CN101445956A - Method for epitaxial growth of nitride films - Google Patents
Method for epitaxial growth of nitride films Download PDFInfo
- Publication number
- CN101445956A CN101445956A CNA2007101783259A CN200710178325A CN101445956A CN 101445956 A CN101445956 A CN 101445956A CN A2007101783259 A CNA2007101783259 A CN A2007101783259A CN 200710178325 A CN200710178325 A CN 200710178325A CN 101445956 A CN101445956 A CN 101445956A
- Authority
- CN
- China
- Prior art keywords
- nitride
- growth
- epitaxial growth
- substrate
- thin film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Abstract
Description
技术领域 technical field
本发明涉及半导体技术领域,特别涉及一种氮化物薄膜外延生长的方法。该方法可用于低位错密度、高晶体质量氮化物薄膜及器件结构材料的外延生长。The invention relates to the technical field of semiconductors, in particular to a method for epitaxial growth of a nitride thin film. The method can be used for the epitaxial growth of low dislocation density, high crystal quality nitride film and device structure material.
背景技术 Background technique
氮化物(包括氮化镓、氮化铝镓、氮化铝、氮化铟镓、氮化铟、氮化铟铝镓等)是第三代直接能隙宽禁带半导体,其禁带宽度可在0.7eV-3.39eV-6.28eV间调节,覆盖了整个中红外、可见光和紫外波段。氮化物可以用来制作从紫外光到各色可见光、红外光的发光器件、光探测器件和激光器件。同时,氮化镓具有很高的热稳定性和化学稳定性,电子饱和速率和载流子迁移率都很高,击穿电场强度大,电子性能优异,可应用于高温、高频、大功率微波器件领域。Nitride (including gallium nitride, aluminum gallium nitride, aluminum nitride, indium gallium nitride, indium nitride, indium aluminum gallium nitride, etc.) is the third generation of direct energy gap wide bandgap semiconductors, and its bandgap width can be Adjustable between 0.7eV-3.39eV-6.28eV, covering the entire mid-infrared, visible and ultraviolet bands. Nitride can be used to make light-emitting devices, photodetection devices and laser devices from ultraviolet light to various colors of visible light and infrared light. At the same time, gallium nitride has high thermal and chemical stability, high electron saturation rate and carrier mobility, high breakdown electric field strength, excellent electronic performance, and can be used in high temperature, high frequency, high power field of microwave devices.
目前氮化物薄膜材料通常异质外延生长在蓝宝石、硅、碳化硅、砷化镓、氧化锌或同质外延生长在自支撑氮化镓等衬底上。因为氮化物和其他衬底间通常存在很大的晶格常数失配和热膨胀系数差异,所以利用金属有机物化学气相淀积(MOCVD)或分子束外延(MBE)等外延技术生长的氮化物外延层中存在很大的应力和很多晶体缺陷如位错等,材料的晶体质量因此受到很大影响,进而劣化了器件性能。一直以来人们探索用各种方法来制备高晶体质量的氮化物薄膜材料。1992年日本的中村修二采用双气流MOCVD的方法制备出高质量的氮化镓薄膜,解决了氮化镓薄膜质量不高的技术难题[S.Nakamura et al.,Jpn.J.Appl.Phys.31(1992)139],并首先制备成有价值的pn结蓝光发光二极管、量子阱结构发光二极管、蓝光激光器等。其关键工艺采用了低温缓冲层技术,即在低温550℃左右先生长一层20-30nm厚的GaN或AlN成核层,然后在高温1050℃左右进行氮化物及所需的器件结构材料的外延生长(日本专利:JP2737053)。随后人们在此基础上又发展了横向外延生长、悬挂和侧向外延生长以及图形化衬底等方法来进一步降低材料的位错密度。但对于含Al和In的氮化物薄膜材料,由于生长衬底上吸附原子Al和In的表面迁移速率的差异,因此含Al和In的氮化物薄膜中组分元素的结合受到影响,材料的晶体质量劣化。例如,在AlGaN和AlN外延生长过程中,Al原子在表面的迁移率较低而趋向三维岛状生长,易形成“马赛克”结构,大大影响了材料的晶体质量。因此,为了缓解衬底和氮化物薄膜异质外延生长中由于晶格失配引起的应力,使之得到有效的弛豫,发展新的外延生长技术来提高氮化物薄膜材料的晶体质量是十分必要的。