CN101459642B - Method and device suitable for detecting synchronization signal in communication system - Google Patents
Method and device suitable for detecting synchronization signal in communication system Download PDFInfo
- Publication number
- CN101459642B CN101459642B CN2007101998443A CN200710199844A CN101459642B CN 101459642 B CN101459642 B CN 101459642B CN 2007101998443 A CN2007101998443 A CN 2007101998443A CN 200710199844 A CN200710199844 A CN 200710199844A CN 101459642 B CN101459642 B CN 101459642B
- Authority
- CN
- China
- Prior art keywords
- window
- signal
- value
- length
- synchronization signal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000000034 method Methods 0.000 title claims abstract description 30
- 238000004891 communication Methods 0.000 title claims abstract description 12
- 230000001360 synchronised effect Effects 0.000 claims abstract description 45
- 238000001514 detection method Methods 0.000 claims description 38
- 230000005540 biological transmission Effects 0.000 abstract description 3
- 238000010586 diagram Methods 0.000 description 17
- 238000012549 training Methods 0.000 description 11
- 125000004122 cyclic group Chemical group 0.000 description 10
- 238000004364 calculation method Methods 0.000 description 8
- 239000013256 coordination polymer Substances 0.000 description 7
- 230000000694 effects Effects 0.000 description 4
- 230000004044 response Effects 0.000 description 4
- 230000003252 repetitive effect Effects 0.000 description 3
- 238000007476 Maximum Likelihood Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000009466 transformation Effects 0.000 description 2
- 230000001934 delay Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000010295 mobile communication Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 238000011895 specific detection Methods 0.000 description 1
Images
Landscapes
- Synchronisation In Digital Transmission Systems (AREA)
Abstract
Description
技术领域technical field
本发明涉及一种同步信号检测方法与装置。The invention relates to a synchronization signal detection method and device.
背景技术Background technique
在公元1960年代,使用并行数据传输与频分复用概念的正交频分复用技术(Orthogonal Frequency Division Multiplexing,以下简称OFDM)即被提出。而正交频分复用技术的研究重心主要在于提供高速传输的调制与解调制技术以及数字移动通信系统的应用上。由于信道脉冲响应、时序同步与频率同步上的错误经常造成码元(Symbol)间干扰(Inter-Symbol Interference,“ISI”)与载波间干扰(Inter-Carrier Interference,“ICI”)。In the 1960s, Orthogonal Frequency Division Multiplexing (OFDM), which uses the concept of parallel data transmission and frequency division multiplexing, was proposed. The research focus of OFDM mainly lies in the modulation and demodulation technology for high-speed transmission and the application of digital mobile communication system. Inter-Symbol Interference ("ISI") and Inter-Carrier Interference ("ICI") are often caused by errors in channel impulse response, timing synchronization, and frequency synchronization.
因此,在正交频分复用(OFDM)系统中,一项重要的任务即是时序同步与估计,特别是针对接收端而言。传统上,同步信号(Synchronization Signal)是由重复传送某一特定信号而成。而一般都会采用自相关计算器(Auto-correlator)进行估计。自相关计算器(Auto-correlator)提供了众所皆知而且简单的时序估算方法。此装置可以检测任何具有重复特性的信号关于时序的相关特性,因此,时序信息的检测可以通过此装置检测而得。然而,如果同步信号在时序上重复两次以上,则此装置所得到的运算结果将可能会产生所谓的高原区域(Plateau Region)。此高原区域的产生时间通常都是发生在同步信号的码元(Symbol)边沿。这样的现象通常都是来自位于OFDM码元前端所加入的循环前缀(Cyclic Prefix,CP),或是此同步信号由重复传送两次以上的信号所组成。此高原区域将会导致时序估算的不确定性。Therefore, in an Orthogonal Frequency Division Multiplexing (OFDM) system, an important task is timing synchronization and estimation, especially for the receiver. Traditionally, a synchronization signal (Synchronization Signal) is formed by repeatedly transmitting a specific signal. Generally, an autocorrelator is used for estimation. Auto-correlator provides a well-known and simple timing estimation method. The device can detect the relevant characteristics of any signal with repetitive characteristics about the time sequence, therefore, the detection of the time sequence information can be obtained through the detection of the device. However, if the synchronization signal repeats more than twice in time sequence, the calculation result obtained by this device may produce a so-called Plateau Region. The generation time of the plateau region usually occurs at the symbol edge of the synchronization signal. Such phenomena usually come from the cyclic prefix (Cyclic Prefix, CP) added at the front end of the OFDM symbol, or the synchronization signal is composed of signals that are repeatedly transmitted more than twice. This plateau region will cause uncertainty in timing estimates.
从现有的系统(例如IEEE 802.11(a))观点来看,此高原似乎并不会有很大的影响,高峰值区域(High Peak Region)则将可以用来进行时序的同步估算。只要在设计上,加上一个特定的检测标准(Detection Criterion),那么也可以取得这些时序的信息。但上述的方式有一先决的条件,也就是通信环境必须是处于稳定的状态,噪声(Noise)或是信道的效应(Channel Effect)必须很低或是很轻微,这样所得到的具有高原特性的结果,才能相当清楚而且可预期,如此上述的检测方法才能得到正确的结果。From the perspective of existing systems (such as IEEE 802.11(a)), this plateau does not seem to have a great impact, and the High Peak Region (High Peak Region) will be used for timing synchronization estimation. As long as a specific detection criterion (Detection Criterion) is added to the design, then these timing information can also be obtained. However, the above method has a prerequisite, that is, the communication environment must be in a stable state, and the noise (Noise) or channel effect (Channel Effect) must be very low or very slight, so that the obtained results have plateau characteristics , can be quite clear and predictable, so that the above-mentioned detection method can get correct results.
