CN101431681B - Image decoding method and image decoding device - Google Patents
Image decoding method and image decoding device Download PDFInfo
- Publication number
- CN101431681B CN101431681B CN 200810184669 CN200810184669A CN101431681B CN 101431681 B CN101431681 B CN 101431681B CN 200810184669 CN200810184669 CN 200810184669 CN 200810184669 A CN200810184669 A CN 200810184669A CN 101431681 B CN101431681 B CN 101431681B
- Authority
- CN
- China
- Prior art keywords
- frame
- motion vector
- block
- decoding
- encoding
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000000034 method Methods 0.000 title claims description 130
- 239000013598 vector Substances 0.000 claims abstract description 657
- 230000002123 temporal effect Effects 0.000 abstract description 19
- 238000012545 processing Methods 0.000 description 80
- 238000010586 diagram Methods 0.000 description 69
- 230000002457 bidirectional effect Effects 0.000 description 25
- 238000004364 calculation method Methods 0.000 description 20
- 238000001514 detection method Methods 0.000 description 19
- 238000006243 chemical reaction Methods 0.000 description 18
- 238000012300 Sequence Analysis Methods 0.000 description 9
- 238000004891 communication Methods 0.000 description 7
- 238000012935 Averaging Methods 0.000 description 6
- 238000013139 quantization Methods 0.000 description 6
- 238000003384 imaging method Methods 0.000 description 5
- 230000009466 transformation Effects 0.000 description 5
- 230000005540 biological transmission Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 2
- 239000000284 extract Substances 0.000 description 2
- 238000010295 mobile communication Methods 0.000 description 2
- 230000005236 sound signal Effects 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 230000001360 synchronised effect Effects 0.000 description 2
- 230000003213 activating effect Effects 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Images
Landscapes
- Compression Or Coding Systems Of Tv Signals (AREA)
Abstract
Description
本发明申请是本申请人于2003年2月26日提交的,申请号为03805346.2,发明名称为“动态图像编码方法及动态图像解码方法”的分案申请。 The application of the present invention was submitted by the applicant on February 26, 2003, the application number is 03805346.2, and the title of the invention is a divisional application of "dynamic image coding method and dynamic image decoding method". the
技术领域technical field
本发明涉及一种图像解码方法及图像解码装置,尤其涉及对处理对象帧实施将处理完的帧作为参照帧的帧间预测编码处理及帧间预测解码处理的方法。 The present invention relates to an image decoding method and an image decoding device, in particular to a method for performing inter-frame predictive encoding processing and inter-frame predictive decoding processing on a processed frame as a reference frame. the
背景技术Background technique
在动态图像编码处理中,通常利用动态图像具有的空间方向和时间方向的冗余性来压缩信息量。这里,通常使用向频域的变换来作为使用空间方向的冗余性的方法,使用帧(图象)间预测编码处理来作为使用时间方向冗余性的方法。在帧间预测编码处理中,当编码某个帧时,将相对编码处理对象的编码对象帧按显示时间顺序处于之前或之后的编码处理完的帧作为对应于编码对象帧的参照帧。另外检测编码对象帧相对该参照帧的运动量,并根据该运动量进行运动补偿处理,通过将运动补偿处理后得到的图像数据与编码对象帧的图像数据的差分,去除时间方向的冗余性。并通过对该差分值去除空间方向的冗余性,压缩相对编码对象帧的信息量。 In video coding processing, the amount of information is usually compressed by utilizing redundancy in the space direction and time direction that video has. Here, transformation to the frequency domain is generally used as a method of utilizing redundancy in the spatial direction, and inter-frame (image) predictive coding processing is used as a method of utilizing redundancy in the temporal direction. In the interframe predictive coding process, when a certain frame is coded, the coded frame that is before or after the coding target frame in order of display time is used as a reference frame corresponding to the coding target frame. In addition, detect the motion amount of the encoding target frame relative to the reference frame, and perform motion compensation processing according to the motion amount, and remove the redundancy in the time direction by taking the difference between the image data obtained after the motion compensation processing and the image data of the encoding target frame. And by removing redundancy in the spatial direction from the difference value, the amount of information relative to the encoding target frame is compressed. the
在当前标准中称为H.264的动态图像编码方式下,不进行帧间预测编码处理,即将进行帧内编码处理的帧称为I帧(图像)。另外,将参照按显示时间顺序处于编码对象帧之前或之后的已处理完的1个帧、并进行帧间预测编码的帧称为P帧,将参照按显示时间顺序处于编码对象帧之前或之后的已处理完的两个帧、并进行帧间预测编码的帧称为B 帧(例如参照ISO/IEC 14496-2[Information technology-Coding ofaudio-visualobjects-Part2:Visual]pp.218-219)。 In the dynamic image coding method called H.264 in the current standard, inter-frame predictive coding processing is not performed, and the frame that is about to undergo intra-frame coding processing is called an I frame (image). In addition, a frame that refers to a frame that has been processed before or after the encoding target frame in display time order and is subjected to inter-frame predictive encoding is called a P frame, and refers to a frame that is before or after the encoding target frame in display time order. The two frames that have been processed and inter-frame predictive coding are called B frames (for example, refer to ISO/IEC 14496-2[Information technology-Coding of audio-visual objects-Part2: Visual]pp.218-219). the
图1(a)是表示上述动态图像编码方式中各帧与对应的参照帧之间的关系图,图1(b)是表示编码生成的码列顺序的图。 Fig. 1(a) is a diagram showing the relationship between each frame and the corresponding reference frame in the above-mentioned dynamic image coding method, and Fig. 1(b) is a diagram showing the sequence of code sequences generated by coding. the
帧I1是I帧,帧P5、P9、P13是P帧,帧B2、B3、B4、B6、B7、B8、B10、B11、B12是B帧。即,P帧P5、P9、P13如箭头所示,分别将I帧I1、P帧P5、P帧P9用作参照帧,实施帧间预测编码。 Frame I1 is an I frame, frames P5, P9, and P13 are P frames, and frames B2, B3, B4, B6, B7, B8, B10, B11, and B12 are B frames. That is, P frames P5 , P9 , and P13 are interframe predictively encoded, respectively, using I frame I1 , P frame P5 , and P frame P9 as reference frames, as indicated by arrows. the
另外,B帧B2、B3、B4分别如箭头所示,将I帧I1及P帧P5用作参照帧,实施帧间预测编码,B帧B6、B7、B8分别如箭头所示,将P帧P5及P帧B9用作参照帧,实施帧间预测编码,B帧B10、B11、B12分别如箭头所示,将P帧P9及P帧P13用作参照帧,实施帧间预测编码。 In addition, the B frames B2, B3, and B4 are respectively shown by the arrows, and the I frame I1 and the P frame P5 are used as reference frames to perform inter-frame predictive coding. The B frames B6, B7, and B8 are respectively shown by the arrows, and the P frame P5 and P frame B9 are used as reference frames for interframe predictive coding, and B frames B10, B11, and B12 are respectively shown by arrows, and P frame P9 and P frame P13 are used as reference frames for interframe predictive coding. the
在以上编码时,用作参照帧的帧先于参照该帧的帧进行编码。因此,通过上述编码生成的码列变为图1(b)所示的帧顺序。 In the above encoding, the frame used as the reference frame is encoded before the frame that refers to it. Therefore, the code sequence generated by the above encoding becomes the frame order shown in FIG. 1( b ). the
然而,在H.264的动态图像编码方式下,可对B帧的编码选择称为直接模式(direct mode)的编码模式。用图2来说明直接模式中的帧间预测方法。图2是表示直接模式下的运动矢量的说明图,表示用直接模式来编码帧B6的块a的情况。此时,使用被用于将作为位于帧B6之后的参照帧的帧P9中、处于与块a相同位置上的块b进行了编码时的运动矢量c。运动矢量c是编码块b时使用的运动矢量,并参照帧P5。块a使用与运动矢量c平行的运动矢量,根据作为前向参照帧的帧P5与作为后向参照帧的帧P9,取得参照块(ブロツク),并进行双向预测来编码。即用于编码块a时的运动矢量对于帧P5变为运动矢量d,对于帧P9变为运动矢量e。 However, in the video coding method of H.264, a coding mode called direct mode (direct mode) can be selected for coding B frames. The inter prediction method in the direct mode is explained using FIG. 2 . FIG. 2 is an explanatory diagram showing motion vectors in direct mode, and shows a case where block a of frame B6 is coded in direct mode. At this time, the motion vector c used for encoding the block b located at the same position as the block a in the frame P9 which is a reference frame after the frame B6 is used. Motion vector c is a motion vector used when encoding block b, and refers to frame P5. Block a uses a motion vector parallel to motion vector c to obtain a reference block (block) from frame P5 as a forward reference frame and frame P9 as a backward reference frame, and performs bidirectional prediction to encode. That is, the motion vector used for encoding block a becomes motion vector d for frame P5 and motion vector e for frame P9. the
但是,如上所述,在对B帧实施参照I帧或P帧的帧间预测编码处理时,有时编码对象帧与参照帧间的时间距离变长,在这种情况下,导致编码效率低。尤其在B帧的插入个数、即相邻的I帧与P帧之间、或位于最近位置的两个P帧之间配置的B帧的数量变多时,编码效率明显降低。However, as described above, when interframe predictive coding is performed on a B frame with reference to an I frame or a P frame, the temporal distance between the coding target frame and the reference frame may become longer, and in this case, the coding efficiency is reduced. In particular, when the number of inserted B frames, that is, the number of B frames placed between adjacent I frames and P frames, or between two P frames at the closest position increases, the coding efficiency significantly decreases.
因此,为了解决上述问题而提出本发明,其目的在于提供一种动态图像编码方法和动态图像解码方法,即使在插入I帧与P帧之间、或插入P帧之间的B帧个数变多的情况下,也能避免B帧的编码效率恶化。另外,其目的在于提供一种动态图像编码方法和动态图像解码方法,可使直接模式下的编码效率提高。 Therefore, in order to solve the above problems, the present invention is proposed, and its purpose is to provide a dynamic image encoding method and a dynamic image decoding method, even if the number of B frames inserted between I frames and P frames or inserted between P frames changes In the case where there are too many frames, it is also possible to avoid deterioration of the coding efficiency of B frames. In addition, an object thereof is to provide a video encoding method and a video decoding method capable of improving encoding efficiency in direct mode. the
发明内容Contents of the invention
为了实现上述目的,本发明采取一下技术方案: In order to achieve the above object, the present invention takes the following technical solutions:
一种图像解码方法,将被编码的图像解码,其特征在于,包含:解码步骤,在将解码对象块(a)解码时,根据同一位置块(b)的运动矢量(C1)来确定所述解码对象块(a)的运动矢量(E1、E2),所述同一位置块(b)是已解码完的帧(B7)内的块,并且是与所述解码对象块在同一位置的块,并使用所述解码对象块的运动矢量(E1、E2)和与所述解码对象块的运动矢量(E1、E2)对应的参照帧,将所述解码对象块(a)以直接模式进行运动补偿并解码,在所述解码步骤中,在将所述同一位置块(b)使用一个运动矢量(C1)和与该一个运动矢量(C1)对应的一个后方参照帧进行解码时,对解码所述同一位置块(b)时使用的所述一个运动矢量(C1),使用表示帧的显示顺序的信息的差进行换算,由此,对所述解码对象块(a)生成用于将所述解码对象块以直接模式进行运动补偿并解码的两个运动矢量(E1、E2),使用生成的所述两个运动矢量(E1、E2)和与生成的所述两个运动矢量各自对应的两个参照帧,将所述解码对象块(a)以直接模式进行运动补偿并解码。 An image decoding method, which decodes an encoded image, is characterized in that it includes: a decoding step, when decoding a target block (a), the motion vector (C1) of the same position block (b) is used to determine the motion vectors (E1, E2) of the decoding target block (a), the same position block (b) is a block in the decoded frame (B7), and is a block at the same position as the decoding target block, And using the motion vector (E1, E2) of the decoding target block and the reference frame corresponding to the motion vector (E1, E2) of the decoding target block, the decoding target block (a) is subjected to motion compensation in direct mode and decoding, in the decoding step, when the same position block (b) is decoded using a motion vector (C1) and a backward reference frame corresponding to the motion vector (C1), the decoded The one motion vector (C1) used for the same position block (b) is converted using the difference of information indicating the display order of frames, thereby generating a Two motion vectors (E1, E2) for which the target block is subjected to motion compensation and decoded in direct mode, using the generated two motion vectors (E1, E2) and the two generated motion vectors corresponding to each Referring to a frame, the decoding target block (a) is subjected to motion compensation and decoded in direct mode. the
所述的图像解码方法,其特征在于:在分别与所述解码对象块的两个运动矢量对应的所述两个参照帧中,第1参照帧是包含所述同一位置块的帧,第2参照帧是在将所述同一位置块解码时用的一个后方的参照帧,并且是与生成所述解码对象块的两个运动矢量时作为换算对象的运动矢量对应的参照帧。 The image decoding method is characterized in that: among the two reference frames respectively corresponding to the two motion vectors of the block to be decoded, the first reference frame is a frame including the block at the same position, and the second reference frame is a frame containing the same position block. The reference frame is one subsequent reference frame used when decoding the block at the same position, and is a reference frame corresponding to a motion vector to be converted when generating two motion vectors of the block to be decoded. the
所述的图像解码方法,其特征在于:表示帧的显示顺序的所述信息是:第1信息,表示包含所述解码对象块的帧的显示顺序,第2信息,表示所述解码对象块的所述第2参照帧的显示顺序以及,第3信息,表示帧显示顺序,该帧是包含所述同一位置块的帧并且是所述解码对象块的所述第1参照帧,所述信息的差是第1信息和第2信息的差,第1信息和第3信息的差以及第2信息和第3信息的差。 The image decoding method described above is characterized in that: the information indicating the display order of frames is: first information indicating the display order of frames including the decoding target block, and second information indicating the decoding target block The display order of the second reference frame and the third information indicate a display order of a frame that includes the block at the same position and is the first reference frame of the block to be decoded, and the information includes The difference is a difference between the first information and the second information, a difference between the first information and the third information, and a difference between the second information and the third information. the
一种图像解码装置,将被编码的图像解码,其特征在于,包含:解码单元,在将解码对象块解码时,根据同一位置块的运动矢量来确定所述解码对象块的运动矢量,所述同一位置块是已解码完的帧内的块,并且是与所述解码对象块在同一位置的块,并使用所述解码对象块的运动矢量和与所述解码对象块的运动矢量对应的参照帧,将所述解码对象块以直接模式进行运动补偿并解码,所述解码单元,在所述同一位置块使用一个运动矢量和与该一个运动矢量相对应的一个后方的参照帧而被进行解码时,相对解码所述同一位置块时使用的所述一个运动矢量,通过使用表示帧的显示顺序的信息的差进行换算,由此,相对所述解码对象块生成用于将所述解码对象块以直接模式进行运动补偿并解码的两个运动矢量,并使用生成的所述两个运动矢量和与生成的所述两个运动矢量各自对应的两个参照帧,将所述解码对象块以直接模式进行运动补偿并解码。 An image decoding device, which decodes an encoded image, is characterized by comprising: a decoding unit, when decoding the decoding target block, determining the motion vector of the decoding target block according to the motion vector of the same position block, the The block at the same position is a block in a frame that has been decoded and is at the same position as the block to be decoded, and the motion vector of the block to be decoded and the reference corresponding to the motion vector of the block to be decoded are used frame, performing motion compensation and decoding the decoding target block in a direct mode, and the decoding unit decoding the same position block using one motion vector and one rear reference frame corresponding to the one motion vector , by converting the one motion vector used when decoding the block at the same position by using the difference of the information indicating the display order of frames, thereby generating the performing motion compensation and decoding two motion vectors in the direct mode, and using the two generated motion vectors and the two reference frames corresponding to the two generated motion vectors respectively, the decoding target block is directly mode for motion compensation and decoding. the