At present, nitride thin film materials are usually heteroepitaxially grown on sapphire, silicon, silicon carbide, gallium arsenide, zinc oxide or homoepitaxially grown on free-standing gallium nitride and other substrates. Because there is usually a large lattice constant mismatch and thermal expansion coefficient difference between nitride and other substrates, the nitride epitaxial layer grown by metal organic chemical vapor deposition (MOCVD) or molecular beam epitaxy (MBE) There is a lot of stress and many crystal defects such as dislocations in the material, so the crystal quality of the material is greatly affected, which in turn degrades the performance of the device. People have been exploring various methods to prepare nitride thin film materials with high crystal quality. In 1992, Shuji Nakamura of Japan prepared high-quality gallium nitride thin films by double-flow MOCVD method, which solved the technical problem of low-quality gallium nitride thin films [S.Nakamura et al., Jpn.J.Appl.Phys. 31 (1992) 139], and first prepared into valuable pn junction blue light-emitting diodes, quantum well structure light-emitting diodes, blue lasers, etc. The key process adopts low-temperature buffer layer technology, that is, a 20-30nm thick GaN or AlN nucleation layer is first grown at a low temperature of about 550°C, and then the epitaxy of nitride and required device structure materials is carried out at a high temperature of about 1050°C Growth (Japanese patent: JP2737053). Later, on this basis, people developed methods such as lateral epitaxial growth, hanging and lateral epitaxial growth, and patterned substrates to further reduce the dislocation density of materials. However, for nitride film materials containing Al and In, due to the difference in the surface migration rate of adatoms Al and In on the growth substrate, the combination of component elements in the nitride film containing Al and In is affected, and the crystal of the material Deterioration of quality. For example, during the epitaxial growth process of AlGaN and AlN, the mobility of Al atoms on the surface is low and tends to grow in a three-dimensional island shape, which is easy to form a "mosaic" structure, which greatly affects the crystal quality of the material. Therefore, in order to alleviate the stress caused by the lattice mismatch in the heteroepitaxial growth of the substrate and the nitride film, so that it can be effectively relaxed, it is necessary to develop a new epitaxial growth technology to improve the crystal quality of the nitride film material. of.
发明内容 Contents of the invention
本发明的目的是在于提供一种氮化物薄膜外延生长的方法,包括如下步骤:The object of the present invention is to provide a method for epitaxial growth of a nitride thin film, comprising the steps of:
1)首先直接把衬底1的温度升高到氮化物薄膜3的生长温度;1) first directly raising the temperature of the
2)在生长初期,通过外延生长设备的计算机程序控制氨气和III族源材料的输入开关,使氨气和III族源材料脉冲地输入生长反应室,在设定的持续时间、间隔和脉冲周期下,在衬底1的表面上形成一层成核层2;2) In the early stage of growth, the computer program of the epitaxial growth equipment controls the input switch of ammonia gas and group III source materials, so that ammonia gas and group III source materials are pulsed into the growth reaction chamber, and the duration, interval and pulse Periodically, a layer of
3)在成核层2上外延生长氮化物薄膜3。3) Epitaxial growth of a nitride
进一步,所述衬底1为蓝宝石、或为硅、或为碳化硅、或为砷化镓、或为氧化锌,或为自支撑氮化镓。Further, the
进一步,所述衬底1为图形化的衬底或为平面的衬底。Further, the
进一步,所述氮化物薄膜3的生长温度在600-1300℃之间。Further, the growth temperature of the nitride
进一步,所述氨气和III族源材料的通入持续时间和间隔时间都为1-100秒、脉冲周期为1-50周期。Further, the feeding duration and interval of the ammonia gas and the Group III source material are both 1-100 seconds, and the pulse period is 1-50 cycles.