然而,从下一代的通信系统而言,此OFDM系统将应用至更广域的用途,例如户外的通信系统、或是必须支持高速移动的通信架构等等。此时,时序检测的结果将因为外在环境间噪声的影响,使得其高原信号变得模糊。如此将会难以正确的检测时序相关的信息。现有的检测架构非常不适用于下一代的通信系统。However, from the perspective of next-generation communication systems, the OFDM system will be applied to wider areas, such as outdoor communication systems, or communication architectures that must support high-speed mobility, and the like. At this time, the result of timing detection will be blurred due to the influence of noise in the external environment. In this way, it will be difficult to correctly detect timing-related information. Existing detection architectures are very unsuitable for next-generation communication systems.
在2006年3月14日所公布的美国第7012881号专利中,提出一种“Timing and Frequency offset Estimaion Scheme for OFDM Systems by usingan Analytic Tone”。在此专利中,时序同步是通过一个滑动窗(Sliding Window)用来对自相关计算器(Auto-correlator)所输出的所有自相关结果(CorrelationOutput)加总,以避免高原现象的产生。In U.S. Patent No. 7012881 published on March 14, 2006, a "Timing and Frequency offset Estimaion Scheme for OFDM Systems by usingan Analytic Tone" is proposed. In this patent, timing synchronization is used to sum up all the autocorrelation results (CorrelationOutput) output by the autocorrelator (Auto-correlator) through a sliding window (Sliding Window) to avoid the plateau phenomenon.
在2006年1月26日所公布的美国第200600018143号专利申请案中,提出一种“Coarse Timing Estimaion System and Methodology for WirelessSymbols”。此同步信号即为一般的OFDM码元。而时序信息可以通过循环前缀(Cyclic Prefix,CP)进行估算。此类的同步信号并不会产生所谓的高原效应。且由于循环前缀的长度较短,当通信环境极差时,其自相关所产生的峰值极容易被信道环境或噪声给淹没。In the US Patent Application No. 200600018143 published on January 26, 2006, a "Coarse Timing Estimaion System and Methodology for WirelessSymbols" was proposed. This synchronization signal is a general OFDM symbol. The timing information can be estimated by cyclic prefix (Cyclic Prefix, CP). Such synchronization signals do not produce the so-called plateau effect. And because the length of the cyclic prefix is short, when the communication environment is extremely poor, the peak value generated by its autocorrelation is easily overwhelmed by the channel environment or noise.
在2007年5月15日所公布的美国第7218691号专利中,提出一种“ Method and Apparatus for Estimation of Orthogonal Frequency DivisionMultiplexing Symbol Timing and CIn the U.S. Patent No. 7218691 published on May 15, 2007, a "Method and Apparatus for Estimation of Orthogonal Frequency Division Multiplexing Symbol Timing and C
在2006年5月2日所公布的美国第7039000号专利中,提出一种“TimingSynchronization for OFDM-Based Wireless Network”,此专利提出一种通过两阶段自相关电路(Two-stage Correlation Circuit)以获得较佳时序信息。第一阶段是使用粗略时序同步(Coarse Timing Synchronization)运算的自相关计算器(Auto-correlator),而第二阶段是使用较精密时序同步(Fine TimingSynchronization)运算的自相关计算器(Auto-correlator)。此较精密的同步运算是使用上采样器(Up-Sampler)与内插器(Interpolator)以增加检测的正确性。In the U.S. Patent No. 7039000 published on May 2, 2006, a "Timing Synchronization for OFDM-Based Wireless Network" was proposed. This patent proposed a two-stage autocorrelation circuit (Two-stage Correlation Circuit) to obtain better timing information. The first stage is an auto-correlator that uses a coarse timing synchronization (Coarse Timing Synchronization) operation, while the second stage is an auto-correlator that uses a finer timing synchronization (Fine Timing Synchronization) operation . This more sophisticated synchronous operation uses an up-sampler (Up-Sampler) and an interpolator (Interpolator) to increase the accuracy of detection.
在2006年5月2日所公布的美国第7039000号专利中,提出一种“Apparatus and Associated Method of Symbol Timing Recovery Using Coarseand Fine Symbol Time Acquisition”,此专利主要是提出一种在时域(TimeDomain)中估算信道脉冲响应(Channel Impulse Response)的轮廓(Profile),以便估算时序信息。此专利所提出的方法需要事先知道在频域(FrequencyDomain)的前导信号(Pilot Signal)才能取得信道脉冲响应。此检测方法需要使用快速傅立叶变换(Fast Fourier Transformation,FFT)与逆快速傅立叶变换(Inverse Fast Fourier Transformation,IFFT)的运算,通常适用于接收端已完成粗略同步(Coarse Synchronization)后所进行的时序调整。In the U.S. Patent No. 7039000 published on May 2, 2006, a "Apparatus and Associated Method of Symbol Timing Recovery Using Coarseand Fine Symbol Time Acquisition" was proposed. This patent mainly proposed a method in the time domain (TimeDomain) Estimate the profile of the Channel Impulse Response (Channel Impulse Response) in order to estimate the timing information. The method proposed in this patent needs to know the pilot signal (Pilot Signal) in the frequency domain (Frequency Domain) in advance to obtain the channel impulse response. This detection method requires the use of Fast Fourier Transformation (FFT) and Inverse Fast Fourier Transformation (IFFT) operations, and is usually suitable for timing adjustments after the receiving end has completed Coarse Synchronization .