另外,在编码作为编码对象的B帧的编码对象块作为直接模式 的情况下,对根据编码与所述编码对象块处于同一位置上的在后P帧内的块时所用的该块参照的第1参照帧,用表示帧显示顺序的信息差对第1运动矢量进行换算,由此也可得到运动补偿所述编码对象块时的运动矢量。 In addition, in the case of encoding the encoding target block of the encoding target B frame as the direct mode, the first block referenced based on the encoding of the block in the next P frame at the same position as the encoding target block is used. 1 Referring to the frame and converting the first motion vector using the information difference indicating the display order of the frame, the motion vector for motion compensation of the coding target block can also be obtained. the
由此,在选择直接模式的情况下,对在后P帧的第1运动矢量进行换算,故可不必向码列附加运动矢量信息,并且可提高预测效率。 Accordingly, when the direct mode is selected, the first motion vector of the subsequent P frame is converted, so that it is not necessary to add motion vector information to the code string, and prediction efficiency can be improved. the
另外,在编码作为编码对象的B帧的编码对象块作为直接模式的情况下,至少使用根据第1参照帧的第1运动矢量来编码与所述编码对象块处于同一位置上的所述第2参照帧内的块时,用表示帧显示顺序的信息差对所述第1运动矢量进行换算,在仅用根据第2参照帧的第2运动矢量来编码处于所述同一位置上的所述第2参照帧内的块时,用表示帧显示顺序的信息差对所述第2运动矢量进行换算,由此也可得到运动补偿所述编码对象块时的运动矢量。 In addition, when coding the coding target block of the coding target B frame as the direct mode, at least the first motion vector based on the first reference frame is used to code the second motion vector located at the same position as the coding target block. When referring to a block in a frame, the first motion vector is converted using the information difference indicating the display order of the frame, and the second motion vector at the same position is encoded using only the second motion vector based on the second reference frame. 2. When referring to a block in a frame, the second motion vector is converted by using the information difference indicating the frame display order, thereby obtaining a motion vector for motion compensation of the coding target block. the
由此,在选择直接模式的情况下,若第2参照帧具有第1运动矢量,则对该第1运动矢量进行换算,另外,若第2参照帧不具有第1运动矢量而仅具有第2运动矢量,则对该第2运动矢量进行换算,故可不必向码列附加运动矢量信息,并且可提高预测效率。 Thus, when the direct mode is selected, if the second reference frame has the first motion vector, the first motion vector is converted, and if the second reference frame does not have the first motion vector but only the second If there is no motion vector, the second motion vector is converted, so it is not necessary to add motion vector information to the code string, and the prediction efficiency can be improved. the
根据本发明的动态图像解码方法,解码将对应于构成动态图像的各帧的图像数据编码后生成的码列,其特征在于:包含解码步骤,将已解码完的帧作为参照帧,对成为解码对象的对象帧进行帧间预测解码,在所述解码步骤中,当基于将已解码完的帧用作第1参照帧和第2参照帧的双向参照来进行帧间预测解码时,解码至少包含各自在显示时间顺序中最近的帧的码列,作为所述第1参照帧和第2参照帧。 According to the dynamic image decoding method of the present invention, the code sequence generated after encoding the image data corresponding to each frame of the dynamic image is decoded, and it is characterized in that: a decoding step is included, and the decoded frame is used as a reference frame for decoding The target frame of the target is subjected to inter-frame predictive decoding. In the decoding step, when inter-frame predictive decoding is performed based on a bidirectional reference using a decoded frame as a first reference frame and a second reference frame, the decoding includes at least The code sequences of the frames that are closest in display time order are used as the first reference frame and the second reference frame. the
由此,可在解码时,对在基于双向参照进行帧间预测编码处理时、将显示时间顺序中位于附近的帧用作第1参照帧和第2参照帧进行编码后生成的码列进行解码。 Thus, at the time of decoding, it is possible to decode the code sequence generated by encoding the adjacent frames in the order of display time as the first reference frame and the second reference frame when performing interframe predictive encoding processing based on bidirectional reference. . the
另外,根据本发明的动态图像解码方法,解码对应于构成动态图 像的各帧的图像数据后生成的码列,其特征在于:包含解码步骤,将已解码完的帧作为参照帧,对成为解码对象的对象帧(对象图片)进行帧间预测解码,在所述解码步骤中,解码对象帧是具有进行基于双向参照的帧间预测解码块的帧,该双向参照是将已解码完的帧用作第1参照帧和第2参照帧,并且,在根据已解码完的块所具有的运动矢量对解码对象块进行解码、并作为由所述解码对象块的运动矢量进行运动补偿的直接模式时,对根据解码与所述解码对象块处于同一位置上的所述第2参照帧内的块时所用的该块参照的第1参照帧,用表示帧显示顺序的信息差对第1运动矢量进行换算,由此得到运动补偿所述解码对象块时的运动矢量。 In addition, according to the moving image decoding method of the present invention, the code sequence generated after decoding the image data corresponding to each frame of the moving image is characterized in that: a decoding step is included, and the decoded frame is used as a reference frame, The target frame (target picture) to be decoded is subjected to inter-frame predictive decoding. In the decoding step, the decoded target frame is a frame having a block for performing inter-frame predictive decoding based on a bidirectional reference to a decoded frame. It is used as the first reference frame and the second reference frame, and is used as a direct mode in which the decoding target block is decoded based on the motion vector of the decoded block and motion compensation is performed by the motion vector of the decoding target block , for the first reference frame that is referred to when decoding the block in the second reference frame that is at the same position as the decoding target block, the information difference indicating the frame display order is used to compare the first motion vector Scaling is performed to obtain a motion vector for motion compensation of the decoding target block. the
由此,在选择直接模式的情况下,对第2参照帧的第1运动矢量进行换算,所以可在解码时正确进行解码处理。 As a result, when the direct mode is selected, the first motion vector of the second reference frame is scaled, so decoding can be correctly performed at the time of decoding. the
解码对象帧是具有基于双向参照进行帧间预测解码块的帧,并且,在对解码对象块进行解码并作为直接模式的情况下,根据解码与所述解码对象块处于同一位置上的所述第2参照帧内的块时所用的该块参照的第2参照帧,用表示帧显示顺序的信息差对第2运动矢量进行换算,也可得到运动补偿所述解码对象块时的运动矢量。 The frame to be decoded is a frame having a block to be decoded by inter-frame prediction based on bidirectional reference, and when the block to be decoded is decoded as a direct mode, the first 2. The second reference frame that the block refers to when referring to the block in the frame converts the second motion vector using the information difference indicating the display order of the frames to obtain the motion vector for motion compensation of the block to be decoded. the
由此,在选择直接模式的情况下,对第2参照帧(参照图片)的第2运动矢量进行换算,所以可在解码时正确进行解码处理。 As a result, when the direct mode is selected, the second motion vector of the second reference frame (reference picture) is scaled, so decoding can be correctly performed at the time of decoding. the
另外,解码对象帧是具有基于双向参照进行帧间预测解码块的帧,且在对解码对象块进行解码并作为直接模式的情况下,当在直接模式下解码与所述解码对象块处于同一位置上的所述第2参照帧内的块时,根据解码所述第2参照帧内的块时实质上使用的该块参照的第1参照帧,用表示参照帧显示顺序的信息差对第1运动矢量进行换算,也可得到运动补偿所述解码对象块时的运动矢量。 In addition, the frame to be decoded is a frame having a block to be decoded with inter-frame prediction based on bidirectional reference, and when the block to be decoded is decoded as a direct mode, when decoding in the direct mode is at the same position as the block to be decoded When decoding the block in the second reference frame above, according to the first reference frame that the block actually refers to when decoding the block in the second reference frame, use the information difference indicating the display order of the reference frame to compare the first reference frame The motion vector is converted to obtain the motion vector when motion compensating the decoding target block. the
由此,在选择直接模式的情况下,对第2参照帧实质上使用的第1运动矢量进行换算,所以可在解码时正确进行解码处理。As a result, when the direct mode is selected, the first motion vector substantially used in the second reference frame is converted, so that decoding can be accurately performed at the time of decoding.
另外,解码对象帧是具有基于双向参照进行帧间预测解码块的帧,并且,在对解码对象块进行解码并作为直接模式的情况下,根据解码与所述解码对象块处于同一位置上的块时所用的该块参照的第1参照帧,用表示帧显示顺序的信息差对第1运动矢量进行换算,也可得到运动补偿所述解码对象块时的运动矢量,其中,该块在显示时间顺序上位于后面,在基于将已解码完的帧用作第1参照帧的单向参照进行帧间预测解码的帧内。 Also, the frame to be decoded is a frame having a block to be decoded by inter-frame prediction based on bidirectional reference, and when the block to be decoded is decoded as a direct mode, a block located at the same position as the block to be decoded is decoded. The first reference frame used by the block to refer to, and the first motion vector is converted by using the information difference representing the display order of the frame, and the motion vector of the decoding object block can also be obtained when the motion compensation is performed, wherein the block is at the display time It is located later in order, and is within a frame for which inter-frame predictive decoding is performed based on a unidirectional reference using a decoded frame as the first reference frame. the
由此,在选择直接模式的情况下,对基于单向参照来进行帧间预测解码的帧的第1运动矢量进行换算,所以可在解码时正确进行解码处理。 As a result, when the direct mode is selected, the first motion vector of the frame whose inter-frame predictive decoding is performed based on the unidirectional reference is scaled, so that the decoding process can be accurately performed at the time of decoding. the
一种动态图像解码方法,将被编码的图像解码,其特征在于: A dynamic image decoding method, which decodes encoded images, is characterized in that:
包含解码步骤,在将解码对象块解码时,根据同一位置块的运动矢量来确定所述解码对象块的运动矢量,所述同一位置块是已解码完的帧内的块,并且是与所述解码对象块在同一位置的块, Including a decoding step, when decoding the decoding object block, the motion vector of the decoding object block is determined according to the motion vector of the block at the same position, the block at the same position is a block in the frame that has been decoded, and is the same as the The block whose decoding target block is at the same position,
并使用上述解码对象块的运动矢量和与上述解码对象块的运动矢量对应的参照帧,将所述解码对象块以直接模式进行运动补偿并解码,在所述解码步骤中,在所述同一位置块使用两个运动矢量和这两个运动矢量各自对应的两个参照帧被进行解码时, And using the motion vector of the decoding target block and the reference frame corresponding to the motion vector of the decoding target block, the decoding target block is motion compensated and decoded in direct mode, and in the decoding step, at the same position When a block is decoded using two motion vectors and two reference frames corresponding to the two motion vectors,
相对解码所述同一位置块时使用的所述两个运动矢量中的一个运动矢量,通过使用表示帧的显示顺序的信息差进行换算,由此,相对所述解码对象块生成用于将所述解码对象块以直接模式进行运动补偿并解码的两个运动矢量, One of the two motion vectors used for decoding the block at the same position is converted by using information difference indicating the display order of frames, thereby generating the motion vector for the block to be decoded. Two motion vectors decoded by motion compensation in direct mode for the decoding target block,
使用所述生成的两个运动矢量和所述被生成的两个运动矢量各自对应的两个参照帧,将所述解码对象块以直接模式进行运动补偿并解码。 Using the two generated motion vectors and the two reference frames respectively corresponding to the two generated motion vectors, the block to be decoded is subjected to motion compensation and decoded in a direct mode. the
所述的动态图像解码方法,其特征在于:在各自对应所述解码对象块的两个运动矢量的所述两个参照帧中,第1参照帧是包含所述同 一位置块的帧,第2参照帧是在将所述同一位置块解码时用的两个参照帧中的一个,并且是与生成所述解码对象块的两个运动矢量时作为换算对象的运动矢量对应的参照帧。 The dynamic image decoding method is characterized in that: among the two reference frames respectively corresponding to the two motion vectors of the decoding target block, the first reference frame is a frame including the same position block, and the second 2. The reference frame is one of two reference frames used when decoding the block at the same position, and is a reference frame corresponding to a motion vector to be converted when generating two motion vectors of the block to be decoded. the
所述的动态图像解码方法,其特征在于:所述同一位置块以直接模式被解码时,使用解码所述同一位置块时用的两个运动矢量中的一个运动矢量,生成所述解码对象块的两个运动矢量。 The moving image decoding method described above is characterized in that: when the block at the same position is decoded in direct mode, one of the two motion vectors used when decoding the block at the same position is used to generate the block to be decoded The two motion vectors of . the
所述的动态图像解码方法,其特征在于:表示帧的显示顺序的所述信息是:第1信息,表示包含所述解码对象块的帧的显示顺序; The dynamic image decoding method is characterized in that: the information representing the display order of the frames is: first information indicating the display order of the frames including the decoding target block;
第2信息,表示所述解码对象块的所述第2参照帧的显示顺序;以及,第3信息,表示包含所述同一位置块的帧的并且是所述解码对象块的所述第1参照帧的帧显示顺序, The second information indicates the display order of the second reference frame of the decoding target block; and the third information indicates the first reference frame of the decoding target block in a frame including the same position block The frame display order of the frame,
所述信息差是第1信息和第2信息的差,第1信息和第3信息的差以及第2信息和第3信息的差。 The information difference is a difference between the first information and the second information, a difference between the first information and the third information, and a difference between the second information and the third information. the
一种动态图像解码装置,将被编码的图像解码,其特征在于:包含解码单元,在将解码对象块解码时,根据同一位置块的运动矢量来确定所述解码对象块的运动矢量,所述同一位置块是已解码完的帧内的块,并且是与所述解码对象块在同一位置的块, A dynamic image decoding device, which decodes an encoded image, is characterized in that: it includes a decoding unit that determines the motion vector of the decoding target block according to the motion vector of the same position block when decoding the decoding target block, the The block at the same position is a block in the frame that has been decoded, and is a block at the same position as the decoding target block,
并使用上述解码对象块的运动矢量和与上述解码对象块的运动矢量对应的参照帧,将所述解码对象块以直接模式进行运动补偿并解码,所述解码单元,在所述同一位置块使用两个运动矢量和这两个运动矢量各自对应的两个参照帧而被解码时, and using the motion vector of the decoding target block and the reference frame corresponding to the motion vector of the decoding target block to perform motion compensation and decoding on the decoding target block in direct mode, the decoding unit uses the When two motion vectors and two reference frames corresponding to the two motion vectors are decoded,
相对解码所述同一位置块时使用的所述两个运动矢量中的一个运动矢量,通过使用表示帧的显示顺序的信息差进行换算,由此,相对所述解码对象块生成用于将所述解码对象块以直接模式进行运动补偿并解码的两个运动矢量,使用所述生成的两个运动矢量和所述被生成的两个运动矢量各自对应的两个参照帧,将所述解码对象块以直接模式进行运动补偿并解码。One of the two motion vectors used for decoding the block at the same position is converted by using information difference indicating the display order of frames, thereby generating the motion vector for the block to be decoded. performing motion compensation and decoding two motion vectors of the decoding object block in direct mode, using the generated two motion vectors and the two reference frames respectively corresponding to the generated two motion vectors, and converting the decoding object block to Motion compensated and decoded in direct mode.