进一步,所述氮化物薄膜3为氮化镓、氮化铝、氮化铟、氮化铝镓、氮化铟镓、氮化铟铝或氮化铟铝镓一种或几种组合成的层结构材料。Further, the nitride
进一步,用于所述氮化物薄膜3外延生长的设备为金属有机物化学气相淀积或分子束外延的一种或两种组合。Further, the equipment used for the epitaxial growth of the nitride
本发明可以有效地降低氮化物薄膜中的位错密度,避免裂纹的产生,提高外延材料的晶体质量和均匀性,进而能改善器件的性能。同时,该方法能简化制备工艺、减少生长时间,因而可降低生长成本,提高生长效率。The invention can effectively reduce the dislocation density in the nitride thin film, avoid the generation of cracks, improve the crystal quality and uniformity of the epitaxial material, and further improve the performance of the device. At the same time, the method can simplify the preparation process and reduce the growth time, thereby reducing the growth cost and improving the growth efficiency.
附图说明 Description of drawings
为了进一步说明本发明的内容,以下结合实施的实例对本发明作一详细的描述,其中:In order to further illustrate content of the present invention, the present invention is described in detail below in conjunction with the example of implementation, wherein:
图1是氮化物薄膜材料的结构示意图;Fig. 1 is the structural representation of nitride film material;
图2是金属有机物化学气相淀积外延生长氮化镓薄膜的生长示意图;Fig. 2 is a schematic diagram of the growth of gallium nitride thin films grown by metal-organic chemical vapor deposition epitaxial growth;
图3是金属有机物化学气相淀积外延生长氮化铝薄膜的生长示意图;Fig. 3 is the growth schematic diagram of metal-organic chemical vapor deposition epitaxial growth aluminum nitride film;
图4是金属有机物化学气相淀积外延生长氮化铟铝镓薄膜的生长示意图。Fig. 4 is a schematic diagram of the growth of InAlGaN thin film epitaxially grown by metalorganic chemical vapor deposition.
具体实施例specific embodiment
为使本发明的目的、技术方案和优点更加清楚明白,以下结合三个具体实施例,并参照附图,对本发明进一步详细说明。In order to make the object, technical solution and advantages of the present invention clearer, the present invention will be further described in detail below in conjunction with three specific embodiments and with reference to the accompanying drawings.
实施例1Example 1
本实施例提供了一种利用MOCVD设备在蓝宝石衬底上生长高晶体质量氮化镓薄膜的方法。所用的外延设备为美国VECOO公司生产的商用机,型号为D150。所用V族源为氨气(NH3),III族源材料为三甲基镓(TMG),载气为N2和H2,NH3和TMG的流量分别为10标准升/分钟(slm)和100微摩尔/分钟(μmol/m)。反应室压强为150帕斯卡(Pa)。This embodiment provides a method for growing a gallium nitride thin film with high crystal quality on a sapphire substrate by using MOCVD equipment. The epitaxial equipment used is a commercial machine produced by VECOO Company of the United States, the model is D150. The V group source used is ammonia (NH3), the group III source material is trimethylgallium (TMG), the carrier gas is N2 and H2, and the flow rates of NH3 and TMG are 10 standard liters per minute (slm) and 100 micromoles, respectively. /min (μmol/m). The pressure of the reaction chamber is 150 Pascals (Pa).
该氮化物薄膜外延生长的方法包括如下步骤:The method for the epitaxial growth of the nitride thin film comprises the following steps:
首先把2英寸的蓝宝石衬底上装入MOCVD生长设备。First, put the 2-inch sapphire substrate into the MOCVD growth equipment.
接着将蓝宝石衬底的温度升高到1100℃,在流动的H2气氛下,将衬底热处理10分钟,使蓝宝石表面形成原子台阶结构;Then raise the temperature of the sapphire substrate to 1100°C, and heat-treat the substrate for 10 minutes in a flowing H2 atmosphere to form an atomic step structure on the sapphire surface;
再将衬底的温度降到1050℃,并在以后的GaN薄膜的生长过程中维持不变,直至生长过程结束,图1是氮化物薄膜材料的结构示意图。Then lower the temperature of the substrate to 1050°C, and keep it constant during the growth process of the GaN film until the end of the growth process. Figure 1 is a schematic diagram of the structure of the nitride film material.