在2006年11月14日所公布的美国第7136438号专利中,提出一种“Receiving method and receiver”,利用最大似然(Maximum Likelihood)的概念将所接收的信号与已知的同步信号进行匹配检测(Match Detection)。In the U.S. Patent No. 7136438 published on November 14, 2006, a "Receiving method and receiver" was proposed, using the concept of maximum likelihood (Maximum Likelihood) to match the received signal with the known synchronization signal Detection (Match Detection).
在2006年7月6日所公布的美国第20060146962号专利申请案中,提出一种“Method and device for frame detection and synchronizer”。此专利使用减法器(Differentiator)检测高原的边沿。In U.S. Patent Application No. 20060146962 published on July 6, 2006, a "Method and device for frame detection and synchronizer" was proposed. This patent uses a differentiator to detect the edge of the plateau.
发明内容Contents of the invention
本发明的实施例提供一种通信系统检测同步信号的方法,包括在接收端接收含有同步信号的接收信号,并经由自相关(antocorrelation)运算后产生的输入信号,并输入至本发明所提的同步信号检测装置。此检测装置包含三组滑动窗(Sliding windows),对应输入信号取得对应的一第一滑动窗值、一第二滑动窗值与一第三滑动窗值,其中第二滑动窗的长度大于第一滑动窗与第三滑动窗的长度。第二滑动窗的输出值为计算此窗内信号的总和;而第一及第三滑动窗分别计算窗内信号的总和,之后再计算其差值。再利用第二滑动窗的输出值减去此差值,即为此识别装置的输出信号。识别此输出信号的峰值位置,并对此峰值位置补偿因第三滑动窗长度造成的延迟,此位置即为同步信号的码元边沿。补偿的长度即为第三窗的长度。An embodiment of the present invention provides a method for detecting a synchronization signal in a communication system, which includes receiving a received signal containing a synchronization signal at the receiving end, and generating an input signal after an autocorrelation operation, and inputting it to the method proposed in the present invention Synchronization signal detection device. The detection device includes three groups of sliding windows (Sliding windows), corresponding to the input signal to obtain a corresponding first sliding window value, a second sliding window value and a third sliding window value, wherein the length of the second sliding window is greater than that of the first The length of the sliding window and the third sliding window. The output value of the second sliding window is the sum of the signals in the window; and the first and third sliding windows respectively calculate the sum of the signals in the window, and then calculate the difference. The difference is then subtracted from the output value of the second sliding window, which is the output signal of the identification device. The peak position of the output signal is identified, and the delay caused by the length of the third sliding window is compensated for the peak position, and this position is the symbol edge of the synchronization signal. The length of the compensation is the length of the third window.
本发明的实施例提供一种适用于通信系统检测同步信号的装置,包括自相关(autocorrelation)产生器、多个寄存器与多个加法器。此自相关产生器,接收含有同步信号的接收信号,并依序经由一自相关运算后产生的多个输入信号。上述寄存器以串联方式连接,用以依序接收自相关产生器所产生的输入信号,并以移位方式从串联连接的寄存器陆续移位存储。而上述加法器分别对于串联连接的寄存器从接收输入信号的一端依序取得一第一数量、一第二数量与一第三数量的寄存器内所存储的输入信号值,并加以加总后得到一第一窗值、一第二窗值与一第三窗值。上述第一数量、第二数量与第三数量分别对应到一第一窗、一第二窗及一第三窗的寄存器的数量,而第二数量大于第一数量与第三数量,并且以第二窗值判断上述同步信号是否出现,若上述同步信号出现则此第二窗将出现一峰值。对第一窗值与第三窗值的差值绝对值得到一平衡值,并对第二窗值减去此一平衡值以求得此同步信号检测装置的输出。识别此输出信号的峰值位置,并对此峰值位置补偿因第三窗长度造成的延迟,此位置即为同步信号的边沿。补偿的长度即为第三窗的长度。An embodiment of the present invention provides a device suitable for detecting synchronization signals in a communication system, including an autocorrelation generator, a plurality of registers, and a plurality of adders. The autocorrelation generator receives a received signal containing a synchronization signal, and sequentially undergoes an autocorrelation operation to generate a plurality of input signals. The above-mentioned registers are connected in series for sequentially receiving the input signals generated by the self-correlation generator, and sequentially shifting and storing from the serially connected registers in a shifting manner. The above-mentioned adder sequentially obtains the input signal values stored in the registers of a first quantity, a second quantity and a third quantity respectively for the serially connected registers from the end receiving the input signal, and adds them up to obtain a A first window value, a second window value and a third window value. The above-mentioned first quantity, second quantity and third quantity correspond to the quantity of registers of a first window, a second window and a third window respectively, and the second quantity is greater than the first quantity and the third quantity, and the The second window value judges whether the above-mentioned synchronous signal appears, and if the above-mentioned synchronous signal appears, a peak value will appear in the second window. A balance value is obtained from the absolute value of the difference between the first window value and the third window value, and the balance value is subtracted from the second window value to obtain the output of the synchronous signal detection device. The peak position of the output signal is identified, and the delay caused by the third window length is compensated for the peak position, which is the edge of the synchronization signal. The length of the compensation is the length of the third window.