另外,本发明不仅可实现为这种动态图像编码方法和动态图像解码方法,也可实现为具备将这种动态图像编码方法和动态图像解码方法包含的特征步骤作为部件的动态图像编码装置和动态图像解码装置。另外,可实现为由动态图像编码方法来编码的码列,并可经CD-ROM等记录媒体或因特网等传输媒体来配送。 In addition, the present invention can be realized not only as such a moving picture coding method and a moving picture decoding method, but also as a moving picture coding device and a moving picture having the characteristic steps included in the moving picture coding method and the moving picture decoding method as components. Image decoding device. Also, it can be implemented as a code string encoded by a video encoding method, and can be distributed via a recording medium such as a CD-ROM or a transmission medium such as the Internet. the
附图说明Description of drawings
图1是表示现有动态图像编码方法中的帧预测关系和顺序的模式图,(a)是表示各帧与对应的参照帧的关系图,(b)是表示编码生成的码列的顺序图。 Fig. 1 is a schematic diagram showing the relationship and order of frame prediction in the conventional dynamic image coding method, (a) is a diagram showing the relationship between each frame and the corresponding reference frame, (b) is a diagram showing the sequence of code sequences generated by coding . the
图2是表示现有动态图像编码方法中在直接模式(ダイレクトモ—ド)下的运动矢量的模式图。 FIG. 2 is a schematic diagram showing motion vectors in a direct mode in a conventional video encoding method. the
图3是表示使用本发明的动态图像编码方法的动态图像编码装置一实施例的结构框图。 Fig. 3 is a block diagram showing an embodiment of a video coding apparatus using the video coding method of the present invention. the
图4是本发明实施例中的帧序号与相对索引(index)的说明图。 FIG. 4 is an explanatory diagram of a frame number and a relative index (index) in an embodiment of the present invention. the
图5是基于本发明实施例的动态图像编码装置的图像编码信号格式的原理图。 Fig. 5 is a schematic diagram of an image encoding signal format of a dynamic image encoding device according to an embodiment of the present invention. the
图6是表示本发明实施例的替换用存储器中的帧顺序的模式图,(a)是表示输入顺序的图,(b)是表示替换顺序的图。 6 is a schematic view showing the order of frames in the replacement memory according to the embodiment of the present invention, (a) is a diagram showing the input order, and (b) is a diagram showing the replacement order. the
图7是表示本发明实施例中直接模式下的运动矢量的模式图,(a)是表示对象块是帧B7情况下、(b)是表示对象块a是帧B6情况下的第一和第二例的图,(c)是表示对象块a是帧B6情况下的第三例的图,(d)是表示对象块a是帧B6情况下的第四例的图。 7 is a schematic diagram showing motion vectors in the direct mode in the embodiment of the present invention, (a) shows the case where the target block is frame B7, and (b) shows the first and second motion vectors when the target block a is frame B6. In the diagrams of the two examples, (c) is a diagram showing the third example when the target block a is the frame B6, and (d) is a diagram showing the fourth example when the target block a is the frame B6. the
图8是表示本发明实施例中直接模式下的运动矢量的模式图,(a)是表示对象块a是帧B6情况下的第五例的图,(b)是表示对象块a是帧B6情况下的第六例的图,(c)是表示对象块a是帧B6情况下的第七例的图,(d)是表示对象块a是帧B8情况下的图。 8 is a schematic diagram showing motion vectors in the direct mode in an embodiment of the present invention, (a) is a diagram showing a fifth example in the case where the target block a is frame B6, and (b) is a diagram showing that the target block a is frame B6 In the figure of the sixth example of the case, (c) is a figure showing the seventh example when the target block a is the frame B6, and (d) is a figure showing the case where the target block a is the frame B8. the
图9是表示本发明实施例中的帧预测关系和顺序的模式图,(a) 是表示按显示时间顺序表示的各帧的预测关系图,(b)是表示替换成编码顺序(码列顺序)的帧顺序的图。 Fig. 9 is a model diagram showing the frame prediction relationship and order in the embodiment of the present invention, (a) is a diagram showing the prediction relationship of each frame represented in the order of display time, (b) is a representation of a replacement code sequence (code sequence order) ) of the frame sequence diagram. the
图10是表示本发明实施例中的帧预测关系和顺序的模式图,(a)是表示按显示时间顺序表示的各帧的预测关系图,(b)是表示替换成编码顺序(码列顺序)的帧顺序的图。 Fig. 10 is a model diagram showing the frame prediction relationship and order in the embodiment of the present invention, (a) is a diagram showing the prediction relationship of each frame shown in display time order, (b) is a representation of a replacement code sequence (code sequence order) ) of the frame sequence diagram. the
图11是表示本发明实施例中的帧预测关系和顺序的模式图,(a)是表示按显示时间顺序表示的各帧的预测关系图,(b)是表示替换成编码顺序(码列顺序)的帧顺序的图。 Fig. 11 is a model diagram showing the frame prediction relationship and order in the embodiment of the present invention, (a) is a diagram showing the prediction relationship of each frame shown in display time order, (b) is a representation of a replacement code sequence (code sequence order) ) of the frame sequence diagram. the
图12是分层表示本发明实施例的图6所示帧预测结构的模式图。 FIG. 12 is a schematic diagram hierarchically representing the frame prediction structure shown in FIG. 6 according to an embodiment of the present invention. the
图13是分层表示本发明实施例的图9所示帧预测结构的模式图。 FIG. 13 is a schematic diagram hierarchically representing the frame prediction structure shown in FIG. 9 according to an embodiment of the present invention. the
图14是分层表示本发明实施例的图10所示帧预测结构的模式图。 Fig. 14 is a schematic diagram showing the frame prediction structure shown in Fig. 10 hierarchically according to the embodiment of the present invention. the
图15是分层表示本发明实施例的图11所示帧预测结构的模式图。 Fig. 15 is a schematic diagram showing the frame prediction structure shown in Fig. 11 hierarchically according to the embodiment of the present invention. the
图16是表示使用本发明动态图像解码方法的动态图像解码装置一实施例的结构框图。 Fig. 16 is a block diagram showing an embodiment of a video decoding apparatus using the video decoding method of the present invention. the
图17是存储由计算机系统来实现实施例的动态图像编码方法和动态图像解码方法用程序用记录媒体的说明图,(a)是表示作为记录媒体主体的软盘的物理格式实例的说明图,(b)是表示从软盘的正面看到的外观、截面结构及软盘的说明图,(c)是表示在软盘FD上进行上述程序的记录再现用的结构说明图。 17 is an explanatory diagram of a recording medium for storing a program for realizing the video coding method and the video decoding method of the embodiment by a computer system, (a) is an explanatory diagram showing an example of the physical format of a floppy disk as the main body of the recording medium, ( b) is an explanatory diagram showing the appearance, cross-sectional structure, and floppy disk seen from the front of the floppy disk, and (c) is an explanatory diagram showing the structure for recording and reproducing the above-mentioned program on the floppy disk FD. the
图18是表示实现内容配送服务的内容提供系统的整体结构框图。 Fig. 18 is a block diagram showing the overall configuration of a content providing system for realizing a content delivery service. the
图19是表示手机一例的示意图。 Fig. 19 is a schematic diagram showing an example of a mobile phone. the
图20是表示手机的内部结构框图。 Fig. 20 is a block diagram showing the internal structure of the mobile phone. the
图21是表示数字广播用系统的整体结构框图。 Fig. 21 is a block diagram showing the overall configuration of a digital broadcasting system. the
具体实施方式Detailed ways
参照附图来说明本发明的实施例。 Embodiments of the present invention are described with reference to the drawings. the
(实施例1) (Example 1)
图3是表示使用本发明的动态图像编码方法的动态图像编码装置一实施例的结构框图。 Fig. 3 is a block diagram showing an embodiment of a video coding apparatus using the video coding method of the present invention. the
动态图像编码装置如图3所示,具备:替换用存储器101、差分运算部102、预测误差编码部103、码列生成部104、预测误差解码部105、加法运算部106、参照帧(参照图像)用存储器107、运动矢量检测部108、模式选择部109、编码控制部110、开关111-115和运动矢量存储部116。 As shown in FIG. 3 , the moving picture encoding device includes: a
替换用存储器101存储按显示时间顺序以帧单位输入的动态图像。编码控制部110按编码顺序替换存储在替换用存储器101中的各帧。另外,编码控制部110控制运动矢量向运动矢量存储部116的存储动作。 The
运动矢量检测部108将编码完的解码图像数据用作参照帧,在该帧内的搜索区域中检测表示预测为最佳位置的运动矢量。模式选择部109使用运动矢量检测部108检测到的运动矢量,确定宏块的编码模式,根据该编码模式生成预测图像数据。差分运算部102算出从替换用存储器101中读出的图像数据与从模式选择部109输入的预测图像数据之差,生成预测误差图像数据。 The motion
预测误差编码部103对输入的预测误差图像数据进行频率变换或量化等编码处理,生成编码数据。码列生成部104对输入的编码数据进行可变长编码等,并通过附加从模式选择部109输入的运动矢量的信息、编码模式的信息和其它关联信息等,生成码列。 The prediction
预测误差解码部105对输入的编码数据进行去量化或逆频率变换等解码处理,生成解码差分图像数据。加法运算部106将从预测误差解码部105输入的解码差分图像数据和从模式选择部109输入的预测图像数据相加,生成解码图像数据。参照帧用存储器107存储生成 的解码图像数据。 The prediction
图4是帧与相对索引(指针)的说明图。相对索引用于唯一识别参照帧用存储器107中存储的参照帧,如图4所示,是对应附加于各帧上的序号。另外,相对索引用于指示通过帧间预测编码块时使用的参照帧。 Fig. 4 is an explanatory diagram of a frame and a relative index (pointer). The relative index is used to uniquely identify the reference frame stored in the
图5是基于动态图像编码装置的动态图像编码信号格式的原理图。1帧单位的编码信号Picture由帧开头中包含的头编码信号Header、基于直接模式的块的编码信号Block1、基于直接模式外的帧间预测的块的编码信号Block2等构成。另外,基于直接模式外的帧间预测的块的编码信号Block2顺序具有表示帧间预测中使用的两个参照帧用的第1相对索引Rldx1和第2相对索引Rldx2、第1运动矢量MV1、第2运动矢量MV2。另一方面,基于直接模式的编码信号Block1不具有第1相对索引Rldx1、第2相对索引Rldx2、第1运动矢量MV1、第2运动矢量MV2。可由预测种类PredType来判断使用第1相对索引Rldx1、第2相对索引Rldx2的哪一个。另外,第1相对索引Rldx1表示第1参照帧,第2相对索引Rldx2表示第2参照帧。即,是第1参照帧还是第2参照帧由码列中的数据位置来确定。 Fig. 5 is a schematic diagram of a format of a video coding signal by a video coding device. The coded signal Picture in one frame unit is composed of a coded header signal Header included in the head of a frame, a coded signal Block1 of a block based on a direct mode, a coded signal Block2 of a block based on an inter-frame prediction other than the direct mode, and the like. Also, the coded signal Block2 of a block based on inter prediction other than the direct mode sequentially includes a first relative index Rldx1 and a second relative index Rldx2 for indicating two reference frames used in inter prediction, a first motion vector MV1, a second relative index 2 Motion Vector MV2. On the other hand, the encoded signal Block1 based on the direct mode does not have the first relative index Rldx1, the second relative index Rldx2, the first motion vector MV1, and the second motion vector MV2. Which of the first relative index Rldx1 and the second relative index Rldx2 is used can be determined by the prediction type PredType. In addition, the first relative index Rldx1 indicates the first reference frame, and the second relative index Rldx2 indicates the second reference frame. That is, whether it is the first reference frame or the second reference frame is determined by the data position in the code sequence. the
基于将显示时间顺序中位于前或后之一的、已编码完的帧用作第1参照帧单向参照进行帧间预测编码的帧是P帧,基于将显示时间顺序中位于前或后之一的、已编码完的帧用作第1参照帧和第2参照帧的双向参照进行帧间预测编码的帧是B帧,但本实施例中,将第1参照帧作为前向参照帧、将第2参照帧作为后向参照帧来进行说明。另外,将作为分别相对第1参照帧和第2参照帧的运动矢量的第1运动矢量、第2运动矢量分别作为前向运动矢量、后向运动矢量来进行说明。 A frame for inter-frame predictive encoding based on using the encoded frame that is located in the front or back in the display time sequence as the first reference frame is a P frame, and based on the display time sequence that is located in the front or back First, the encoded frame is used as a bidirectional reference between the first reference frame and the second reference frame. The frame for inter-frame predictive coding is a B frame, but in this embodiment, the first reference frame is used as a forward reference frame, The second reference frame will be described as a backward reference frame. In addition, a first motion vector and a second motion vector, which are motion vectors with respect to the first reference frame and the second reference frame, respectively, will be described as a forward motion vector and a backward motion vector, respectively. the
下面,用图4(a)来说明第1相对索引、第2相对索引的附加方法。 Next, the method of adding the first relative index and the second relative index will be described with reference to FIG. 4(a). the
在第1相对索引中,首先就表示显示顺序的信息而言,对编码对 象块以前的参照帧,按接近编码对象帧的顺序分配从0开始的值。对所有编码对象以前的参照帧分配从0开始的值,接着,对编码对象块以后的参照帧,按接近编码对象帧的顺序分配随后的值。 In the first relative index, first, as for the information indicating the display order, values starting from 0 are assigned to the reference frames before the encoding target block in the order closer to the encoding target frame. Values starting from 0 are assigned to all reference frames before the encoding target block, and next values are assigned in the order closer to the encoding target frame for the reference frames subsequent to the encoding target block. the
在第2相对索引中,首先就表示显示顺序的信息而言,对编码对象块以后的参照帧,按接近编码对象帧的顺序分配从0开始的值。对所有编码对象以后的参照帧分配从0开始的值,接着,对编码对象块以前的参照帧,按接近编码对象帧(对象图片)的顺序分配随后的值。 In the second relative index, first, as information indicating the display order, values starting from 0 are assigned to reference frames subsequent to the current block to be coded in order closer to the current frame to be coded. Values starting from 0 are assigned to all reference frames after the encoding target, and next values are assigned in the order closer to the encoding target frame (target picture) for the reference frames preceding the encoding target block. the
例如,图4(a)中,在第1相对索引(指针)Rldx1为0、第2相对索引Rldx2为1的情况下,前向参照帧是帧序号为6的B帧,后向参照帧是帧序号为9的P帧。这里,帧序号是表示显示顺序的序号。 For example, in Figure 4(a), when the first relative index (pointer) Rldx1 is 0 and the second relative index Rldx2 is 1, the forward reference frame is the B frame whose frame number is 6, and the backward reference frame is P frame with frame number 9. Here, the frame number is a number indicating the order of display. the
块中的相对索引由可变长码字来表现,值越小,则分配码长越短的代码。通常,选择距编码对象帧最近的帧作为帧间预测的参照帧(参照图片),所以若如上所述按距编码对象帧(对象图片)近的顺序分配相对索引值,则编码效率提高。 The relative index in the block is represented by a variable-length code word, and a code with a shorter code length is assigned as the value is smaller. Usually, the closest frame to the encoding target frame is selected as a reference frame (reference picture) for inter prediction, so if the relative index values are assigned in order from the encoding target frame (target picture) as described above, the encoding efficiency will improve. the