在GaN的生长初期,氨气(NH3)和三甲基镓(TMG)的气流交替脉冲通入生长反应室,这通过MOCVD设备系统计算机控制的操作开关来实现。图2示意了Ga源和N源输入/关闭的脉冲时间序列。Ga源和N源的交替通入时间和间隔为1s,而且在Ga源和N源的时间脉冲之间都有1s的时间,作为清除间隔。这个间隔的选取用来避免前驱体(precursor)之间的交叉污染。脉冲周期为10。In the early stage of GaN growth, the gas flow of ammonia (NH3) and trimethylgallium (TMG) is alternately pulsed into the growth reaction chamber, which is realized by the operation switch controlled by the computer of the MOCVD equipment system. Figure 2 illustrates the pulse time sequence of Ga source and N source input/off. The alternate feeding time and interval of Ga source and N source are 1s, and there is a 1s time between the time pulses of Ga source and N source as the clearing interval. This interval is chosen to avoid cross-contamination between precursors. The pulse period is 10.
该反应气流脉冲调制方法生长GaN薄膜时没有通常的低温缓冲层的生长步骤,简化了工艺,降低了生长成本。When the reaction gas flow pulse modulation method grows the GaN thin film, there is no common low-temperature buffer layer growth step, which simplifies the process and reduces the growth cost.
实施例2Example 2
本实施例提供了一种利用MOCVD设备在蓝宝石衬底上生长高质量氮化铝外延层的方法。所用的外延设备为美国VECOO公司生产的商用机,型号为D150。所用V族源为氨气(NH3),III族源材料为三甲基铝(TMA),载气为N2和H2,NH3和TMA的流量分别为0.5标准升/分钟(slm)和33微摩尔/分钟(μmol/m)。反应室压强为75帕斯卡(Pa)。This embodiment provides a method for growing a high-quality aluminum nitride epitaxial layer on a sapphire substrate by using MOCVD equipment. The epitaxial equipment used is a commercial machine produced by VECOO Company of the United States, the model is D150. The source of group V used is ammonia (NH3), the source material of group III is trimethylaluminum (TMA), the carrier gas is N2 and H2, and the flow rates of NH3 and TMA are 0.5 standard liters per minute (slm) and 33 micromoles, respectively /min (μmol/m). The pressure of the reaction chamber is 75 Pascals (Pa).
该氮化物薄膜外延生长的方法包括如下步骤:The method for the epitaxial growth of the nitride thin film comprises the following steps:
首先把2英寸蓝宝石衬底上装入MOCVD生长设备。First put the 2-inch sapphire substrate into the MOCVD growth equipment.
接着将衬底的温度升高到1150℃,在流动的H2气氛下,将衬底热处理10分钟,使之表面形成原子台阶结构;Then raise the temperature of the substrate to 1150°C, and heat-treat the substrate for 10 minutes in a flowing H2 atmosphere to form an atomic step structure on the surface;
在以后的AlN薄膜的生长过程中将衬底的温度1150℃维持不变,直至生长过程结束,图1是氮化物薄膜材料的结构示意图;In the subsequent growth process of the AlN film, the temperature of the substrate is maintained at 1150°C until the end of the growth process. Figure 1 is a schematic diagram of the structure of the nitride film material;
在AlN薄膜的生长初期,氨气的气流脉冲通入生长反应室,这通过MOCVD系统操作计算机控制的开关来实现。同时,三甲基铝(TMA)的流量固定不变,一直通入反应室。图3意了AlN薄膜生长过程中N源的脉冲时间序列,其通入时间和间隔为15s。脉冲周期为8。In the early stage of AlN thin film growth, the flow of ammonia gas is pulsed into the growth reaction chamber, which is realized by the computer-controlled switch operated by the MOCVD system. Simultaneously, the flow rate of trimethylaluminum (TMA) is constant, and is always passed into the reaction chamber. Figure 3 shows the pulse time sequence of the N source during the AlN thin film growth process, and its access time and interval are 15s. The pulse period is 8.