上述的方法与装置,第二窗的长度为同步信号经自相关器后所造成的高原长度。In the above method and device, the length of the second window is the plateau length caused by the synchronization signal passing through the autocorrelator.
为让本发明的上述特征和优点能更明显易懂,下文特举优选实施例,并配合附图,作详细说明如下。In order to make the above-mentioned features and advantages of the present invention more comprehensible, preferred embodiments will be described in detail below together with the accompanying drawings.
附图说明Description of drawings
图1A是说明OFDM码元信号内的同步信号标准结构。FIG. 1A is a diagram illustrating the standard structure of a synchronization signal within an OFDM symbol signal.
图1B是说明根据IEEE 802.11(a)的标准所提出的信号结构示意图。FIG. 1B is a schematic diagram illustrating a signal structure proposed according to the IEEE 802.11(a) standard.
图1C是整个数据分组(Data Packet)的结构示意图,包括十个短训练码元、两个长训练码元、一个信号栏位、以及数据栏位。FIG. 1C is a schematic structural diagram of the entire data packet (Data Packet), including ten short training symbols, two long training symbols, a signal field, and a data field.
图2A是说明自相关计算器(Auto-correlator)的电路方块示意图。FIG. 2A is a schematic circuit block diagram illustrating an auto-correlator.
图2B所示自相关计算器接收到如图1A的信号时的输出与时间上所画出对应的区域进一步说明。The output of the autocorrelation calculator shown in FIG. 2B when it receives the signal shown in FIG. 1A is further illustrated by the corresponding regions drawn in time.
图2C是说明自相关计算器的输出如何产生高原区域的示意图。Figure 2C is a schematic diagram illustrating how the output of an autocorrelation calculator produces plateau regions.
图3A是说明本发明依实施例中所提出具有高精度的同步信号检测方法的电路示意图。FIG. 3A is a schematic circuit diagram illustrating a synchronization signal detection method with high precision proposed in an embodiment of the present invention.
图3B为当同步信号经自相关器所得的高原信号已部分通过如图3A的电路时的示意图。FIG. 3B is a schematic diagram when the plateau signal obtained by the synchronization signal through the autocorrelator has partially passed through the circuit shown in FIG. 3A .
图3C为当同步信号经自相关器所得的高原信号完全进入如图3A的电路时的示意图。FIG. 3C is a schematic diagram when the plateau signal obtained by the synchronization signal through the autocorrelator completely enters the circuit as in FIG. 3A .
图3D为当同步信号经自相关器所得的高原信号尚未完全进入如图3A的电路时的示意图。FIG. 3D is a schematic diagram when the plateau signal obtained by the synchronization signal through the autocorrelator has not completely entered the circuit shown in FIG. 3A .
图4则用以说明本发明所示的时间检测结果,与传统电路所得到的结果示意图。FIG. 4 is a schematic diagram illustrating the time detection result shown in the present invention and the result obtained by the conventional circuit.
图5A与图5B分别为美国第7012881号专利与本发明所提出同步信号检测方法所得到的结果比较图。FIG. 5A and FIG. 5B are comparison diagrams of the results obtained by the synchronization signal detection method proposed in US Pat. No. 7,012,881 and the present invention, respectively.
【主要元件符号说明】[Description of main component symbols]
110:同步信号110: Synchronization signal
112、114:信号部分112, 114: signal part
116:循环前缀(Cyclic Prefix)部分116: Cyclic Prefix part
120:时域信号120: Time domain signal
132:短训练码元132: short training code unit
134:长训练码元134: Long training code unit
136:信号栏位136: Signal field
138:数据栏位138: Data field
200:自相关计算器200: Autocorrelation Calculator
202:延迟装置202: Delay device
204:计算共轭复数的电路204: Circuit for calculating conjugate complex numbers
208:乘法器208: Multiplier
210:移动平均计算装置210: Moving average calculation device
214:移动平均值计算装置214: Moving average calculation device
216:电路216: circuit
210:曲线210: curve
212:高原区域212: Plateau area
230:曲线230: curve
300:电路300: circuit
310:寄存器310: register
312、314、316、318:加法器312, 314, 316, 318: adders
410、420:时间曲线410, 420: time curve
具体实施方式Detailed ways
本发明的一实施例提出一种具有高精度的同步信号检测方法与装置,适用于广域用途的OFDM系统。此同步信号检测方法与装置,可排除外在环境间噪声的影响,并正确的检测同步的信息。An embodiment of the present invention provides a high-precision synchronous signal detection method and device, which are suitable for wide-area OFDM systems. The synchronous signal detection method and device can eliminate the influence of noise in the external environment and correctly detect synchronous information.