另一方面,通过用编码信号中的缓冲器控制信号(图5所示Header内的RPSL)来明示指示,可任意变更参照帧对相对索引的分配。通过该分配变更,可将第2相对索引变为0的参照帧变为参照帧用存储器107内的任意参照帧,例如,如图4(b)所示,可变更相对索引相对帧的分配。 On the other hand, the assignment of relative indexes to reference frames can be changed arbitrarily by explicitly instructing them with a buffer control signal (RPSL in the Header shown in FIG. 5 ) in the coded signal. By changing the assignment, the reference frame whose second relative index becomes 0 can be changed to any reference frame in the
下面,说明上述构成的动态图像编码装置的动作。 Next, the operation of the video encoding device configured as described above will be described. the
图6是表示替换用存储器101中的帧顺序的说明图,(a)是表示输入顺序的说明图,(b)是表示替换顺序的说明图。其中,竖线表示帧,各帧右下所示记号中,第1文字的α头表示帧类型(I、P或B),第2文字以后的数字表示帧序号,该帧序号表示显示顺序。 6 is an explanatory diagram showing the sequence of frames in the
输入图像例如图6(a)所示,按显示时间顺序以帧单位输入替换用存储器101。若向替换用存储器101输入帧,则编码控制部110将输入替换用存储器101内的各帧替换成进行编码的顺序。根据帧间预测 编码中的参照关系进行向编码顺序的替换,用作参照帧的帧被替换,以使之在用作参照帧的帧之前先被编码。 The input images are input into the
这里,设P帧参照1个显示时间顺序上位于前方或后方的附近已编码完的I或P帧。另外,设B帧参照两个显示时间顺序上位于前方或后方的附近已编码完的帧。 Here, it is assumed that a P frame refers to a coded I or P frame near the front or rear in the display time order. In addition, it is assumed that the B frame refers to two frames that have already been encoded in the vicinity of the front or rear in the order of display time. the
帧的编码顺序为在位于两个P帧之间的B帧(图6(a)的实例中为3个)中,从位于中央的帧开始编码,之后,对接近P帧的B帧进行编码。例如,对于帧B6-P9,按帧P9、B7、B6、B8的顺序进行编码。 The encoding order of the frames is that among the B-frames located between two P-frames (three in the example in Fig. . For example, for frames B6-P9, encoding is performed in the order of frames P9, B7, B6, and B8. the
此时,帧B6-P9的各帧中,图6(a)所示箭头的终点帧参照箭头起点的帧。即,帧B7参照帧P5、P9,帧B6参照帧P5、B7,帧B8参照帧B7、P9。另外,此时,编码控制部110将各帧替换成图6(b)所示进行编码的顺序。 At this time, among the frames B6-P9, the frame at the end of the arrow shown in FIG. 6( a ) refers to the frame at the start of the arrow. That is, frame B7 refers to frames P5 and P9, frame B6 refers to frames P5 and B7, and frame B8 refers to frames B7 and P9. In addition, at this time, the
下面,按运动补偿单位读出替换用存储器101中进行替换后的各帧。其中,将运动补偿单位称为宏块,将宏块设为水平16×垂直16象素的大小。下面,顺序说明图6(a)所示帧P9、B7、B6、B8的编码处理。 Next, each frame after replacement in the
(帧P9的编码处理) (Encoding processing of frame P9)
帧P9是P帧,所以参照显示时间顺序上位于前方或后方的已处理完的1个帧来进行帧间预测编码。在帧P9的编码中,如上所述,参照帧变为帧P5。帧P5编码终止后,将解码图像存储在参照帧用存储器107中。在P帧的编码中,编码控制部110控制各开关,使开关113、114、115变为导通。从而,从替换用存储器101中读出的帧P9的宏块首先被输入运动矢量检测部108、模式选择部109和差分运算部102。 Since the frame P9 is a P frame, inter-frame predictive coding is performed with reference to a previously processed frame in the order of display time. In encoding of frame P9, as described above, the reference frame becomes frame P5. After the encoding of frame P5 is terminated, the decoded image is stored in the
运动矢量检测部108将参照帧用存储器107中存储的帧P5的解码图像数据用作参照帧,对帧P9的宏块检测运动矢量。另外,运动矢量检测部108向模式选择部109输出检测到的运动矢量。The motion
模式选择部109使用运动矢量检测部108检测到的运动矢量,确定帧P9的宏块的编码模式。这里,所谓编码模式是表示用哪种方法来编码宏块。在P帧的情况下,例如从帧内编码、使用运动矢量的帧间预测编码、不使用运动矢量(将移动处理为0)的帧间预测编码中,确定以某种方法来进行编码。在编码模式确定中,一般选择由少的比特量来进一步减小编码误差的方法。 The
模式选择部109向码列生成部104输出确定的编码模式。此时,模式选择部109确定的编码模式为帧间预测编码时,向码列生成部104输出该帧间预测编码中使用的运动矢量,并存储在运动矢量存储部116中。 The
模式选择部109根据确定的编码模式生成预测图像数据,并将该预测图像数据输出到差分运算部102和加法运算部106。但在模式选择部109选择帧内编码的情况下,不输出预测图像数据。另外,模式选择部109在选择帧内编码的情况下,控制开关111连接到a侧,控制开关112连接到c侧,并在选择帧间预测编码时,控制开关111连接到b侧,控制开关112连接到d侧。下面,说明由模式选择部109选择帧间预测编码的情况。 The
向差分运算部102输入从替换用存储器101中读出的帧P9的宏块的图像数据、和从模式选择部109输出的预测图像数据。差分运算部102运算帧P9的宏块的图像数据与预测图像数据之差,生成预测图像数据,输出到预测误差编码部103。 The image data of the macroblock of the frame P9 read from the
预测误差编码部103通过对输入的预测误差图像数据实施频率变换或量化等编码处理,生成编码数据,并输出到码列生成部104和预测误差解码部105。其中,设频率变换或量化处理例如以水平8×垂直8象素、或水平4×垂直4象素单位来进行。 The prediction
码列生成部104对输入的编码数据实施可变长编码等,并通过附加运动矢量或编码模式等信息或头信息等,生成码列并输出。The
另一方面,预测误差解码部105对输入的编码数据实施去量化或逆频率变换等解码处理,并生成解码差分图像数据后,输出到加法运算部106。加法运算部106通过将解码差分图像数据与从模式选择部109输入的预测图像数据相加,生成解码图像数据,并存储在参照帧用存储器107中。 On the other hand, the prediction
通过以上处理,完成帧P9的1个宏块的处理。通过同样处理,对帧P9的其余宏块也进行编码处理。另外,若对帧P9的所有宏块结束处理,则接着进行帧B7的编码处理。 Through the above processing, the processing of one macroblock of the frame P9 is completed. Through the same processing, encoding processing is also performed on the remaining macroblocks in the frame P9. In addition, when the processing is completed for all the macroblocks in the frame P9, the encoding processing of the frame B7 is performed next. the
(帧B7的编码处理) (Encoding processing of frame B7)
帧B7的参照帧中,前向参照帧是帧P5,后向参照帧是P9。因为帧B7在其它帧编码时被用作参照帧,所以编码控制部110控制各开关,使开关113、114、115变为导通。从而,从替换用存储器101中读出的帧B7的宏块被输入运动矢量检测部108、模式选择部109和差分运算部102。 Among the reference frames of frame B7, the forward reference frame is frame P5, and the backward reference frame is P9. Since the frame B7 is used as a reference frame when encoding other frames, the
运动矢量检测部108将参照帧用存储器107中存储的帧P5的解码图像数据用作前向参照帧,将帧P9的解码图像数据用作后向参照帧,对帧B7的宏块检测前向运动矢量和后向运动矢量。另外,运动矢量检测部108向模式选择部109输出检测到的运动矢量。 The motion
模式选择部109使用运动矢量检测部108检测到的运动矢量,确定帧B7的宏块编码模式。这里,B帧的编码模式可从例如帧内编码、使用前向运动矢量的帧间预测编码、使用后向运动矢量的帧间预测编码、使用双向运动矢量的帧间预测编码、直接模式中进行选择。 The
用图7(a)来说明用直接模式来编码时的动作。图7(a)是表示直接模式下运动矢量的说明图,表示在直接模式下编码帧B7的块a的情况。该情况下,利用编码帧P9中、位置与块a相同的块b时使用的运动矢量c,帧P9作为位于帧B7之后的参照帧。运动矢量c存储在运动矢量存储部116中。块a使用利用运动矢量c求出的运动矢量, 根据作为前向参照帧的帧P5与作为后向参照帧的帧P9,进行双向预测。例如,作为利用运动矢量c的方法,有生成平行于运动矢量c的矢量的方法。编码此时的块a时所用的运动矢量对于帧P5变为运动矢量d,对于帧P9变为运动矢量e。 The operation when encoding is performed in the direct mode will be described with reference to FIG. 7(a). FIG. 7( a ) is an explanatory diagram showing motion vectors in the direct mode, and shows a case where block a of frame B7 is coded in the direct mode. In this case, the frame P9 is used as a reference frame after the frame B7 using the motion vector c used for encoding the block b at the same position as the block a in the frame P9. The motion vector c is stored in the motion
此时,若设作为前向运动矢量的运动矢量d的大小为MVF,设作为后向运动矢量的运动矢量e的大小为MVB,运动矢量c的大小为MV,当前帧(帧B7)的后向参照帧(帧P9)与其后向参照帧的块所参照的帧(帧P5)的时间距离为TRD,当前帧(帧B7)与前向参照帧(帧P5)的时间距离为TRF,则运动矢量d的大小MVF、运动矢量e的大小MVB分别由(式1)、(式2)求出。另外,可根据例如附加于各帧的表示显示顺序(位置)的信息或该信息差,确定各帧间的时间距离。 At this time, if the size of the motion vector d as the forward motion vector is MVF, the size of the motion vector e as the backward motion vector is MVB, and the size of the motion vector c is MV, the current frame (frame B7) after The time distance to the frame (frame P5) referred to by the block of the reference frame (frame P9) and its backward reference frame is TRD, and the time distance between the current frame (frame B7) and the forward reference frame (frame P5) is TRF, then The magnitude MVF of the motion vector d and the magnitude MVB of the motion vector e are obtained by (Equation 1) and (Equation 2), respectively. In addition, the temporal distance between frames can be specified, for example, based on information indicating the display order (position) added to each frame or the information difference. the
MVF=MV×TRF/TRD 式1 MVF=MV×TRF/
MVB=(TRF-TRD)×MV/TRD 式2 MVB=(TRF-TRD)×MV/TRD Formula 2
其中,MVF、MVB分别表现运动矢量的水平成分、垂直成分,正负符号表示运动矢量的方向。 Among them, MVF and MVB represent the horizontal component and vertical component of the motion vector respectively, and the positive and negative symbols represent the direction of the motion vector. the
在编码模式的选择中,通常选择由少的比特量来进一步减小编码误差的方法。模式选择部109向码列生成部104输出确定的编码模式。此时,模式选择部109确定的编码模式为帧间预测编码时,向码列生成部104输出该帧间预测编码中使用的运动矢量,并存储在运动矢量存储部116中。另外,在选择直接模式的情况下,将由(式1)、(式2)计算求出的、直接模式中使用的运动矢量存储在运动矢量存储部116中。 In the selection of the coding mode, the method of further reducing the coding error by a small amount of bits is usually selected. The
模式选择部109根据确定的编码模式生成预测图像数据,并将该预测图像数据输出到差分运算部102和加法运算部106。但在模式选择部109选择帧内编码的情况下,不输出预测图像数据。另外,模式选择部109在选择帧内编码的情况下,控制开关111连接到a侧,控制开关112连接到c侧,并在选择帧间预测编码或直接模式时,控制 开关111连接到b侧,控制开关112连接到d侧。下面,说明由模式选择部109选择帧间预测编码或直接模式的情况。 The
向差分运算部102输入从替换用存储器101中读出的帧B7的宏块的图像数据、和从模式选择部109输出的预测图像数据。差分运算部102运算帧B7的宏块的图像数据与预测图像数据之差,生成预测图像数据,输出到预测误差编码部103。 The image data of the macroblock of the frame B7 read from the
预测误差编码部103通过对输入的预测误差图像数据实施频率变换或量化等编码处理,生成编码数据,并输出到码列生成部104和预测误差解码部105。 The prediction
码列生成部104对输入的编码数据实施可变长编码等,并通过附加运动矢量或编码模式等信息,生成码列并输出。 The
另一方面,预测误差解码部105对输入的编码数据实施去量化或逆频率变换等解码处理,并生成解码差分图像数据后,输出到加法运算部106。加法运算部106通过将解码差分图像数据与从模式选择部109输入的预测图像数据相加,生成解码图像数据,并存储在参照帧用存储器107中。 On the other hand, the prediction
通过以上处理,完成帧B7的1个宏块的处理。通过同样处理,对帧B7的其余宏块也进行编码处理。另外,若对帧B7的所有宏块结束处理,则接着进行帧B6的编码处理。 Through the above processing, the processing of one macroblock of the frame B7 is completed. Through the same processing, encoding processing is also performed on the remaining macroblocks in the frame B7. In addition, when all the macroblocks in the frame B7 are processed, the encoding process of the frame B6 is performed next. the
(帧B6的编码处理) (Encoding processing of frame B6)
因为帧B6是B帧,所以参照显示时间顺序上位于前方或后方的已处理完的两个帧来进行帧间预测编码。如上所述,帧B6的参照图像中,前向参照帧是帧P5,后向参照帧是B7。在进行其它帧的编码时,帧B6不被用作参照帧。从而,编码控制部110控制各开关,使开关113导通,开关114、115截止。由此,从替换用存储器101中读出的帧B6的宏块被输入运动矢量检测部108、模式选择部109和差分运算部102。Since the frame B6 is a B frame, inter-frame predictive coding is performed with reference to two processed frames located in the front or back in the order of display time. As described above, among the reference images of frame B6, the forward reference frame is frame P5, and the backward reference frame is B7. Frame B6 is not used as a reference frame when encoding other frames. Accordingly, the
运动矢量检测部108将参照帧用存储器107中存储的帧P5的解码图像数据用作前向参照帧,将帧B7的解码图像数据用作后向参照帧,对帧B6的宏块检测前向运动矢量和后向运动矢量。另外,运动矢量检测部108向模式选择部109输出检测到的运动矢量。 The motion
模式选择部109使用运动矢量检测部108检测到的运动矢量,确定帧B6的宏块编码模式。 The
这里,用图7(b)来说明对帧B6的宏块使用直接模式时动作的第一例。图7(b)是表示直接模式下运动矢量的说明图,表示在直接模式下编码帧B6的块a的情况。此时,利用编码帧B7中、位置与块a相同的块b时使用的运动矢量c,帧B7作为位于帧B6之后的参照帧。设块b仅由前向参照、或由双向参照进行编码,设该前向运动矢量为运动矢量c。设运动矢量c存储在运动矢量存储部116中。块a使用利用运动矢量c生成的运动矢量,根据作为前向参照帧的帧P5与作为后向参照帧的帧B7,进行双向预测。例如,若与上述帧B7的情况一样,使用生成平行于运动矢量c的运动矢量的方法,则编码块a时所用的运动矢量对于帧P5变为运动矢量d,对于帧B7变为运动矢量e。 Here, a first example of the operation when the direct mode is used for the macroblock of the frame B6 will be described with reference to FIG. 7(b). Fig. 7(b) is an explanatory diagram showing motion vectors in the direct mode, and shows a case where block a of the frame B6 is coded in the direct mode. At this time, frame B7 is used as a reference frame after frame B6 by using the motion vector c used when encoding block b at the same position as block a in frame B7. Assume that block b is coded only by forward reference or by bidirectional reference, and this forward motion vector is assumed to be motion vector c. It is assumed that the motion vector c is stored in the motion
此时,若设作为前向运动矢量的运动矢量d的大小为MVF,设作为后向运动矢量的运动矢量e的大小为MVB,运动矢量c的大小为MV,当前帧(帧B6)的后向参照帧(帧B7)与其后向参照帧的块B所参照的帧(帧P5)的时间距离为TRD,当前帧(帧B6)与前向参照帧(帧P5)的时间距离为TRF,则运动矢量d的大小MVF、运动矢量e的大小MVB分别由上述(式1)、(式2)求出。另外,可根据例如附加于各帧的表示显示顺序的信息或该信息差,确定各帧间的时间距离。 At this time, if the size of the motion vector d as the forward motion vector is MVF, the size of the motion vector e as the backward motion vector is MVB, and the size of the motion vector c is MV, the current frame (frame B6) after The time distance to the frame (frame P5) referred to by the block B of the reference frame (frame B7) and its backward reference frame is TRD, and the time distance between the current frame (frame B6) and the forward reference frame (frame P5) is TRF, Then, the magnitude MVF of the motion vector d and the magnitude MVB of the motion vector e are obtained by the above-mentioned (Equation 1) and (Equation 2), respectively. In addition, the temporal distance between frames can be specified, for example, based on information indicating the order of display added to the frames or the information difference. the
这样,在直接模式下,通过对作为后向参照帧的B帧的前向运动矢量进行换算,不必发送运动矢量的信息,并且可提高动作预测效率。由此,可提高编码效率。并且,通过将可利用的在显示时间顺序 中最近的参照帧用作前向参照帧和后向参照帧,可提高编码效率。 In this way, in the direct mode, by converting the forward motion vector of the B frame as the backward reference frame, it is not necessary to transmit the information of the motion vector, and the motion prediction efficiency can be improved. Thus, encoding efficiency can be improved. Also, encoding efficiency can be improved by using the latest available reference frame in display time order as the forward reference frame and the backward reference frame. the
下面,用图7(b)来说明使用直接模式时的第二例。此时,利用编码帧B7中、位置与块a相同的块b时使用的运动矢量,帧B7作为位于帧B6之后的参照帧。在此,块b由直接模式进行编码,设此时实质上使用的前向运动矢量为运动矢量c。即,运动矢量c是通过换算(スケ—リング)在帧B7后向参照的帧P9内、对处于与块b相同位置的块i编码时使用的运动矢量而得到的运动矢量。运动矢量c使用运动矢量存储部116中存储的运动矢量,或从运动矢量存储部116中读出由直接模式编码块b时使用的帧P9内的块i的运动矢量后,计算求出。模式选择部109也可在由直接模式编码帧B7的块b时通过换算处理求出的运动矢量被存储在运动矢量存储部116中的情况下,仅存储前向运动矢量。块a使用利用运动矢量c生成的运动矢量,根据作为前向参照帧的帧P5与作为后向参照帧的帧B7,进行双向预测。例如,若与上述第一例的情况一样,使用生成平行于运动矢量c的运动矢量的方法,则编码块a时所用的运动矢量对于帧P5变为运动矢量d,对于帧B7变为运动矢量e。 Next, a second example of using the direct mode will be described with reference to FIG. 7(b). At this time, frame B7 is used as a reference frame after frame B6 by using the motion vector used for encoding block b at the same position as block a in frame B7. Here, block b is coded in the direct mode, and the forward motion vector substantially used at this time is assumed to be motion vector c. That is, the motion vector c is a motion vector obtained by scaling the motion vector used when encoding the block i located at the same position as the block b in the frame P9 back-referenced by the frame B7. The motion vector c is calculated by using the motion vector stored in the motion
此时,作为对块a的前向运动矢量的运动矢量d的大小MVF、与作为后向运动矢量的运动矢量e的大小MVB与直接模式的第一例一样,可使用(式1)、(式2)求出。 At this time, the magnitude MVF of the motion vector d as the forward motion vector for block a and the magnitude MVB of the motion vector e as the backward motion vector are the same as in the first example of the direct mode, and (Equation 1), ( Formula 2) can be obtained. the