由于Al原子在表面的迁移率较低而趋向三维岛状生长,在生长初期对氨气的气流脉冲调制可以增强Al原子在表面的迁移率,减少前驱体(precursor)间的副反应,增加成核颗粒的密度和二维生长趋势,有效弛豫外延层和衬底间的应力,以此提高AlN薄膜的晶体质量和表面光滑平整度。Since the mobility of Al atoms on the surface is low and tends to grow in three-dimensional island shape, the gas flow pulse modulation of ammonia gas in the early stage of growth can enhance the mobility of Al atoms on the surface, reduce the side reactions between precursors, and increase the growth rate. The density of the core particles and the two-dimensional growth tendency can effectively relax the stress between the epitaxial layer and the substrate, thereby improving the crystal quality and surface smoothness of the AlN film.
实施例3Example 3
本实施例提供了一种利用MOCVD设备在蓝宝石衬底上生长高质量氮化铝镓铟(AlGaInN)外延层的方法。所用的外延设备为美国VECOO公司生产的商用机,型号为D150。所用V族源为氨气(NH3),III族源材料为三甲基镓(TMG)、三甲基铝(TMA)和三甲基铟(TMI)。载气为N2和H2,反应室压强为150帕斯卡(Pa)。This embodiment provides a method for growing a high-quality aluminum gallium indium nitride (AlGaInN) epitaxial layer on a sapphire substrate by using MOCVD equipment. The epitaxial equipment used is a commercial machine produced by VECOO Company of the United States, the model is D150. The V group source used is ammonia (NH3), and the group III source materials are trimethylgallium (TMG), trimethylaluminum (TMA) and trimethylindium (TMI). The carrier gas is N2 and H2, and the pressure of the reaction chamber is 150 Pascal (Pa).
该氮化物薄膜外延生长的方法包括如下步骤:The method for the epitaxial growth of the nitride thin film comprises the following steps:
首先将2英寸蓝宝石衬底上装入MOCVD生长设备。First, load the MOCVD growth equipment on the 2-inch sapphire substrate.
接着将衬底的温度升高到1100℃,在流动的H2气氛下,将衬底热处理10分钟,使之表面形成原子台阶结构;Then the temperature of the substrate was raised to 1100°C, and the substrate was heat-treated for 10 minutes in a flowing H2 atmosphere to form an atomic step structure on the surface;
再将衬底的温度降到800℃,并在以后的AlGaInN薄膜的生长过程中维持不变,直至生长过程结束,图1是氮化物薄膜材料的结构示意图;Then lower the temperature of the substrate to 800°C, and keep it unchanged during the subsequent growth process of the AlGaInN film until the end of the growth process. Figure 1 is a schematic diagram of the structure of the nitride film material;
在AlGaInN薄膜的生长初期,氨气(NH3)和三甲基镓(TMG)、三甲基铝(TMA)和三甲基铟(TMI)的气流交替脉冲通入生长反应室,这通过MOCVD系统计算机控制的开关来操作实现。图三示意了Al源、Ga源、In源和N源的脉冲时间序列。每5s作为一个脉冲持续时间,TMA,TMI,TMG和NH3随着脉冲交替地分别通入MOCVD反应室,在每通入一个脉冲周期的金属有机源后,都紧随一个脉冲周期的NH3。图中所示为3个脉冲周期的Al和N,随后1个脉冲周期的In和N,再随后1个脉冲周期的Ga和N。脉冲总数为5。In the initial stage of AlGaInN thin film growth, ammonia (NH3) and trimethylgallium (TMG), trimethylaluminum (TMA) and trimethylindium (TMI) gas flows are alternately pulsed into the growth reaction chamber, which is passed through the MOCVD system. Computer-controlled switches to operate the implementation. Figure 3 shows the pulse time series of Al source, Ga source, In source and N source. Every 5s as a pulse duration, TMA, TMI, TMG and NH3 are fed into the MOCVD reaction chamber alternately with the pulse, and after each pulse cycle of the metal-organic source is fed, it is followed by a pulse cycle of NH3. The figure shows Al and N for 3 pulse periods, followed by In and N for 1 pulse period, and then Ga and N for 1 pulse period. The total number of pulses is 5.
该技术在生长AlInGaN四元合金时,在提高Al组分的同时不妨碍In的结合,从而能更有效地调制AlGaInN合金的各个组分。When the technology grows the AlInGaN quaternary alloy, it increases the Al composition without hindering the combination of In, so that the various components of the AlGaInN alloy can be modulated more effectively.