本发明的一实施例提出一种具有高精度的同步信号检测方法与装置,适用于广域用途的OFDM系统。此同步信号检测方法与装置,可排除外在环境间噪声的影响,并正确的检测同步的信息。在此检测同步信号方法中,包括接收含有同步信号的接收信号,并依序经由自相关(antocorrelation)运算后产生的多个输入信号。依序根据多个窗对上述输入信号由其多个窗相对应寄存器中取得对应的多个窗值,从这些窗值之一取得判断同步信号是否出现的峰值信号,并对其他窗值运算取得平衡值,并对此峰值信号减去此一平衡值以求得此同步信号检测装置的输出。识别此输出信号的峰值位置,并对此峰值位置补偿因第三窗长度造成的延迟,此位置即为同步信号的码元边沿。补偿的长度即为第三窗的长度,其中,第一、第二及第三窗分别由不同长度的各个数量的寄存器所组成。An embodiment of the present invention provides a high-precision synchronous signal detection method and device, which are suitable for wide-area OFDM systems. The synchronous signal detection method and device can eliminate the influence of noise in the external environment and correctly detect synchronous information. The method for detecting a synchronous signal includes receiving a received signal containing a synchronous signal, and sequentially performing an autocorrelation (antocorrelation) operation to generate a plurality of input signals. Sequentially according to a plurality of windows, the corresponding multiple window values are obtained from the corresponding registers of the above-mentioned input signals, and the peak signal for judging whether the synchronous signal appears is obtained from one of these window values, and the other window value operations are obtained and subtracting the balance value from the peak signal to obtain the output of the synchronous signal detection device. The peak position of the output signal is identified, and the delay caused by the third window length is compensated for the peak position, which is the symbol edge of the synchronization signal. The length of the compensation is the length of the third window, wherein the first, second and third windows are respectively composed of different numbers of registers with different lengths.
上述的检测同步信号的方法中,取得峰值信号的窗长度为同步信号经自相关器后所造成的高原长度。In the above method for detecting a synchronous signal, the length of the window for obtaining the peak signal is the plateau length caused by the synchronous signal passing through the autocorrelator.
上述的检测同步信号的方法中,对上述输入信号取得对应的多个窗值是对对应的输入信号的值加总后分别取得。In the above-mentioned method for detecting a synchronous signal, obtaining a plurality of window values corresponding to the above-mentioned input signal is obtained by summing up the values of the corresponding input signal.
上述的检测同步信号的方法适用于无线局域网(WLAN)、微波接入全球互通(WiMAX)或宽带码分多址接入(WCDMA)等应用上。The above-mentioned method for detecting a synchronization signal is applicable to applications such as Wireless Local Area Network (WLAN), Worldwide Interoperability for Microwave Access (WiMAX) or Wideband Code Division Multiple Access (WCDMA).
首先,本发明所提出的同步信号检测方法,是针对类似时间检测所使用的一组多个重复的同步信号。请参照图1A,是说明OFDM码元信号内的同步信号标准结构。此OFDM码元的同步信号110结构包括两个对称且重复的信号部分112与114(图示中的“D”),另外还有一个循环前缀(Cyclic Prefix)部分116(图示中的“CP”),其中信号部分“D”的长度为D’,而CP部分是位于OFDM码元(Symbol)110的前端。而图1B则是说明一个在时域下OFDM信号的组成,包括多个短训练码元(Short Training Symbol“S”),如图所示的S0、S1到SK-1总共K个同步信号。Firstly, the synchronization signal detection method proposed by the present invention is aimed at a group of multiple repeated synchronization signals used for similar time detection. Please refer to FIG. 1A , which illustrates a standard structure of a synchronization signal in an OFDM symbol signal. The
而图1A则是OFDM码元的同步信号结构,包括一个信号部分(也就是两个“D”部分)与一个循环前缀部分“CP”。此种同步信号的产生方式是利用频率域信号下采样(down-sample)使得时间域信号产生重复的现象。FIG. 1A is a synchronous signal structure of an OFDM symbol, which includes a signal part (that is, two "D" parts) and a cyclic prefix part "CP". This synchronous signal is generated by using down-sampling of the frequency domain signal to make the time domain signal repetitive.
图1B所提出的信号结构在例如IEEE 802.11(a)的标准中已经界定,如图所示的时域信号120,包括S0到SK-1共有K个短训练码元(Short TrainingSymbol),每个短训练码元的长度为S’。若是以K=10为例,整个数据分组(DataPacket)如图1C所示,包括十个短训练码元132(图示中的S0到S9)、两个长训练码元134(图示中的L0与L1)、一个信号栏位136、以及数据栏位138。The signal structure proposed in FIG. 1B has been defined in standards such as IEEE 802.11(a). The time-
请参考图2A,图2A是说明自相关计算器(Auto-correlator)的电路方块示意图。在自相关计算器200中,所提到的N可以是图1A中的信号部分112与114的长度D’,或是N可以是图1B中的短训练码元的长度S’。接收信号经过两个并行的运算。其中第一个运算为经由延迟N个时钟的延迟装置202、用以计算共轭复数的电路204、而后输出值与接收信号经乘法器208相乘后输出到移动平均计算装置210,计算后输出至计算绝对值的电路212后输出xk。另外第二个运算为先计算接收信号的绝对值后,移动平均值计算装置214计算后,输出到电路216计算其值,并输出yk。而此自相关计算器200的输出可以为rk=xk/yk。Please refer to FIG. 2A . FIG. 2A is a circuit block diagram illustrating an auto-correlator. In the
而此自相关计算器200检测如图1A的同步信号所得的输出时序与计算结果图如图2B的曲线220所示。此结果可以清楚了解此自相关计算器200检测如图1A的同步信号而产生了高原区域224。此自相关计算器200检测如图1A的同步信号而产生了高原现象的输出与时间上画出对应的区域图示,则以不规则四边形(Trapezoid)的示意图说明,包括如图中所示的区域A、B(标号222)与C(标号226)。区域A的长度就是高原区域224的长度,而区域B与C则分别是在区域A的两侧。The output timing and calculation results obtained by the