这样,在直接模式下,对作为后向参照帧的B帧在直接模式下实质上使用的前向运动矢量进行换算,所以不必发送运动矢量的信息,并且,即使在直接模式下编码后向参照帧内同一位置的块时,也可提高动作预测效率。由此,可提高编码效率。并且,通过将在显示时间顺序中可利用的最近的参照帧用作前向和后向参照帧,可提高编码效率。 In this way, in the direct mode, the forward motion vector substantially used in the direct mode of the B frame as the backward reference frame is converted, so there is no need to transmit the information of the motion vector, and even if the backward reference frame is coded in the direct mode The motion prediction efficiency can also be improved when there are blocks at the same position in the frame. Thus, encoding efficiency can be improved. Also, encoding efficiency can be improved by using the latest reference frame available in display time order as the forward and backward reference frames. the
下面,用图7(c)来说明用直接模式时的第三例。图7(c)是表示直接模式下运动矢量的说明图,表示在直接模式下编码帧B6的块a的 情况。该情况下,利用编码帧B7中、位置与块a相同的块b时使用的运动矢量c,帧B7作为位于帧B6之后的参照帧。其中,设仅使用后向运动矢量来编码块b,并设该后向运动矢量为运动矢量f。设运动矢量f存储在运动矢量存储部116中。块a使用利用运动矢量f生成的运动矢量,根据作为前向参照帧的帧P5与作为后向参照帧的帧B7,进行双向预测。例如,若与上述第一例的情况一样使用生成平行于运动矢量f的运动矢量的方法,则编码块a时所用的运动矢量对于帧P5变为运动矢量g,对于帧B7变为运动矢量h。 Next, the third example when using the direct mode will be described with reference to FIG. 7(c). FIG. 7(c) is an explanatory diagram showing motion vectors in the direct mode, and shows a case where block a of the frame B6 is coded in the direct mode. In this case, frame B7 is used as a reference frame after frame B6 by using motion vector c used when encoding block b at the same position as block a in frame B7. Wherein, it is assumed that only the backward motion vector is used to encode the block b, and this backward motion vector is assumed to be the motion vector f. It is assumed that the motion vector f is stored in the motion
此时,若设作为前向运动矢量的运动矢量g的大小为MVF,设作为后向运动矢量的运动矢量h的大小为MVB,运动矢量f的大小为MV,当前帧(帧B6)的后向参照帧(帧B7)与其后向参照帧的块所参照的帧(帧P9)的时间距离为TRD,当前帧(帧B6)与前向参照帧(帧P5)的时间距离为TRF,当前帧(帧B6)与后向参照帧(帧B7)的时间距离为TRB,则运动矢量g的大小MVF、运动矢量h的大小MVB分别由(式3)、(式4)求出。 At this time, if the size of the motion vector g as the forward motion vector is MVF, the size of the motion vector h as the backward motion vector is MVB, and the size of the motion vector f is MV, the current frame (frame B6) after The temporal distance to the reference frame (frame B7) and the frame (frame P9) referred to by the blocks of the backward reference frame is TRD, the temporal distance between the current frame (frame B6) and the forward reference frame (frame P5) is TRF, and the current The temporal distance between the frame (frame B6) and the backward reference frame (frame B7) is TRB, and the magnitude MVF of the motion vector g and the magnitude MVB of the motion vector h are obtained by (Equation 3) and (Equation 4), respectively. the
MVF=-TRF×MV/TRD 式3 MVF=-TRF×MV/TRD Formula 3
MVB=TRB×MV/TRD 式4 MVB=TRB×MV/
这样,在直接模式下,对编码作为后向参照帧的B帧中同一位置上的块时使用的后向运动矢量进行换算,所以不必发送运动矢量的信息,并且,即使在后向参照帧内的同一位置上的块仅具有后向运动矢量时,也可提高预测效率。由此,可提高编码效率。并且,通过将在显示时间顺序中可利用的最近的参照帧用作前向和后向参照帧,可提高编码效率。 In this way, in the direct mode, the backward motion vector used when encoding the block at the same position in the B frame as the backward reference frame is converted, so there is no need to transmit the information of the motion vector, and even in the backward reference frame The prediction efficiency can also be improved when the block at the same position of the α has only backward motion vectors. Thus, encoding efficiency can be improved. Also, encoding efficiency can be improved by using the latest reference frame available in display time order as the forward and backward reference frames. the
下面,用图7(d)来说明使用直接模式时的第四例。图7(d)是表示直接模式下运动矢量的说明图,表示在直接模式下编码帧B6的块a的情况。此时,利用编码帧B7中、位置与块a相同的块b时使用的运动矢量,帧B7作为位于帧B6之后的参照帧。设与第三例一样, 仅使用后向运动矢量来编码块b,设该后向运动矢量为运动矢量f。设运动矢量f被存储在运动矢量存储部116中。块a使用利用运动矢量f生成的运动矢量,根据作为运动矢量f参照帧的帧P9与作为后向参照帧的帧B7,进行双向预测。例如,若与上述第一例的情况一样,使用生成平行于运动矢量f的运动矢量的方法,则编码块a时所用的运动矢量对于帧P9变为运动矢量g,对于帧B7变为运动矢量h。 Next, a fourth example of using the direct mode will be described with reference to FIG. 7(d). FIG. 7( d ) is an explanatory diagram showing motion vectors in the direct mode, and shows a case where block a of the frame B6 is coded in the direct mode. At this time, frame B7 is used as a reference frame after frame B6 by using the motion vector used for encoding block b at the same position as block a in frame B7. Assume that, as in the third example, only the backward motion vector is used to encode the block b, and this backward motion vector is assumed to be the motion vector f. It is assumed that the motion vector f is stored in the motion
此时,若设作为前向运动矢量的运动矢量g的大小为MVF,设作为后向运动矢量的运动矢量h的大小为MVB,运动矢量f的大小为MV,当前帧(帧B6)的后向参照帧(帧B7)与其后向参照帧的块所参照的帧(帧P9)的时间距离为TRD,当前帧(帧B6)与后向参照帧(帧B7)的块所参照的帧(帧P9)的时间距离为TRF,则运动矢量g的大小MVF、运动矢量h的大小MVB分别由(式1)、(式2)求出。 At this time, if the size of the motion vector g as the forward motion vector is MVF, the size of the motion vector h as the backward motion vector is MVB, and the size of the motion vector f is MV, the current frame (frame B6) after The time distance to the frame (frame P9) referred to by the block of the reference frame (frame B7) and its backward reference frame is TRD, the current frame (frame B6) and the frame referred to by the block of the backward reference frame (frame B7) ( When the temporal distance of frame P9) is TRF, the magnitude MVF of the motion vector g and the magnitude MVB of the motion vector h are obtained from (Equation 1) and (Equation 2), respectively. the
这样,在直接模式下,对编码作为后向参照帧的B帧中同一位置的块时使用的后向运动矢量进行换算,从而不必发送运动矢量的信息,并且,即使在后向参照帧内同一位置的块仅具有后向运动矢量的情况下,也可提高预测效率。由此,可提高编码效率。并且,通过将后向运动矢量所参照的帧用作前向参照帧,将在显示时间顺序中可利用的最近的参照帧用作后向参照帧,可提高编码效率。 In this way, in the direct mode, the backward motion vector used when encoding the block at the same position in the B frame as the backward reference frame is converted, so that there is no need to send the information of the motion vector, and even if the same block in the backward reference frame Even when the block at the position has only backward motion vectors, the prediction efficiency can be improved. Thus, encoding efficiency can be improved. In addition, by using the frame referred to by the backward motion vector as the forward reference frame and using the latest reference frame available in display time order as the backward reference frame, coding efficiency can be improved. the
下面,用图8(a)来说明用直接模式时的第五例。图8(a)是表示直接模式下运动矢量的说明图,表示在直接模式下编码帧B6的块a的情况。该情况下,将运动矢量的大小用作0,将帧P5用作前向参照帧,将帧B7用作后向参照帧,通过进行双向参照,进行运动补偿。 Next, a fifth example when the direct mode is used will be described with reference to FIG. 8(a). FIG. 8( a ) is an explanatory diagram showing motion vectors in the direct mode, and shows a case where block a of the frame B6 is coded in the direct mode. In this case, the magnitude of the motion vector is set to 0, the frame P5 is used as a forward reference frame, and the frame B7 is used as a backward reference frame, and motion compensation is performed by performing bidirectional reference. the
这样,在直接模式下,通过将运动矢量强制设置为0,在选择直接模式的情况下,可不必发送运动矢量的信息,并且不必对运动矢量进行换算处理,可削减处理量。 In this way, in the direct mode, by forcibly setting the motion vector to 0, when the direct mode is selected, it is not necessary to transmit the information of the motion vector, and it is not necessary to perform conversion processing on the motion vector, thereby reducing the amount of processing. the
下面,用图8(b)来说明用直接模式时的第六例。图8(b)是表示直接模式下运动矢量的说明图,表示在直接模式下编码帧B6的块a的 情况。此时,利用编码帧P9中、位置与块a相同的块f时使用的运动矢量g,帧P9作为位于帧B6之后的P帧。运动矢量g存储在运动矢量存储部116中。块a使用利用运动矢量g生成的运动矢量,根据作为前向参照帧的帧P5与作为后向参照帧的帧B7,进行双向预测。例如,若与上述第一例的情况一样使用生成平行于运动矢量g的运动矢量的方法,则编码块a时所用的运动矢量对于帧P5变为运动矢量h,对于帧B7变为运动矢量i。 Next, a sixth example when the direct mode is used will be described with reference to FIG. 8(b). FIG. 8(b) is an explanatory diagram showing motion vectors in the direct mode, and shows a case where block a of the frame B6 is coded in the direct mode. At this time, using the motion vector g used when encoding the block f in the same position as the block a in the frame P9, the frame P9 is regarded as a P frame located after the frame B6. The motion vector g is stored in the motion
此时,若设作为前向运动矢量的运动矢量h的大小为MVF,设作为后向运动矢量的运动矢量i的大小为MVB,运动矢量g的大小为MV,显示时间顺序上位于当前帧(帧B6)之后的P帧(帧P9)与该P帧的块f所参照的帧(帧P5)的时间距离为TRD,当前帧(帧B6)与前向参照帧(帧P5)的时间距离为TRF,当前帧(帧B6)与后向参照帧(帧B7)的时间距离为TRB,则运动矢量h的大小MVF、运动矢量i的大小MVB分别由(式1)、(式5)求出。 At this time, if the size of the motion vector h as the forward motion vector is MVF, the size of the motion vector i as the backward motion vector is MVB, and the size of the motion vector g is MV, the display time sequence is located in the current frame ( The time distance between the P frame (frame P9) after frame B6) and the frame (frame P5) referred to by the block f of the P frame is TRD, and the time distance between the current frame (frame B6) and the forward reference frame (frame P5) is TRF, and the temporal distance between the current frame (frame B6) and the backward reference frame (frame B7) is TRB, then the size MVF of the motion vector h and the size MVB of the motion vector i are calculated by (Formula 1) and (Formula 5) respectively out. the
MVB=-TRB×MV/TRD 式5 MVB=-TRB×MV/TRD Formula 5
这样,在直接模式下,对显示时间顺序上位于后方的P帧的运动矢量进行换算,在后向参照帧为B帧的情况下,不必存储该B帧的运动矢量,且不必发送运动矢量的信息。并且,通过将在显示时间顺序中最近的参照帧用作前向和后向参照帧,可提高编码效率。 In this way, in the direct mode, the motion vector of the P frame located behind in the display time order is converted, and when the backward reference frame is a B frame, it is not necessary to store the motion vector of the B frame, and it is not necessary to transmit the motion vector information. Also, encoding efficiency can be improved by using the latest reference frame in display time order as the forward and backward reference frames. the
下面,用图8(c)来说明使用直接模式时的第七例。图8(c)是表示直接模式下运动矢量的说明图,表示在直接模式下编码帧B6的块a的情况。该例是对上述说明的帧序号变更(再映射)相对索引的分配,后向参照帧变为帧P9的情况。此时,利用编码帧P9中、位置与块a相同的块f时使用的运动矢量g,帧P9作为帧B7的后向参照帧。运动矢量g被存储在运动矢量存储部116中。块a使用利用运动矢量g生成的运动矢量,根据作为前向参照帧的帧P5与作为后向参照帧的帧P9,进行双向预测。例如,若与上述第一例的情况一样,使用生 成平行于运动矢量g的运动矢量的方法,则编码块a时所用的运动矢量对于帧P5变为运动矢量h,对于帧P9变为运动矢量i。 Next, a seventh example of using the direct mode will be described with reference to FIG. 8(c). FIG. 8(c) is an explanatory diagram showing motion vectors in the direct mode, and shows a case where block a of the frame B6 is coded in the direct mode. In this example, the assignment of the relative index is changed (remapped) to the frame number described above, and the backward reference frame is changed to the frame P9. At this time, frame P9 is used as a backward reference frame of frame B7 by using the motion vector g used when encoding block f in the same position as block a in frame P9. The motion vector g is stored in the motion
此时,若设作为前向运动矢量的运动矢量h的大小为MVF,设作为后向运动矢量的运动矢量i的大小为MVB,运动矢量g的大小为MV,当前帧(帧B6)的后向参照帧(帧P9)与其后向参照帧的块所参照的帧(帧P5)的时间距离为TRD,当前帧(帧B6)与前向参照帧(帧P5)的时间距离为TRF,则运动矢量h的大小MVF、运动矢量i的大小MVB分别由(式1)、(式2)求出。 At this time, if the size of the motion vector h as the forward motion vector is MVF, the size of the motion vector i as the backward motion vector is MVB, and the size of the motion vector g is MV, the current frame (frame B6) after The time distance to the frame (frame P5) referred to by the block of the reference frame (frame P9) and its backward reference frame is TRD, and the time distance between the current frame (frame B6) and the forward reference frame (frame P5) is TRF, then The magnitude MVF of the motion vector h and the magnitude MVB of the motion vector i are obtained by (Equation 1) and (Equation 2), respectively. the
这样,在直接模式下,即使在对帧序号变更相对索引的分配时,也可对编码完的帧的运动矢量进行换算,并且在选择直接模式的情况下,不必发送运动矢量的信息。 In this way, in the direct mode, even when the assignment of the relative index to the frame number is changed, the motion vector of the coded frame can be converted, and when the direct mode is selected, the motion vector information does not need to be transmitted. the
另外,在由直接模式编码帧B6的块a时,仅由前向参照、双向参照或直接模式来编码帧B6的后向参照帧中位置与块a相同的块,在编码时使用前向运动矢量的情况下,对该前向运动矢量进行换算,如上述第一例、第二例或第七例那样,由直接模式编码块a。另一方面,仅由后向参照来编码位置与块a相同的块,在编码时使用后向运动矢量的情况下,对该后向运动矢量进行换算,如上述第三例或第四例那样,由直接模式编码块a。 In addition, when encoding block a of frame B6 by direct mode, only the block in the backward reference frame of frame B6 with the same position as block a is encoded by forward reference, bidirectional reference or direct mode, and the forward motion is used in encoding In the case of a vector, the forward motion vector is scaled, and the block a is coded in the direct mode as in the above-mentioned first example, second example, or seventh example. On the other hand, when a block at the same position as block a is coded only by backward reference, and when a backward motion vector is used for coding, the backward motion vector is converted, as in the third or fourth example above. , block a is coded by direct mode. the
上述直接模式不仅可适用于帧间的时间间隔恒定的情况,也可适用于可变帧间隔的情况。 The direct mode described above is applicable not only when the time interval between frames is constant, but also when the interval between frames is variable. the
模式选择部109向码列生成部104输出确定的编码模式。另外,模式选择部109根据确定的编码模式,生成预测图像数据,并将该预测图像数据输出到差分运算部102。但模式选择部109在选择帧内编码的情况下,不输出预测图像数据。另外,模式选择部109在选择帧内编码的情况下,控制开关111连接到a侧,控制开关112连接到c侧,并在选择帧间预测编码或直接模式时,控制开关111连接到b侧,控制开关112连接到d侧。另外,模式选择部109在确定的编码模式 为帧间预测编码的情况下,向码列生成部104输出该帧间预测编码中使用的运动矢量。这里,因为帧B6在编码其它帧时不被用作参照帧,所以帧间预测编码中使用的运动矢量不必存储在运动矢量存储部116中。下面,说明由模式选择部109选择帧间预测编码或直接模式的情况。 The
向差分运算部102输入从替换用存储器101中读出的帧B6的宏块的图像数据、和从模式选择部109输出的预测图像数据。差分运算部102运算帧B6的宏块的图像数据与预测图像数据之差,生成预测误差图像数据,输出到预测误差编码部103。预测误差编码部103通过对输入的预测误差图像数据实施频率变换或量化等编码处理,生成编码数据,并输出到码列生成部104。 The image data of the macroblock of the frame B6 read from the