上述实施例利用通用的MOCVD生长设备,在氮化物的生长初期利用计算机程序来控制V族源氨气(NH3)和相应III族源材料的输入/关闭,实现反应气流的脉冲调制。该技术可以缓解衬底和氮化物间异质外延生长过程中由于晶格失配引起的应力,通过对表面原子迁移率的提高和气相副反应的遏制,降低氮化物外延层的缺陷密度,更有效地调制氮化物合金的组成,避免裂纹的产生,提高晶体质量,进而改善器件的性能。In the above embodiments, general MOCVD growth equipment is used, and a computer program is used to control the input/close of V-group source ammonia (NH 3 ) and corresponding III-group source materials in the early stage of nitride growth, so as to realize pulse modulation of reaction gas flow. This technology can alleviate the stress caused by lattice mismatch during the heteroepitaxial growth process between the substrate and the nitride, and reduce the defect density of the nitride epitaxial layer by improving the mobility of the surface atoms and suppressing the side reactions in the gas phase. The composition of the nitride alloy can be effectively modulated, the generation of cracks can be avoided, the crystal quality can be improved, and then the performance of the device can be improved.
以上所述,仅为本发明中的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉该技术的人在本发明所揭露的技术范围内,可轻易想到的变换或替换,都应涵盖在本发明的包含范围之内。因此,本发明的保护范围应该以权利要求书的保护范围为准。The above is only a specific implementation mode in the present invention, but the scope of protection of the present invention is not limited thereto. Anyone familiar with the technology can easily think of changes or replacements within the technical scope disclosed in the present invention. All should be covered within the scope of the present invention. Therefore, the protection scope of the present invention should be determined by the protection scope of the claims.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNA2007101783259A CN101445956A (en) | 2007-11-28 | 2007-11-28 | Method for epitaxial growth of nitride films |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNA2007101783259A CN101445956A (en) | 2007-11-28 | 2007-11-28 | Method for epitaxial growth of nitride films |
Publications (1)
Publication Number | Publication Date |
---|---|
CN101445956A true CN101445956A (en) | 2009-06-03 |
Family
ID=40741827
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNA2007101783259A Pending CN101445956A (en) | 2007-11-28 | 2007-11-28 | Method for epitaxial growth of nitride films |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101445956A (en) |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101937954A (en) * | 2010-07-05 | 2011-01-05 | 扬州中科半导体照明有限公司 | Epitaxial growth method for improving inner quantum efficiency of GaN-based LED |
CN103695999A (en) * | 2013-12-02 | 2014-04-02 | 中国电子科技集团公司第五十五研究所 | Nitride single crystal membrane prepared by alternate source supply and method |
CN103710747A (en) * | 2013-12-02 | 2014-04-09 | 中国电子科技集团公司第五十五研究所 | N source intermittent transportation prepared nitride single-crystal film and method |
CN104471676A (en) * | 2012-06-18 | 2015-03-25 | 美国海军部政府代表 | Plasma-assisted atomic layer epitaxy of cubic and hexagonal InN and its alloys with AlN at low temperature |
CN104593861A (en) * | 2015-01-07 | 2015-05-06 | 中国电子科技集团公司第五十五研究所 | Growth method for improving quality of aluminum nitride film crystal by temperature modulation |
CN104846438A (en) * | 2014-02-14 | 2015-08-19 | 财团法人交大思源基金会 | Growth method of aluminum indium nitride film |
CN105220131A (en) * | 2015-10-10 | 2016-01-06 | 无锡盈芯半导体科技有限公司 | Air pulse legal system is for the method for thin film transistor IGZO semiconductor film layer |
TWI548089B (en) * | 2012-03-27 | 2016-09-01 | 富士通股份有限公司 | Compound semiconductor device and method of manufacturing same |
CN106952988A (en) * | 2017-03-22 | 2017-07-14 | 合肥工业大学 | A kind of aluminum nitride composite buffer layer and its preparation method and gallium nitride based semiconductor device |