而至于如何产生此高原区域,请参考图2C所示。以图1A中所提到的OFDM码元的同步信号结构,包括一个信号部分(两个“D”)与一个循环前缀部分“CP”为例说明。此同步讯经自相关器后,因检测得重复信号而开始产生峰值的时间点为t2,此自相关器所产生的峰值将一直持续至此同步信号结束的时间点t4为止。通过使用一个滑动窗(Sliding Window),并加总对应此窗内的平均值(如图2A的210)。假设从t1开始计算移动平均值,而到了t2时,区域B开始形成,而后到了t3时,开始进入高原区域,逐渐形成区域A,之后到了t4,移动平均值开始下降而形成了区域C。自相关计算器200随着时序产生的结果可知,此区域A,也就是高原区域224的长度为CP信号长度+1。As for how to generate this plateau region, please refer to FIG. 2C. The synchronous signal structure of the OFDM symbol mentioned in FIG. 1A includes a signal part (two "D") and a cyclic prefix part "CP" as an example for illustration. After the synchronization passes through the autocorrelator, the time point at which the peak value is generated due to the detected repetitive signal is t2, and the peak value generated by the autocorrelator will continue until the time point t4 when the synchronization signal ends. By using a sliding window (Sliding Window), and summing up the average values corresponding to this window (as shown in 210 in Figure 2A). Assume that the moving average is calculated from t1, and at t2, area B begins to form, and then at t3, it begins to enter the plateau area, gradually forming area A, and then at t4, the moving average begins to decline and area C is formed. According to the results generated by the
本发明的一实施例所提出具有高精度的同步信号检测方法,可以消除上述因自相关计算器检测同步信号而产生的高原区域,以便得到正确的检测结果。为方便描述此发明的特征,在此参照图3B~3D所示自相关计算器200检测得同步信号所得的输出与时间上所画出对应的区域进一步说明,而此不规则四边形(Trapezoid)的示意图包括中间的区域A与两侧的B与C,其中区域A的长度就是高原区域224的长度,而区域B与C则分别是在区域A的两侧,这些区域的值可以通过个别不同的滑动窗(Sliding Window)所取得,而根据这些不同的滑动窗取得不同的加总值。本发明所提出具有高精度的同步信号检测方法,只要利用取得的不同滑动窗输出值的运算组合,并判断其所产生的峰值位置即可检测得知正确的峰值时间点。An embodiment of the present invention proposes a high-precision synchronous signal detection method, which can eliminate the above-mentioned plateau region generated by the autocorrelation calculator to detect the synchronous signal, so as to obtain a correct detection result. For the convenience of describing the features of this invention, it will be further described with reference to the output of the synchronous signal detected by the
如图2B的230所示,若仅简单的使用一滑动窗来计算A’的输出以移除高原信号,其峰值区域平缓且不够尖锐明显,极易因信道环境或噪声而使其更模糊。若能利用滑动窗所得的输出,并运用如A’-|C’-B’|的关系算即可有效删除上述高原区域,而此A’代表区域A的信号总和,而B’与C’分别代表区域B与C的信号总和。而将滑动窗的总输出整合为A’-|C’-B’|后,得到的结果则如图4所示的曲线410。从图示可以了解,将滑动窗的总输出设定为A’-|C’-B’|后,此高原区域的现象将从此结果图示中移除。As shown at 230 in FIG. 2B , if a sliding window is simply used to calculate the output of A' to remove the plateau signal, its peak area is gentle and not sharp enough, and it is easy to make it more blurred by the channel environment or noise. If the output obtained by the sliding window can be used, and the relationship such as A'-|C'-B'| Represent the sum of the signals in regions B and C, respectively. After integrating the total output of the sliding window into A'-|C'-B'|, the obtained result is a
本发明的一实施例所提出具有高精度的同步信号检测方法,运用到实际的电路图,则如图3A~3D所示,以便取得适当的滑动窗的宽度。在图3A中,将自相关计算器200的输出rk=xk/yk依序按照时间传送到电路300的寄存器中。此电路300需要L+2M个串联连接的寄存器310,其中L代表区域A的滑动窗长度,而M代表代表区域B与C的滑动窗与长度,在此假设区域B与C的长度值应该相同,而上列字母上方盖冒形状的标示主要说明滑动窗的名称。因此,第L+M+1到L+2M个寄存器所存储的值经过加法器312相加后可以取得滑动窗的值B’,而第M+1到L+M个寄存器所存储的值经过加法器314相加后可以取得滑动窗的值A’,而第1到M个寄存器所存储的值经过加法器316相加后可以取得滑动窗的值C’。The synchronous signal detection method with high precision proposed by an embodiment of the present invention is applied to the actual circuit diagram, as shown in FIGS. 3A-3D , so as to obtain an appropriate width of the sliding window. In FIG. 3A , the output r k =x k /y k of the
而B’与C’经由加法器318进行C’-B’(C’输入加法器318的正端,而B’输入加法器318的负端)运算后,经由电路320取绝对值后,输出到加法器322,以便计算A’-|C’-B’|的输出值,而此输出值便可用于判断此电路300是否因检测得同步信号而产生峰值(Peak)。因此,电路300的信号输入与输出的关系算可以方程式表示如下:After B' and C' are operated by C'-B' (C' is input to the positive terminal of the
其中
如前所述,本发明所提出具有高精度的同步信号检测方法,包括于接收端接收含有同步信号的接收信号,并经由自相关(antocorrelation)运算后产生的输入信号,并输入至同步信号检测装置。此检测装置包含三组滑动窗(Sliding windows),其中,第一、第二及第三滑动窗分别由不同长度的各个数量的寄存器所组成。上述的第一、第二及第三滑动窗对应输入信号取得对应的第一滑动窗值、第二滑动窗值与第三滑动窗值,每个滑动窗的输出值由其相对应寄存器内数值之和表示,其中第二滑动窗的寄存器长度大于第一滑动窗与第三滑动窗的寄存器长度。第二滑动窗的输出值为计算此窗内信号的总和;而第一及第三滑动窗分别计算窗内信号的总和,之后再计算其差值。再利用第二滑动窗的输出值减去此差值,即为此识别装置的输出信号。识别此输出信号的峰值位置,并对此峰值位置补偿因第三滑动窗长度造成的延迟,此位置即为同步信号的码元边沿。As mentioned above, the high-precision synchronous signal detection method proposed by the present invention includes receiving the received signal containing the synchronous signal at the receiving end, and the input signal generated after autocorrelation (antocorrelation) operation, and input to the synchronous signal detection device. The detection device includes three sets of sliding windows, wherein the first, second and third sliding windows are respectively composed of registers of different lengths. The above-mentioned first, second and third sliding windows correspond to the input signals to obtain the corresponding first sliding window value, second sliding window value and third sliding window value, and the output value of each sliding window is determined by the value in the corresponding register The sum indicates that the register length of the second sliding window is greater than the register lengths of the first sliding window and the third sliding window. The output value of the second sliding window is the sum of the signals in the window; and the first and third sliding windows respectively calculate the sum of the signals in the window, and then calculate the difference. The difference is then subtracted from the output value of the second sliding window, which is the output signal of the identification device. The peak position of the output signal is identified, and the delay caused by the third sliding window length is compensated for the peak position, and this position is the symbol edge of the synchronization signal.