码列生成部104对输入的编码数据实施可变长编码等,并通过附加运动矢量或编码模式等信息,生成码列并输出。 The
通过以上处理,完成帧B6的1个宏块的编码处理。通过对帧B6的其余宏块也进行同样处理,一旦完成处理,则进行帧B8的编码处理。 Through the above processing, the coding processing of one macroblock of the frame B6 is completed. By performing the same processing on the remaining macroblocks of the frame B6, once the processing is completed, the encoding processing of the frame B8 is performed. the
(帧B8的编码处理) (encoding processing of frame B8)
因为帧B8是B帧,所以参照显示时间顺序上位于前方或后方的已处理完的两个帧来进行帧间预测编码。如上所述,帧B8的参照图像中,前向参照帧是帧B7,后向参照帧是P9。在进行其它帧的编码时,帧B8不被用作参照帧,从而,编码控制部110控制各开关,使开关113导通,开关114、115截止。由此,从替换用存储器101中读出的帧,8的宏块被输入运动矢量检测部108、模式选择部109和差分运算部102。 Since the frame B8 is a B frame, inter-frame predictive coding is performed with reference to two processed frames located in the front or back in the order of display time. As described above, among the reference images of frame B8, the forward reference frame is frame B7, and the backward reference frame is P9. When encoding other frames, the frame B8 is not used as a reference frame, so the
运动矢量检测部108将参照帧用存储器107中存储的帧B7的解码图像数据用作前向参照帧,将帧P9的解码图像数据用作后向参照帧,对帧B8的宏块检测前向运动矢量和后向运动矢量。另外,运动 矢量检测部108向模式选择部109输出检测到的运动矢量。 The motion
模式选择部109使用运动矢量检测部108检测到的运动矢量,确定帧B8的宏块编码模式。 The
这里,用图8(d)来说明对帧B8的宏块使用直接模式时的动作。图8(d)是表示直接模式下运动矢量的说明图,表示在直接模式下编码帧B8的块a的情况。此时,利用编码帧P9中、位置与块a相同的块b时使用的运动矢量,帧P9作为位于帧B8之后的参照帧。设块b仅由前向参照进行编码,设该前向运动矢量为运动矢量c。设运动矢量c存储在运动矢量存储部116中。块a使用利用运动矢量c生成的运动矢量,根据作为前向参照帧的帧B7与作为后向参照帧的帧P9,进行双向预测。例如,若与上述帧B7的情况一样,使用生成平行于运动矢量c的运动矢量的方法,则编码块a时所用的运动矢量对于帧B7变为运动矢量d,对于帧P9变为运动矢量e。 Here, the operation when the direct mode is used for the macroblock of the frame B8 will be described with reference to FIG. 8( d ). FIG. 8( d ) is an explanatory diagram showing motion vectors in the direct mode, and shows a case where block a of the frame B8 is coded in the direct mode. At this time, frame P9 is used as a reference frame after frame B8 using the motion vector used for encoding block b at the same position as block a in frame P9. Let block b be coded by forward reference only, and let this forward motion vector be motion vector c. It is assumed that the motion vector c is stored in the motion
此时,若设作为前向运动矢量的运动矢量d的大小为MVF,设作为后向运动矢量的运动矢量e的大小为MVB,运动矢量c的大小为MV,当前帧(帧B8)的后向参照帧(帧P9)与其后向参照帧的块b所参照的帧(帧P5)的时间距离为TRD,当前帧(帧B8)与前向参照帧(帧B7)的时间距离为TRF,当前帧(帧B8)与后向参照帧(帧P9)的时间距离为TRB,则运动矢量d的大小MVF、运动矢量e的大小MVB分别由上述(式1)、(式5)求出。 At this time, if the size of the motion vector d as the forward motion vector is MVF, the size of the motion vector e as the backward motion vector is MVB, and the size of the motion vector c is MV, the current frame (frame B8) after The time distance to the frame (frame P5) referred to by the block b of the reference frame (frame P9) and its backward reference frame is TRD, and the time distance between the current frame (frame B8) and the forward reference frame (frame B7) is TRF, The temporal distance between the current frame (frame B8) and the backward reference frame (frame P9) is TRB, then the magnitude MVF of the motion vector d and the magnitude MVB of the motion vector e are obtained by the above (Equation 1) and (Equation 5), respectively. the
这样,在直接模式下,通过对后向参照帧的前向运动矢量进行换算,不必发送运动矢量的信息,并且可提高预测效率。由此,可提高编码效率。并且,通过将可利用的在显示时间顺序中最近的参照帧用作前向参照帧和后向参照帧,可提高编码效率。 In this way, in the direct mode, by converting the forward motion vector of the backward reference frame, it is not necessary to transmit the information of the motion vector, and the prediction efficiency can be improved. Thus, encoding efficiency can be improved. Furthermore, encoding efficiency can be improved by using the latest available reference frame in display time order as a forward reference frame and a backward reference frame. the
上述直接模式不仅可适用于帧间的时间间隔恒定的情况,也可适用于可变帧间隔的情况。 The direct mode described above is applicable not only when the time interval between frames is constant, but also when the interval between frames is variable. the
模式选择部109向码列生成部104输出确定的编码模式。另外, 模式选择部109根据确定的编码模式,生成预测图像数据,并将该预测图像数据输出到差分运算部102。但模式选择部109在选择帧内编码的情况下,不输出预测图像数据。另外,模式选择部109在选择帧内编码的情况下,控制开关111连接到a侧,控制开关112连接到c侧,并在选择帧间预测编码或直接模式时,控制开关111连接到b侧,控制开关112连接到d侧。另外,模式选择部109在确定的编码模式为帧间预测编码的情况下,向码列生成部104输出该帧间预测编码中使用的运动矢量。这里,因为帧B8在编码其它帧时不被用作参照帧,所以帧间预测编码中使用的运动矢量不必存储在运动矢量存储部116中。下面,说明由模式选择部109选择帧间预测编码或直接模式的情况。 The
向差分运算部102输入从替换用存储器101中读出的帧B8的宏块的图像数据、和从模式选择部109输出的预测图像数据。差分运算部102运算帧B8的宏块的图像数据与预测图像数据之差,生成预测误差图像数据,输出到预测误差编码部103。预测误差编码部103通过对输入的预测误差图像数据实施频率变换或量化等编码处理,生成编码数据,并输出到码列生成部104。 The image data of the macroblock of the frame B8 read from the
码列生成部104对输入的编码数据实施可变长编码等,并通过附加运动矢量或编码模式等信息,生成码列并输出。 The
通过以上处理,完成对帧B8的1个宏块的编码处理。对帧B8的其余宏块也进行同样处理。 Through the above processing, the encoding processing for one macroblock of the frame B8 is completed. Do the same for the rest of the macroblocks in frame B8. the
下面,以对应于各帧的帧种类和帧显示时间顺序位置的编码方法,通过与帧P9、B7、B6、B8一样的方法来进行各帧的编码处理。 Next, encoding processing of each frame is performed by the same method as that of frames P9, B7, B6, and B8 with an encoding method corresponding to the frame type and frame display time order position of each frame. the
在以上实施例中,以使用图6(a)所示帧预测结构的情况为例,说明本发明的动态图像编码方法的动作。图12是分层表示此时的帧预测结构的说明图。图12中,箭头表示预测关系,表示位于箭头终点的帧参照位于起点的帧。在图6(a)所示帧预测结构中,在按显示时间 顺序考虑的情况下,如图12所示,优先距已编码完的帧最远的帧来确定编码顺序。例如,距I或P帧最远的帧是位于连续的B帧中央的帧。因此,在例如帧P5、P9已编码完的状态下,帧B7变为下一编码对象帧。在帧P5、B7、P9已编码完的状态下,帧B6、B8变为下一编码对象帧。 In the above embodiments, the operation of the video coding method of the present invention is described by taking the case of using the frame prediction structure shown in FIG. 6( a ) as an example. FIG. 12 is an explanatory diagram hierarchically showing the frame prediction structure at this time. In FIG. 12 , the arrows represent prediction relationships, and the frame at the end point of the arrow refers to the frame at the start point. In the frame prediction structure shown in Figure 6(a), in the case of display time order considerations, as shown in Figure 12, the encoding order is determined by giving priority to the frame farthest from the encoded frame. For example, the frame farthest from an I or P frame is the frame in the center of consecutive B frames. Therefore, for example, in a state where the encoding of the frames P5 and P9 has been completed, the frame B7 becomes the next encoding target frame. In the state where the frames P5, B7, and P9 have already been coded, the frames B6 and B8 become the next frames to be coded. the
另外,即使在图6、图12所示的具有不同帧预测结构的情况下,也可使用与本发明的动态图像编码方法一样的方法,可实现本发明的效果。图9-图11示出其它帧预测结构实例。 In addition, even in the case of having different frame prediction structures as shown in FIG. 6 and FIG. 12, the same method as the video encoding method of the present invention can be used, and the effect of the present invention can be realized. Figures 9-11 illustrate other frame prediction structure examples. the
图9表示夹在I或P帧间的B帧的个数为3个,作为编码B帧的顺序,从距已编码完的帧最近的帧开始选择编码的情况。图9(a)是表示按显示时间顺序表示的各帧的预测关系图,图9(b)是表示替换成编码顺序(码列顺序)的帧顺序的图。图13是对应于图9(a)的帧预测结构的分层图。在图9(a)所示帧预测结构中,在按显示时间顺序考虑的情况下,如图13所示,从距已编码完的帧最近的帧开始顺序编码。例如,在帧P5、P9已编码完的状态下,帧B6、B8变为下一编码对象帧。在帧P5、B6、B8、P9已编码完的状态下,帧B7变为下一编码对象帧。 FIG. 9 shows a case where the number of B frames interposed between I or P frames is three, and the encoding order of the B frames is selected from the frame closest to the already encoded frame. FIG. 9( a ) is a diagram showing the prediction relationship of each frame shown in order of display time, and FIG. 9( b ) is a diagram showing the frame order replaced by the encoding order (code sequence order). Fig. 13 is a hierarchical diagram corresponding to the frame prediction structure of Fig. 9(a). In the frame prediction structure shown in FIG. 9( a ), in the case of display time order, as shown in FIG. 13 , coding starts from the frame closest to the coded frame. For example, in the state where the frames P5 and P9 have already been coded, the frames B6 and B8 become the next frames to be coded. In the state where the encoding of the frames P5, B6, B8, and P9 has been completed, the frame B7 becomes the next encoding target frame. the
图10表示夹在I或P帧间的B帧的个数为5个,优先编码B帧中距已编码完的帧最远的帧的情况。图10(a)是表示按显示时间顺序表示的各帧的预测关系图,图10(b)是表示替换成编码顺序(码列顺序)的帧顺序的图。图14是对应于图10(a)的帧预测结构的分层图。在图10(a)所示帧预测结构中,在按显示时间顺序考虑的情况下,如图14所示,优先距已编码完的帧最远的帧,确定编码顺序。例如,距I或P帧最远的帧为位于连续的B帧中央的帧。因此,例如在帧P7、P13已编码完的状态下,帧B10变为下一编码对象帧。在帧P7、B10、P13已编码完的状态下,帧B8、B9、B11、B12变为下一编码对象帧。 FIG. 10 shows that the number of B frames sandwiched between I or P frames is five, and the frame farthest from the encoded frame among the B frames is preferentially encoded. FIG. 10( a ) is a diagram showing the prediction relationship of each frame shown in order of display time, and FIG. 10( b ) is a diagram showing the frame order replaced by the encoding order (code sequence order). Fig. 14 is a hierarchical diagram corresponding to the frame prediction structure of Fig. 10(a). In the frame prediction structure shown in FIG. 10( a ), considering the order of display time, as shown in FIG. 14 , the encoding sequence is determined by giving priority to the frame farthest from the encoded frame. For example, the frame farthest from an I or P frame is the frame located in the center of consecutive B frames. Therefore, for example, the frame B10 becomes the next encoding target frame in the state where the encoding of the frames P7 and P13 is completed. In the state where the encoding of frames P7, B10, and P13 is completed, frames B8, B9, B11, and B12 become the next encoding target frames. the
图11表示夹在I或P帧间的B帧的个数为5个,优先编码B帧 中距已编码完的帧最近的帧的情况。图11(a)是表示按显示时间顺序表示的各帧的预测关系图,图11(b)是表示替换成编码顺序(码列顺序)的帧顺序的图。图15是对应于图11(a)的帧预测结构的分层图。在图11(a)所示帧预测结构中,在按显示时间顺序考虑的情况下,如图15所示,从距已编码完的帧最近的帧开始顺序编码。例如,在帧P5、P9已编码完的状态下,帧B8、B12变为下一编码对象帧。在帧P5、B8、B12、P9已编码完的状态下,帧B9、B11变为下一编码对象帧。并且,在帧P5、B8、B9、B11、B12、P9已编码完的状态下,帧B10变为下一编码对象帧。 Fig. 11 shows that the number of B frames sandwiched between I or P frames is 5, and the situation of the frame closest to the frame that has been encoded in the preferentially encoded B frames is shown. FIG. 11( a ) is a diagram showing the prediction relationship of each frame shown in order of display time, and FIG. 11( b ) is a diagram showing the frame order replaced by the encoding order (code sequence order). Fig. 15 is a hierarchical diagram corresponding to the frame prediction structure of Fig. 11(a). In the frame prediction structure shown in FIG. 11( a ), considering the order of display time, as shown in FIG. 15 , coding starts from the frame closest to the coded frame. For example, in the state where the frames P5 and P9 have already been coded, the frames B8 and B12 become the next frames to be coded. In the state where the frames P5, B8, B12, and P9 have already been coded, the frames B9 and B11 become the next frames to be coded. Then, in the state where the encoding of the frames P5, B8, B9, B11, B12, and P9 has been completed, the frame B10 becomes the next encoding target frame. the
如上所述,在本发明的动态图像编码方法中,当使用双向预测来编码进行帧间预测编码处理的B帧时,按与显示时间顺序不同的顺序来编码夹在I或P帧间的多个B帧。此时,将显示时间顺序中位于最近的帧用作前向和后向参照帧。在B帧可利用的情况下,也可将B帧用作该参照帧。另外,当按与显示时间顺序不同的顺序来编码夹在I或P帧间的多个B帧时,从距已编码完的帧最远的帧开始顺序编码。另外,在按与显示时间顺序不同的顺序来编码夹在I或P帧间的多个B帧时,从距已编码完的帧最近的帧开始顺序编码。 As described above, in the moving image coding method of the present invention, when B frames subjected to inter-frame predictive coding processing are coded using bidirectional prediction, multiple frames sandwiched between I or P frames are coded in an order different from the display time order. B-frames. In this case, the closest frame in the display time order is used as the forward and backward reference frame. When B-frames are available, B-frames may also be used as the reference frame. Also, when encoding a plurality of B frames sandwiched between I or P frames in an order different from the display time order, encoding is performed sequentially from the frame farthest from the already encoded frame. Also, when encoding a plurality of B frames interposed between I or P frames in an order different from the display time order, encoding is performed sequentially from the frame closest to the already encoded frame. the
通过这种动作,使用本发明的动态图像编码方法,从而在编码B帧时,可将在显示时间顺序中较近的帧用作参照帧,并由此可提高运动补偿时的预测效率,所以可提高编码效率。 Through this operation, using the moving picture encoding method of the present invention, when encoding a B frame, a frame that is closer in display time order can be used as a reference frame, and thus the prediction efficiency at the time of motion compensation can be improved, so Encoding efficiency can be improved. the
另外,在本发明的动态图像编码方法中,参照编码为B帧的帧,作为后向参照帧,并由直接模式编码B帧内的块,此时,在由前向参照或双向参照来编码后向参照帧内同一位置的块时,将通过换算该前向运动矢量得到的运动矢量用作直接模式下的运动矢量。 In addition, in the dynamic image coding method of the present invention, refer to the frame coded as a B frame as a backward reference frame, and encode the blocks in the B frame by direct mode. At this time, when coding by forward reference or bidirectional reference When referring backward to a block at the same position within a frame, a motion vector obtained by converting the forward motion vector is used as a motion vector in the direct mode. the
这样,在直接模式下,通过对作为后向参照帧的B帧的前向运动矢量进行换算,不必发送运动矢量的信息,并可提高预测效率。并且,通过使用时间上最近的参照帧作为前向参照帧,可提高编码效率。In this way, in the direct mode, by converting the forward motion vector of the B frame as the backward reference frame, it is not necessary to transmit the information of the motion vector, and the prediction efficiency can be improved. Furthermore, encoding efficiency can be improved by using the temporally closest reference frame as a forward reference frame.