CN109326698A (en) * | 2018-09-27 | 2019-02-12 | 华灿光电(浙江)有限公司 | A kind of manufacturing method of light-emitting diode epitaxial wafer |
CN109543228A (en) * | 2018-10-23 | 2019-03-29 | 中晟光电设备(上海)股份有限公司 | For instructing the method and its system of epitaxy technique |
CN110224020A (en) * | 2019-05-28 | 2019-09-10 | 苏州汉骅半导体有限公司 | The method for manufacturing high quality and high uniformity group III-nitride epitaxial structure |
CN110635001A (en) * | 2019-09-27 | 2019-12-31 | 佛山市国星半导体技术有限公司 | Preparation method and epitaxial structure of GaN-based epitaxial structure on silicon substrate |
US10562011B2 (en) | 2013-09-12 | 2020-02-18 | Johnson Matthey Public Limited Company | Catalyst and process for nitric oxide reduction in a waste gas |
CN112864286A (en) * | 2020-12-25 | 2021-05-28 | 华灿光电(苏州)有限公司 | Preparation method of light emitting diode epitaxial wafer |
CN115029778A (en) * | 2022-06-02 | 2022-09-09 | 西安电子科技大学 | Growth method of gallium oxide epitaxial film |
-
2007
- 2007-11-28 CN CNA2007101783259A patent/CN101445956A/en active Pending
Cited By (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101937954A (en) * | 2010-07-05 | 2011-01-05 | 扬州中科半导体照明有限公司 | Epitaxial growth method for improving inner quantum efficiency of GaN-based LED |
CN101937954B (en) * | 2010-07-05 | 2013-03-20 | 扬州中科半导体照明有限公司 | Epitaxial growth method for improving inner quantum efficiency of GaN-based LED |
TWI548089B (en) * | 2012-03-27 | 2016-09-01 | 富士通股份有限公司 | Compound semiconductor device and method of manufacturing same |
US9502525B2 (en) | 2012-03-27 | 2016-11-22 | Fujitsu Limited | Compound semiconductor device and method of manufacturing the same |
CN104471676A (en) * | 2012-06-18 | 2015-03-25 | 美国海军部政府代表 | Plasma-assisted atomic layer epitaxy of cubic and hexagonal InN and its alloys with AlN at low temperature |
US10562011B2 (en) | 2013-09-12 | 2020-02-18 | Johnson Matthey Public Limited Company | Catalyst and process for nitric oxide reduction in a waste gas |
CN103695999A (en) * | 2013-12-02 | 2014-04-02 | 中国电子科技集团公司第五十五研究所 | Nitride single crystal membrane prepared by alternate source supply and method |
CN103710747A (en) * | 2013-12-02 | 2014-04-09 | 中国电子科技集团公司第五十五研究所 | N source intermittent transportation prepared nitride single-crystal film and method |
CN103695999B (en) * | 2013-12-02 | 2016-04-27 | 中国电子科技集团公司第五十五研究所 | Nitride single crystal film prepared by a kind of alternately supply source and method |
CN103710747B (en) * | 2013-12-02 | 2016-06-08 | 中国电子科技集团公司第五十五研究所 | Nitride single crystal film and method are prepared in the conveying of a kind of interval, N source |
CN104846438A (en) * | 2014-02-14 | 2015-08-19 | 财团法人交大思源基金会 | Growth method of aluminum indium nitride film |
CN104846438B (en) * | 2014-02-14 | 2018-02-02 | 财团法人交大思源基金会 | Growth method of aluminum indium nitride film |
CN104593861B (en) * | 2015-01-07 | 2017-03-29 | 中国电子科技集团公司第五十五研究所 | A kind of utilization temperature modulation improves the growing method of aluminium nitride film crystal mass |
CN104593861A (en) * | 2015-01-07 | 2015-05-06 | 中国电子科技集团公司第五十五研究所 | Growth method for improving quality of aluminum nitride film crystal by temperature modulation |
CN105220131A (en) * | 2015-10-10 | 2016-01-06 | 无锡盈芯半导体科技有限公司 | Air pulse legal system is for the method for thin film transistor IGZO semiconductor film layer |
CN105220131B (en) * | 2015-10-10 | 2018-04-10 | 无锡盈芯半导体科技有限公司 | The method that air pulse method prepares thin film transistor (TFT) IGZO semiconductor film layers |
CN106952988A (en) * | 2017-03-22 | 2017-07-14 | 合肥工业大学 | A kind of aluminum nitride composite buffer layer and its preparation method and gallium nitride based semiconductor device |
CN106952988B (en) * | 2017-03-22 | 2023-05-05 | 合肥工业大学 | Aluminum nitride composite buffer layer, preparation method and gallium nitride-based semiconductor device |