而上述的第一滑动窗值、第二滑动窗值与第三滑动窗值,就是此图示中所述的加法器316、加法器314与加法器312将每个滑动窗相对应寄存器内的数值加总后输出的值。而第一及第三滑动窗计算其差值,就是加法器318的输出。而再利用第二滑动窗的输出值减去此差值,就是加法器322的输出。The first sliding window value, the second sliding window value, and the third sliding window value mentioned above are the
此电路300的原理主要利用一组长度为L的滑动窗以求得接收端接收到同步信号时,此同步信号经自相关检测器之后,所产生的高原信号(即图3B~3D的A部分面积)的总和。并且,于此滑动窗之前、后各自附加长度为M的滑动窗(及),以求得接收端接收到同步信号时,此同步信号经自相关检测器之后,产生的高原两侧斜坡部分(即图3B~3D的B及C部分)的信号总和。当同步信号经自相关运算所得的高原部份完全进入电路300中间滑动窗(图3C),此滑动窗的总和输出A’应得一峰值,同时两边的滑动窗(及)的输出(B’及C’)值应十分相近(|C’-B’|≌0)。The principle of this
若同步信号经自相关运算所得的高原部份离开或未完全进入电路300中间L个加法寄存器时(图3B或(图3D),此时滑动窗的输出值(A’)将降低,同时两边的滑动窗(及)的输出(B’及C’)值差距将变大(|C’-B’|>0)。因此,利用三组滑动窗取得A’-|C’-B’|的输出信号可同时检测得高原信号的峰值,并且依B’与C’之间的平衡关系(|C’-B’|)来加强接收端对于同步信号识别能力。如此,本实施例所提的方法可有效地估计出同步信号的码元位置。并且,以信号总和的概念进行估计可达到抗干扰的功能。If the plateau part obtained by the autocorrelation operation of the synchronous signal leaves or does not fully enter the L addition registers in the middle of the circuit 300 (Fig. 3B or (Fig. 3D), then the sliding window The output value (A') will decrease, while the sliding window on both sides ( and ) output (B' and C') value gap will become larger (|C'-B'|>0). Therefore, using three sets of sliding windows to obtain the output signal of A'-|C'-B'| ) to enhance the ability of the receiving end to identify synchronous signals. In this way, the method proposed in this embodiment can effectively estimate the symbol position of the synchronization signal. Moreover, the function of anti-jamming can be achieved by estimating with the concept of signal summation.
图4则用以说明本发明所示的时间检测模拟结果,与传统电路所得到的结果示意图。本发明所提出的同步信号检测方法,得到的时间曲线如标号410所示的实线部分,而传统的方法得到的结果则如虚线420所示的部分,可以清楚得知,本发明所提出的检测方法,在高原区域部分有相当大的改进与其效果,并且具有相当高的精度。FIG. 4 is a schematic diagram illustrating the simulation results of the time detection shown in the present invention and the results obtained by the conventional circuit. The synchronous signal detection method proposed by the present invention, the obtained time curve is shown as the solid line part shown in
图5A与图5B主要是比较与前述已知的美国第7012881号专利中,所提出的“Timing and Frequency offset Estimation Scheme for OFDM Systems byusing an Analytic Tone”。图5A为此第7012881号专利与本发明所提出同步信号检测方法所得到的结果,分别以标号510与520表示,可以分别检测峰值的位置。而另外请参照图5B,若是在典型城市信道(Typical Urban Channel,也就是图示的TU Channel)环境中传输时,因为存在噪声相当多,因此第7012881号专利得到的结果与本发明所得到的结果分别以标号530与540表示,即产生非差异。Figure 5A and Figure 5B are mainly for comparison with the "Timing and Frequency offset Estimation Scheme for OFDM Systems by using an Analytic Tone" proposed in the aforementioned known US Patent No. 7012881. FIG. 5A shows the results obtained by the synchronization signal detection method proposed in the No. 7012881 patent and the present invention, respectively denoted by
虽然本发明已以优选实施例披露如上,然其并非用以限定本发明,任何的本领域技术人员,在不脱离本发明的精神和范围内,当可作些许的更动与润饰,因此本发明的保护范围当视权利要求书所界定者为准。Although the present invention has been disclosed above with preferred embodiments, it is not intended to limit the present invention. Any person skilled in the art may make some changes and modifications without departing from the spirit and scope of the present invention. Therefore, the present invention The scope of protection of the invention should be defined by the claims.