另外,在由直接模式编码作为后向参照帧的B帧中同一位置的块时,将通过换算直接模式下实质使用的前向运动矢量得到的运动矢量用作直接模式下的运动矢量。 Also, when encoding a co-located block in a B frame that is a backward reference frame in the direct mode, a motion vector obtained by converting a forward motion vector substantially used in the direct mode is used as a motion vector in the direct mode. the
这样,在直接模式下,通过对作为后向参照帧的B帧在直接模式下实质使用的前向运动矢量进行换算,不必发送运动矢量的信息,并且,即使在直接模式下编码后向参照帧内同一位置的块时,也可提高预测效率。并且,通过将时间上最近的参照帧作为前向参照帧,可提高编码效率。 In this way, in the direct mode, by converting the forward motion vector substantially used in the direct mode by the B frame as the backward reference frame, there is no need to transmit the information of the motion vector, and even if the backward reference frame is coded in the direct mode It can also improve the prediction efficiency when the blocks in the same position are included. Furthermore, encoding efficiency can be improved by using the temporally closest reference frame as a forward reference frame. the
另外,在通过后向参照来编码作为后向参照帧的B帧中同一位置的块时,将换算该后向运动矢量得到的运动矢量用作直接模式下的运动矢量。 Also, when encoding a co-located block in a B frame as a backward reference frame by backward reference, a motion vector obtained by scaling the backward motion vector is used as a motion vector in the direct mode. the
这样,在直接模式下,通过对编码作为后向参照帧的B帧中同一位置的块时使用的后向运动矢量进行换算,不必发送运动矢量的信息,并且,即使在后向参照帧内同一位置的块仅具有后向运动矢量的情况下,也可提高预测效率。并且,通过将时间上最近的参照帧作为前向参照帧,可提高编码效率。 In this way, in the direct mode, by converting the backward motion vector used when coding the block at the same position in the B frame as the backward reference frame, it is not necessary to send the information of the motion vector, and even if the same block in the backward reference frame Even when the block at the position has only backward motion vectors, the prediction efficiency can be improved. Furthermore, encoding efficiency can be improved by using the temporally closest reference frame as a forward reference frame. the
另外,在通过后向参照来编码作为后向参照帧的B帧中同一位置的块时,将此时使用的后向运动矢量中通过将该后向运动矢量所参照的帧与后向参照帧换算为参照帧所得到的运动矢量用作直接模式下的运动矢量。 In addition, when encoding a block at the same position in a B frame as a backward reference frame by backward reference, the backward motion vector used at this time is divided between the frame referred to by the backward motion vector and the backward reference frame The motion vector converted to the reference frame is used as the motion vector in the direct mode. the
这样,在直接模式下,通过对编码作为后向参照帧的B帧中同一位置的块时使用的后向运动矢量进行换算,不必发送运动矢量的信息,并且,即使在后向参照帧内同一位置的块仅具有后向运动矢量的情况下,也可提高预测效率。由此,可提高编码效率。并且,通过将后向运动矢量参照的帧用作前向参照帧,将显示时间顺序中可利用的最近的参照帧用作后向参照帧,可提高编码效率。 In this way, in the direct mode, by converting the backward motion vector used when coding the block at the same position in the B frame as the backward reference frame, it is not necessary to send the information of the motion vector, and even if the same block in the backward reference frame Even when the block at the position has only backward motion vectors, the prediction efficiency can be improved. Thus, encoding efficiency can be improved. Furthermore, by using the frame referred to by the backward motion vector as the forward reference frame and using the latest reference frame available in the display time order as the backward reference frame, coding efficiency can be improved. the
另外,在直接模式下,使用大小被强制设为0的运动矢量。Also, in direct mode, motion vectors whose size is forced to 0 are used.
这样,通过将直接模式下的运动矢量强制设置为0,在选择直接模式的情况下,不必发送运动矢量的信息,并且,不需要运动矢量的换算处理,可削减处理量。 In this way, by forcibly setting the motion vectors in the direct mode to 0, when the direct mode is selected, it is not necessary to transmit the information of the motion vectors, and the conversion processing of the motion vectors is unnecessary, thereby reducing the amount of processing. the
另外,在本发明的动态图像编码方法中,参照编码为B帧的帧作为后向参照帧,并用直接模式来编码B帧内的块时,将换算编码在后的P帧内同一位置上的时使用的前向运动矢量得到的运动矢量用作直接模式下的运动矢量。 In addition, in the dynamic image coding method of the present invention, when referring to a frame coded as a B frame as a backward reference frame, and using the direct mode to code a block in a B frame, the conversion coded at the same position in the subsequent P frame The motion vectors obtained from the forward motion vectors used in the direct mode are used as the motion vectors in direct mode. the
这样,在直接模式下,通过对在后P帧的运动矢量进行换算,在后向参照帧是B帧的情况下,不必存储该B帧的运动矢量,并且,不必发送运动矢量的信息,可提高预测效率。并且,通过将时间上最近的参照帧作为前向参照帧,可提高编码效率。 In this way, in the direct mode, by converting the motion vector of the subsequent P frame, when the backward reference frame is a B frame, it is not necessary to store the motion vector of the B frame, and it is not necessary to transmit the information of the motion vector. Improve forecasting efficiency. Furthermore, encoding efficiency can be improved by using the temporally closest reference frame as a forward reference frame. the
另外,对帧序号变更相对索引的分配,由前向参照来编码后向参照帧内同一位置的块时,将换算该前向运动矢量得到的运动矢量用作直接模式下的运动矢量。 Also, when the allocation of the relative index is changed for the frame number, and when the block at the same position in the backward reference frame is coded by the forward reference, the motion vector obtained by scaling the forward motion vector is used as the motion vector in the direct mode. the
这样,在直接模式下,即使在对帧序号变更相对索引的分配时,也可对编码完的帧的运动矢量进行换算,并且不必发送运动矢量的信息。 In this way, in the direct mode, even when the assignment of the relative index to the frame number is changed, the motion vector of the coded frame can be converted, and there is no need to transmit the information of the motion vector. the
在本实施例中,说明以水平16×垂直16象素单位来处理运动补偿、以水平8×垂直8象素单位或水平4×垂直4单位来处理预测误差图像编码的情况,但这些单位也可以是其它象素数。 In this embodiment, the case where motion compensation is handled in units of horizontal 16×vertical 16 pixels, and prediction error image coding is handled in units of horizontal 8×vertical 8 pixels or horizontal 4×vertical 4 pixels is described, but these units also Other pixel numbers are possible. the
另外,在本实施例中,举例说明连续的B帧个数为3个或5个的情况,但B帧的个数也可以是其它个数。 In addition, in this embodiment, the case where the number of consecutive B frames is 3 or 5 is described as an example, but the number of B frames may also be other numbers. the
在本实施例中,举例说明P帧的编码模式从帧内编码、使用运动矢量的帧间预测编码、不使用运动矢量的帧间预测编码中进行选择,并且,B帧的编码模式从帧内编码、使用前向运动矢量的帧间预测编码、使用后向运动矢量的帧间预测编码、使用双向运动矢量的帧间预测编码、直接模式中进行选择的情况,但这些编码模式也可以是其它 方法。 In this embodiment, it is illustrated that the encoding mode of a P frame is selected from intra-frame encoding, inter-frame predictive encoding using motion vectors, and inter-frame predictive encoding without using motion vectors, and the encoding mode of B frames is selected from intra-frame encoding Encoding, interframe predictive encoding using forward motion vectors, interframe predictive encoding using backward motion vectors, interframe predictive encoding using bidirectional motion vectors, direct mode, but these encoding modes can also be other method. the
另外,在本实施例中,对直接模式说明了7个实例,但也可使用对每个宏块或块唯一确定的一个方法,也可从多个方法中对每个块或宏块选择一个方法。在使用多个方法的情况下,将表示使用哪个直接模式的信息记录在码列中。 In addition, in this embodiment, seven examples have been described for the direct mode, but one method uniquely determined for each macroblock or block may be used, or one method may be selected for each block or macroblock from a plurality of methods. method. In the case of using a plurality of methods, information indicating which direct mode is used is recorded in the code string. the
另外,在本实施例中,说明P帧参照1个显示时间顺序上位于前或后的已编码完的I或P帧进行编码、B帧参照两个显示时间顺序上位于前或后的附近已编码完的帧进行编码的情况,但在这些帧是P帧的情况下,将显示时间顺序中位于前或后的多个已编码完的I帧或P帧作为参照帧替补,并参照各块中最大的1个帧来编码,在为B帧的情况下,将显示时间顺序中位于前或后的附近多个已编码完的帧作为参照帧替补,并参照各块中最大的两个帧来编码。 In addition, in this embodiment, it is described that a P frame is coded by referring to a coded I or P frame that is located before or after the display time sequence, and a B frame is coded by referring to two nearby coded frames that are located before or after the display time sequence. When the coded frames are coded, but when these frames are P frames, a plurality of coded I frames or P frames located before or after the display time sequence are used as reference frame substitutes, and each block is referred to In the case of a B frame, multiple coded frames near the front or back in the display time sequence are used as reference frame substitutes, and the two largest frames in each block are referred to to encode. the
另外,模式选择部109在将运动矢量存储在运动矢量存储部116中时,当由双向预测或直接模式来编码对象块时,可存储前向和后向两者的运动矢量,也可仅存储前向运动矢量。若仅存储前向运动矢量,则可削减运动矢量存储部116的存储器量。 In addition, when the
(实施例2) (Example 2)
图16是表示使用本发明的动态图像编码方法的动态图像解码装置一实施例的结构框图。 Fig. 16 is a block diagram showing an embodiment of a video decoding device using the video coding method of the present invention. the
动态图像解码装置如图16所示,具备:码列分析部1401、预测误差解码部1402、模式解码部1403、帧存储器控制部1404、运动补偿解码部1405、运动矢量存储部1406、帧存储器1407、加法运算部1408、和开关1409、1410。 As shown in FIG. 16, the moving image decoding device includes: a code
码列分析部1401从输入的码列中抽出编码模式信息和运动矢量信息等各种数据。预测误差解码部1402解码从码列分析部1401输入的预测误差编码数据,生成预测误差图像数据。模式解码部1403参照从码列中抽出的编码模式信息,控制开关1409、1410。The code
帧存储器控制部1404根据从码列分析部1401输入的表示帧显示顺序的信息,输出帧存储器1407中存储的解码图像数据,作为输出图像。 The frame
运动补偿解码部1405进行参照帧序号与运动矢量信息的解码处理,根据解码后的参照帧序号与运动矢量,从帧存储器1407取得运动补偿图像数据。运动矢量存储部1406存储运动矢量。 The motion
加法运算部1408将从预测误差解码部1402输入的预测误差编码数据与从运动补偿解码部1405输入的运动补偿图像数据相加,生成解码图像数据。帧存储器1407存储生成的解码图像数据。 The
下面,说明上述构成的动态图像解码装置的动作。这里,设向动态图像解码装置输入上述动态图像编码装置中生成的码列。即,这里,设P帧参照1个显示时间顺序上位于前方或后方的附近已编码完的I或P帧。另外,设B帧参照两个显示时间顺序上位于前方或后方的已编码完的附近的帧。 Next, the operation of the video decoding device configured as described above will be described. Here, it is assumed that the code sequence generated by the above-mentioned video coding device is input to the video decoding device. That is, here, it is assumed that a P frame refers to a coded I or P frame near the front or rear in the display time order. In addition, it is assumed that the B frame refers to two coded nearby frames located in the front or rear in the display time order. the
此时的码列中的帧变为图6(b)所示顺序。下面,顺序说明帧P9、B7、B6、B8的解码处理。 The frames in the code sequence at this time are in the order shown in FIG. 6( b ). Next, decoding processing of frames P9, B7, B6, and B8 will be described in order. the
(帧P9的解码处理) (Decoding processing of frame P9)
将帧P9的码列输入码列分析部1401。码列分析部1401从输入的码列中抽出各种数据。这里,所谓各种数据是模式选择信息或运动矢量信息等。将抽出的模式选择信息输出到模式解码部1403。另外,将抽出的运动矢量信息输出到运动补偿解码部1405。并且,将预测误差编码数据输出到预测误差解码部1402。 The code sequence of the frame P9 is input to the code
模式解码部1403参照从码列中抽出的编码模式选择信息,控制开关1409、1410。在编码模式选择为帧内编码的情况下,模式解码部1403控制开关1409连接到a侧,控制开关1410连接到c侧。另外,在编码模式选择为帧间预测编码时,模式解码部1403控制开关1409连接到b侧,控制开关1410连接到d侧。The
模式解码部1403还向运动补偿解码部1405输出编码模式选择信息。下面,说明编码模式选择为帧间预测编码的情况。预测误差解码部1402解码输入的预测误差编码数据,生成预测误差图像数据。预测误差解码部1402向开关1409输出生成的预测误差图像数据。这里,因为开关1409连接于b侧,所以向加法运算部1408输出预测误差图像数据。 The
运动补偿解码部1405根据输入的运动矢量信息等,从帧存储器1407取得运动补偿图像数据。帧P9参照帧P5进行编码,帧P5被解码后,保持在帧存储器1407中。因此,运动补偿解码部1405根据运动矢量信息,从帧存储器1407中保持的帧P5的图像数据中取得运动补偿图像数据。将如此生成的运动补偿图像数据输出到加法运算部1408。 The motion
运动补偿解码部1405在解码P帧的情况下,将运动矢量的信息存储在运动矢量存储部1406中。 When decoding a P frame, the motion
加法运算部1408将输入的预测误差图像数据与运动补偿图像数据相加,生成解码图像数据。生成的解码图像数据经开关1410输出到帧存储器1407。 The
如上所述,完成帧P9的1个宏块的处理。通过同样处理,顺序解码其余的宏块。若解码所有帧P9的宏块,则进行帧B7的解码。 As described above, the processing of one macroblock of frame P9 is completed. Through the same process, the remaining macroblocks are sequentially decoded. If all the macroblocks of frame P9 are decoded, frame B7 is decoded. the
(帧B7的解码处理) (Decoding processing of frame B7)
码列分析部1401、模式解码部1403、和预测误差解码部1402中生成预测误差图像数据以前的动作与帧P9的解码处理时一样,所以省略说明。 Operations up to generation of prediction error image data in the code
运动补偿解码部1405根据输入的运动矢量信息等,生成运动补偿(运动补偿)图像数据。帧B7参照帧P5作为前向参照帧,参照P9作为后向参照帧,进行编码,这些帧被解码后,保持在帧存储器1407中。The motion
在模式选择为双向预测的帧间预测编码时,运动补偿解码部1405根据前向运动矢量信息,从帧存储器1407中取得前向参照图像数据。另外,根据后向运动矢量信息,从帧存储器1407中取得后向参照图像数据。运动补偿解码部1405通过加法平均前向参照图像数据与后向参照图像数据,生成运动补偿图像数据。 When the mode selection is bidirectional predictive interframe predictive encoding, the motion
在模式选择为直接模式的情况下,运动补偿解码部1405取得运动矢量存储部1406中存储的帧P9的运动矢量。另外,运动补偿解码部1405使用该运动矢量,从帧存储器1407中取得前向参照图像数据和后向参照图像数据。运动补偿解码部1405通过加法平均前向参照图像数据和后向参照图像数据,生成运动补偿图像数据。 When the mode selection is the direct mode, the motion
还用图7(a)来说明模式选择为直接模式的情况。其中,设解码帧B7的块a,并设与块a位于相同位置上的帧P9的块为块b。另外,块b的运动矢量为运动矢量c,该运动矢量c参照帧P5。此时,使用参照利用运动矢量c求出的帧P5的运动矢量d来作为前向运动矢量,使用参照利用运动矢量c求出的帧P9的运动矢量e作为后向运动矢量。例如,作为利用运动矢量c的方法,有生成平行于运动矢量c的运动矢量的方法。设加法平均根据这些运动矢量得到的前向参照数据与后向参照数据后的图像数据为运动补偿图像数据。 The case where the mode selection is the direct mode will also be described using FIG. 7( a ). Here, block a of frame B7 is decoded, and a block of frame P9 located at the same position as block a is block b. In addition, the motion vector of the block b is the motion vector c, and this motion vector c refers to the frame P5. At this time, the motion vector d referring to the frame P5 obtained by the motion vector c is used as the forward motion vector, and the motion vector e referring to the frame P9 obtained by the motion vector c is used as the backward motion vector. For example, as a method of using the motion vector c, there is a method of generating a motion vector parallel to the motion vector c. The image data after adding and averaging the forward-reference data and the backward-reference data obtained from these motion vectors is assumed to be motion-compensated image data. the