CN109326698A (en) * | 2018-09-27 | 2019-02-12 | 华灿光电(浙江)有限公司 | A kind of manufacturing method of light-emitting diode epitaxial wafer |
CN109543228A (en) * | 2018-10-23 | 2019-03-29 | 中晟光电设备(上海)股份有限公司 | For instructing the method and its system of epitaxy technique |
CN109543228B (en) * | 2018-10-23 | 2023-05-23 | 中晟光电设备(上海)股份有限公司 | Method and system for guiding epitaxial process |
CN110224020A (en) * | 2019-05-28 | 2019-09-10 | 苏州汉骅半导体有限公司 | The method for manufacturing high quality and high uniformity group III-nitride epitaxial structure |
CN110635001A (en) * | 2019-09-27 | 2019-12-31 | 佛山市国星半导体技术有限公司 | Preparation method and epitaxial structure of GaN-based epitaxial structure on silicon substrate |
CN112864286A (en) * | 2020-12-25 | 2021-05-28 | 华灿光电(苏州)有限公司 | Preparation method of light emitting diode epitaxial wafer |
CN115029778A (en) * | 2022-06-02 | 2022-09-09 | 西安电子科技大学 | Growth method of gallium oxide epitaxial film |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101445956A (en) | Method for epitaxial growth of nitride films | |
CN101111945B (en) | Nitride semiconductor device and method of growing nitride semiconductor crystal layer | |
US8227322B2 (en) | Methods of growing nitride-based film using varying pulses | |
JP2751963B2 (en) | Method for growing indium gallium nitride semiconductor | |
JP3968566B2 (en) | Nitride semiconductor crystal manufacturing method, nitride semiconductor wafer, and nitride semiconductor device | |
KR100901822B1 (en) | Gallium nitride growth substrate and gallium nitride substrate manufacturing method | |
CN110541157A (en) | A method for epitaxially growing GaN thin films on Si substrates | |
JP4554803B2 (en) | Low dislocation buffer, method for producing the same, and device having low dislocation buffer | |
WO2006086471A2 (en) | A method to grow iii-nitride materials using no buffer layer | |
JPH09134878A (en) | Manufacture of gallium nitride compound semiconductor | |
JP3795771B2 (en) | Group III nitride semiconductor substrate for ELO | |
JP3481427B2 (en) | Crystal growth method for nitride semiconductor | |
JP2011051849A (en) | Nitride semiconductor self-supporting substrate and method for manufacturing the same | |
JP2009067658A (en) | Nitride semiconductor base substrate, nitride semiconductor multilayer substrate, nitride semiconductor free-standing substrate, and method for manufacturing nitride semiconductor base substrate | |
KR100843474B1 (en) | Group III nitride single crystal growth method and nitride single crystal prepared using the same | |
JPH0281484A (en) | Gallium nitride compound semiconductor light emitting device | |
JP3982788B2 (en) | Method for forming semiconductor layer | |
JP2003332234A (en) | Sapphire substrate having nitrided layer and method of manufacturing the same | |
EP1474824A2 (en) | Group iii nitride semiconductor crystal, production method thereof and group iii nitride semiconductor epitaxial wafer | |
JP3174257B2 (en) | Method for producing nitride-based compound semiconductor | |
JP2005210091A (en) | Group iii nitride semiconductor element and light emitting element | |
CN103320764B (en) | Based on the preparation method of InN semiconducter device on a face GaN buffer layer on the 6H-SiC substrate of a face | |
JPH1075018A (en) | Manufacture of semiconductor and semiconductor light-emitting device | |
JP2017210391A (en) | Nitride semiconductor free-standing substrate manufacture method | |
CN117080328B (en) | Ultraviolet LED epitaxial wafer and preparation method thereof, LED chip |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
WD01 | Invention patent application deemed withdrawn after publication |
Open date: 20090603 |