Rejection of invention patent application after publication |
Open date: 20090624 |