Claims (11)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2007101998443A CN101459642B (en) | 2007-12-14 | 2007-12-14 | Method and device suitable for detecting synchronization signal in communication system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2007101998443A CN101459642B (en) | 2007-12-14 | 2007-12-14 | Method and device suitable for detecting synchronization signal in communication system |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101459642A CN101459642A (en) | 2009-06-17 |
CN101459642B true CN101459642B (en) | 2011-09-21 |
Family
ID=40770278
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2007101998443A Expired - Fee Related CN101459642B (en) | 2007-12-14 | 2007-12-14 | Method and device suitable for detecting synchronization signal in communication system |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101459642B (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106209298B (en) * | 2015-04-29 | 2019-08-06 | 扬智科技股份有限公司 | Peak value calculation method and device and frame header detection method using same |
CN109633508B (en) * | 2018-12-24 | 2020-10-16 | 电子科技大学 | Detection method of acquisition channel synchronization in digital integrated circuit test system |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1137726A (en) * | 1995-01-02 | 1996-12-11 | 阿尔卡塔尔有限公司 | Apparatus and method for allocating communication channels to mobile stations |
EP1032157A1 (en) * | 1999-02-24 | 2000-08-30 | Sony International (Europe) GmbH | Receiving apparatus and synchronising method for a digital telecommunication system |
CN1976224A (en) * | 2006-12-15 | 2007-06-06 | 天津大学 | Low pass continuous adjustable filter and filtering method |
CN1980210A (en) * | 2005-12-08 | 2007-06-13 | 北京邮电大学 | Method for realizing sign blind synchronization in zero-prefix orthogonal frequency-division multiplexing system |
-
2007
- 2007-12-14 CN CN2007101998443A patent/CN101459642B/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1137726A (en) * | 1995-01-02 | 1996-12-11 | 阿尔卡塔尔有限公司 | Apparatus and method for allocating communication channels to mobile stations |
EP1032157A1 (en) * | 1999-02-24 | 2000-08-30 | Sony International (Europe) GmbH | Receiving apparatus and synchronising method for a digital telecommunication system |
CN1980210A (en) * | 2005-12-08 | 2007-06-13 | 北京邮电大学 | Method for realizing sign blind synchronization in zero-prefix orthogonal frequency-division multiplexing system |
CN1976224A (en) * | 2006-12-15 | 2007-06-06 | 天津大学 | Low pass continuous adjustable filter and filtering method |
Also Published As
Publication number | Publication date |
---|---|
CN101459642A (en) | 2009-06-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104125190B (en) | Ofdm system timing synchronization implementation method suitable for low signal-to-noise ratio channel circumstance | |
JP3652309B2 (en) | Frequency offset compensator using pilot symbols in orthogonal frequency division multiplexing system | |
CN103929394B (en) | High-precision frequency offset estimation method based on iteration algorithm | |
CN102065048B (en) | Time domain joint estimation method for OFDM frame synchronization, frequency synchronization and symbol fine synchronization | |
CN1917491B (en) | OFDM Synchronization Method Using Training Cycle Prefix | |
CN106998237A (en) | A kind of time-frequency synchronization method and device | |
US8000415B2 (en) | Method and device for detecting a synchronization signal in a communication system | |
CN107547143A (en) | A kind of OFDM MFSK underwater sound communications broadband Doppler shift method of known sub-carrier frequencies | |
CN103023832B (en) | The method and apparatus that receiver frequency deviation is estimated and compensated | |
CN104052555B (en) | A kind of method of radio channel multi-path parameter Estimation under ofdm system | |
KR100519919B1 (en) | Method for making transmission frame and apparatus and method for user equipment synchronization in ofdma system thereof | |
CN101299735B (en) | Method and system for estimating carrier frequency migration | |
CN101459642B (en) | Method and device suitable for detecting synchronization signal in communication system | |
WO2004049611A1 (en) | Delay profile estimation device and correlator | |
CN106027116B (en) | A kind of mobile underwater sound communication Doppler coefficient method of estimation based on chirp signals | |
CN104717168B (en) | Orthogonal frequency division multiplexing (OFDM) ultra wide band system anti-multipath regular synchronization scheme | |
CN103441969A (en) | Pilot frequency space variable carrier frequency offset estimation method | |
CN101505294A (en) | Synchronization method for OFDM system and synchronization apparatus thereof | |
CN114039827B (en) | Synchronization method and device for continuous phase modulation based on multi-level PN sequence | |
CN107276953B (en) | Timing synchronization method, device and system | |
CN109561042A (en) | A kind of timing frequency synchronous method of ofdm system receiver | |
CN107276654B (en) | Signal processing method and system | |
CN104935545B (en) | Generate the method for OFDM training sequences and OFDM synchronous method | |
CN102035779B (en) | Demodulation module, signal analysis device and signal analysis method | |
CN107294889B (en) | Carrier synchronization method and device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20110921 Termination date: 20211214 |
|
CF01 | Termination of patent right due to non-payment of annual fee |