此时,若设作为前向运动矢量的运动矢量d的大小为MVF,设作为后向运动矢量的运动矢量e的大小为MVB,运动矢量c的大小为MV,当前帧(帧B7)的后向参照帧(帧P9)与其后向参照帧的块b所参照的帧(帧P5)的时间距离为TRD,当前帧(帧B7)与前向参照帧(帧P5)的时间距离为TRF,则运动矢量d的大小MVF、运动矢量e的大小MVB分别由(式1)、(式2)求出。其中,MVF、MVB分别表现运动矢量的水平成分、垂直成分。另外,例如可根据附加于各帧的表示显示顺序(位置)的信息或其信息差来确定各帧间的时间距离。 At this time, if the size of the motion vector d as the forward motion vector is MVF, the size of the motion vector e as the backward motion vector is MVB, and the size of the motion vector c is MV, the current frame (frame B7) after The time distance to the frame (frame P5) referred to by the block b of the reference frame (frame P9) and its backward reference frame is TRD, and the time distance between the current frame (frame B7) and the forward reference frame (frame P5) is TRF, Then, the magnitude MVF of the motion vector d and the magnitude MVB of the motion vector e are obtained by (Equation 1) and (Equation 2), respectively. Among them, MVF and MVB represent the horizontal component and vertical component of the motion vector, respectively. Also, for example, the temporal distance between frames can be specified based on information indicating the display order (position) added to the frames or information differences thereof. the
将如此生成的运动补偿图像数据输出到加法运算部1408。另外, 运动补偿(运动补偿)解码部1405将运动矢量信息存储在运动矢量存储部1406中。 The motion compensation image data generated in this way is output to the
加法运算部1408将输入的预测误差图像数据与运动补偿图像数据相加,生成解码图像数据。将生成的解码图像数据经开关1410输出到帧存储器1407。 The
如上所述,完成帧B7的1个宏块的处理。通过同样处理,顺序解码其余的宏块。若解码全部帧B7的宏块,则解码帧B6。 As described above, the processing of one macroblock of frame B7 is completed. Through the same process, the remaining macroblocks are sequentially decoded. If all macroblocks of frame B7 are decoded, frame B6 is decoded. the
(帧B6的解码处理) (Decoding processing of frame B6)
码列分析部1401、模式解码部1403、和预测误差解码部1402中生成预测误差图像数据以前的动作与帧P9的解码处理时一样,所以省略说明。 Operations up to generation of prediction error image data in the code
运动补偿解码部1405根据输入的运动矢量信息等,生成运动补偿图像数据。帧B6参照帧P5作为前向参照帧,参照B7作为后向参照帧,进行编码,这些帧被解码后,保持在帧存储器1407中。 The motion
在模式选择为双向预测的帧间预测编码时,运动补偿解码部1405根据前向运动矢量信息,从帧存储器1407中取得前向参照图像数据。另外,根据后向运动矢量信息,从帧存储器1407中取得后向参照图像数据。运动补偿解码部1405通过加法平均前向参照图像数据与后向参照图像数据,生成运动补偿图像数据。 When the mode selection is bidirectional predictive interframe predictive encoding, the motion
在模式选择为直接模式的情况下,运动补偿解码部1405取得运动矢量存储部1406中存储的帧B7的运动矢量。运动补偿解码部1405使用该运动矢量,从帧存储器1407中取得前向参照图像数据和后向参照图像数据。运动补偿解码部1405通过加法平均前向参照图像数据和后向参照图像数据,生成运动补偿图像数据。 When the mode selection is the direct mode, the motion
用图7(b)来说明模式选择为直接模式时的第一例。其中,设解码帧B6的块a,并设与块a位于相同位置上的帧B7的块为块b。另外,设基于前向参照的帧间预测编码或基于双向参照的帧间预测编码块 b,并设块b的前向运动矢量为运动矢量c。该运动矢量c参照帧P5。此时,使用参照利用运动矢量c生成的帧P5的运动矢量d来作为对块a的前向运动矢量,使用参照利用运动矢量c生成的帧B7的运动矢量e作为后向运动矢量。例如,作为利用运动矢量c的方法,有生成平行于运动矢量c的运动矢量的方法。设加法平均根据这些运动矢量得到的前向参照图像数据与后向参照图像数据后的图像数据为运动补偿图像数据。 A first example when the mode selection is the direct mode will be described using FIG. 7(b). Here, block a of the frame B6 is decoded, and a block of the frame B7 located at the same position as the block a is block b. In addition, assume inter-frame predictive coding based on forward reference or inter-frame predictive coding based on bidirectional reference, block b, and set the forward motion vector of block b as motion vector c. This motion vector c refers to the frame P5. At this time, the motion vector d referring to the frame P5 generated using the motion vector c is used as the forward motion vector for the block a, and the motion vector e referring to the frame B7 generated using the motion vector c is used as the backward motion vector. For example, as a method of using the motion vector c, there is a method of generating a motion vector parallel to the motion vector c. The image data obtained by adding and averaging the forward-reference image data and the backward-reference image data obtained from these motion vectors is motion-compensated image data. the
此时,若设作为前向运动矢量的运动矢量d的大小为MVF,设作为后向运动矢量的运动矢量e的大小为MVB,运动矢量c的大小为MV,当前帧(帧B6)的后向参照帧(帧B7)与其后向参照帧的块b所参照的帧(帧P5)的时间距离为TRD,当前帧(帧B6)与前向参照帧(帧P5)的时间距离为TRF,则运动矢量d的大小MVF、运动矢量e的大小MVB分别由(式1)、(式2)求出。另外,例如可根据附加于各帧的表示显示顺序(位置)的信息或其信息差来确定各帧间的时间距离。另外,TRD、TRF的值也可使用对每个帧确定的规定值。该规定值也可作为头信息记录在码列中。 At this time, if the size of the motion vector d as the forward motion vector is MVF, the size of the motion vector e as the backward motion vector is MVB, and the size of the motion vector c is MV, the current frame (frame B6) after The time distance to the frame (frame P5) referred to by the block b of the reference frame (frame B7) and its backward reference frame is TRD, and the time distance between the current frame (frame B6) and the forward reference frame (frame P5) is TRF, Then, the magnitude MVF of the motion vector d and the magnitude MVB of the motion vector e are obtained by (Equation 1) and (Equation 2), respectively. Also, for example, the temporal distance between frames can be specified based on information indicating the display order (position) added to the frames or information differences thereof. In addition, as the values of TRD and TRF, predetermined values determined for each frame may be used. This predetermined value may also be recorded in the code string as header information. the
另外,用图7(b)来说明模式选择为直接模式情况下的第二例。 In addition, a second example in the case where the mode selection is the direct mode will be described using FIG. 7( b ). the
此时,利用解码帧B7中、位置与块a相同的块b时所用的运动矢量,帧B7是位于帧B6之后的参照帧。这里,设使用直接模式来编码块b,设此时实质上使用的前向运动矢量为运动矢量c。该运动矢量c使用运动矢量存储部1406中存储的运动矢量,或在从运动矢量存储部1406中读出由直接模式编码块b时所用的帧P9的运动矢量后,进行换算计算后求出。运动补偿解码部1405也可在将由直接模式解码帧B7的块b时通过换算处理求出的运动矢量存储在运动矢量存储部1406中时,仅存储前向运动矢量。 At this time, the frame B7 is a reference frame after the frame B6 using the motion vector used for decoding the block b at the same position as the block a in the frame B7. Here, it is assumed that the block b is encoded using the direct mode, and the forward motion vector substantially used at this time is assumed to be the motion vector c. The motion vector c is obtained by using the motion vector stored in the motion
此时,使用参照利用运动矢量c生成的帧P5的运动矢量d来作为对块a的前向运动矢量,使用参照利用运动矢量c生成的帧B7的 运动矢量e作为后向运动矢量。例如,作为利用运动矢量c的方法,有生成平行于运动矢量c的运动矢量的方法。设加法平均根据这些运动矢量得到的前向参照图像数据与后向参照图像数据后的图像数据为运动补偿图像数据。 At this time, the motion vector d referring to the frame P5 generated using the motion vector c is used as the forward motion vector for the block a, and the motion vector e referring to the frame B7 generated using the motion vector c is used as the backward motion vector. For example, as a method of using the motion vector c, there is a method of generating a motion vector parallel to the motion vector c. The image data obtained by adding and averaging the forward-reference image data and the backward-reference image data obtained from these motion vectors is motion-compensated image data. the
此时,作为前向运动矢量的运动矢量d的大小MVF、与作为后向运动矢量的运动矢量e的大小MVB与直接模式的第一例一样,可用(式1)、(式2)来求出。 At this time, the magnitude MVF of the motion vector d as the forward motion vector and the magnitude MVB of the motion vector e as the backward motion vector are the same as in the first example of the direct mode, and can be obtained by (Equation 1) and (Equation 2). out. the
下面,用图7(c)来说明模式选择为直接模式情况下的第三例。 Next, a third example in the case where the mode selection is the direct mode will be described with reference to FIG. 7(c). the
这里,设解码帧B6的块a,并设位置与块a相同的帧B7的块为块b。设后向参照预测编码块b,并设块b的后向运动矢量为运动矢量f。该运动矢量f参照帧P9。此时,使用参照利用运动矢量f求出的帧P5的运动矢量g来作为对块a的前向运动矢量,使用参照利用运动矢量f求出的帧B7的运动矢量h作为后向运动矢量。例如,作为利用运动矢量f的方法,有生成平行于运动矢量f的运动矢量的方法。设加法平均根据这些运动矢量得到的前向参照图像数据与后向参照图像数据后的图像数据为运动补偿图像数据。 Here, block a of frame B6 is decoded, and a block of frame B7 whose position is the same as block a is block b. Let the backward reference predictive coding block b be used, and let the backward motion vector of block b be the motion vector f. This motion vector f refers to frame P9. At this time, the motion vector g referring to the frame P5 obtained by the motion vector f is used as the forward motion vector for the block a, and the motion vector h referring to the frame B7 obtained by the motion vector f is used as the backward motion vector. For example, as a method of using the motion vector f, there is a method of generating a motion vector parallel to the motion vector f. The image data obtained by adding and averaging the forward-reference image data and the backward-reference image data obtained from these motion vectors is motion-compensated image data. the
此时,若设作为前向运动矢量的运动矢量g的大小为MVF,设作为后向运动矢量的运动矢量h的大小为MVB,运动矢量f的大小为MV,当前帧(帧B6)的后向参照帧(帧B7)与其后向参照帧的块所参照的帧(帧P9)的时间距离为TRD,当前帧(帧B6)与前向参照帧(帧P5)的时间距离为TRF,当前帧(帧B6)与后向参照帧(帧B7)的时间距离为TRB,则运动矢量g的大小MVF、运动矢量h的大小MVB分别由(式3)、(式4)求出。 At this time, if the size of the motion vector g as the forward motion vector is MVF, the size of the motion vector h as the backward motion vector is MVB, and the size of the motion vector f is MV, the current frame (frame B6) after The temporal distance to the reference frame (frame B7) and the frame (frame P9) referred to by the blocks of the backward reference frame is TRD, the temporal distance between the current frame (frame B6) and the forward reference frame (frame P5) is TRF, and the current The temporal distance between the frame (frame B6) and the backward reference frame (frame B7) is TRB, and the magnitude MVF of the motion vector g and the magnitude MVB of the motion vector h are obtained by (Equation 3) and (Equation 4), respectively. the
下面,用图7(d)来说明模式选择为直接模式情况下的第四例。 Next, a fourth example in the case where the mode selection is the direct mode will be described using FIG. 7( d ). the
这里,设解码帧B6的块a,并设位置与块a相同的帧B7的块为块b。设与第三例一样后向参照预测编码块b,并设块b的后向运动矢量为运动矢量f。该运动矢量f参照帧P9。此时,使用参照利用运 动矢量f求出的帧P9的运动矢量g来作为对块a的前向运动矢量,使用参照利用运动矢量f求出的帧B7的运动矢量h作为后向运动矢量。例如,作为利用运动矢量f的方法,有生成平行于运动矢量f的运动矢量的方法。设加法平均根据这些运动矢量得到的前向参照图像数据与后向参照图像数据后的图像数据为运动补偿图像数据。 Here, block a of frame B6 is decoded, and a block of frame B7 whose position is the same as block a is block b. As in the third example, it is assumed that block b is backwardly referred to for predictive coding, and the backward motion vector of block b is set as motion vector f. This motion vector f refers to frame P9. At this time, the motion vector g of frame P9 obtained by referring to the motion vector f is used as the forward motion vector for block a, and the motion vector h of frame B7 obtained by referring to the motion vector f is used as the backward motion vector . For example, as a method of using the motion vector f, there is a method of generating a motion vector parallel to the motion vector f. The image data obtained by adding and averaging the forward-reference image data and the backward-reference image data obtained from these motion vectors is motion-compensated image data. the
此时,若设作为前向运动矢量的运动矢量g的大小为MVF,设作为后向运动矢量的运动矢量h的大小为MVB,运动矢量f的大小为MV,当前帧(帧B6)的后向参照帧(帧B7)与其后向参照帧的块所参照的帧(帧P9)的时间距离为TRD,当前帧(帧B6)与后向参照帧(帧B7)的块所参照的帧(帧P9)的时间距离为TRF,则运动矢量g的大小MVF、运动矢量h的大小MVB分别由(式1)、(式2)求出。 At this time, if the size of the motion vector g as the forward motion vector is MVF, the size of the motion vector h as the backward motion vector is MVB, and the size of the motion vector f is MV, the current frame (frame B6) after The time distance to the frame (frame P9) referred to by the block of the reference frame (frame B7) and its backward reference frame is TRD, and the frame (frame P9) referred to by the block of the current frame (frame B6) and the backward reference frame (frame B7) When the temporal distance of frame P9) is TRF, the magnitude MVF of the motion vector g and the magnitude MVB of the motion vector h are obtained from (Equation 1) and (Equation 2), respectively. the
另外,用图8(a)来说明模式选择为直接模式情况下的第五例。这里,设由直接模式来解码帧B6的块a。此时,设运动矢量的大小为0,将帧P5用作前向参照帧,将帧B7用作后向参照帧,通过进行双向参照,进行运动补偿。 In addition, a fifth example in the case where the mode selection is the direct mode will be described using FIG. 8( a ). Here, it is assumed that block a of frame B6 is decoded by direct mode. At this time, the size of the motion vector is assumed to be 0, the frame P5 is used as a forward reference frame, and the frame B7 is used as a backward reference frame, and bidirectional reference is performed to perform motion compensation. the
下面,用图8(b)来说明模式选择为直接模式情况下的第六例。这里,设由直接模式解码帧B6的块a。这里,利用解码帧P9中位置与块a相同的块f时使用的运动矢量g,帧P9是位于帧B6之后的P帧。将运动矢量g存储在运动矢量存储部1406中。块a使用利用运动矢量g求出的运动矢量,根据作为前向参照帧的帧P5与作为后向参照帧的帧B7,进行双向预测。例如,若与上述第一例的情况一样使用生成平行于运动矢量g的运动矢量的方法,则用于得到块a的运动补偿图像数据的运动矢量相对帧P5变为运动矢量h,相对帧B7变为运动矢量i。 Next, a sixth example in which the mode selection is the direct mode will be described with reference to FIG. 8(b). Here, it is assumed that block a of frame B6 is decoded by direct mode. Here, using the motion vector g used when decoding the block f at the same position as the block a in the frame P9, the frame P9 is a P frame located after the frame B6. The motion vector g is stored in the motion
此时,若设作为前向运动矢量的运动矢量h的大小为MVF,设作为后向运动矢量的运动矢量I的大小为MVB,运动矢量g的大小为MV,位于当前帧(帧B6)之后的P帧(帧P9)与位于其后的帧的块f 所参照的帧(帧P5)的时间距离为TRD,当前帧(帧B6)与前向参照帧(帧P5)的时间距离为TRF,当前帧(帧B6)与后向参照帧(帧B7)的时间距离为TRB,则运动矢量MVF、运动矢量MVB分别由(式1)、(式5)求出。 At this time, if the size of the motion vector h as the forward motion vector is MVF, the size of the motion vector I as the backward motion vector is MVB, and the size of the motion vector g is MV, which is located after the current frame (frame B6) The time distance between the P frame (frame P9) of the frame and the frame (frame P5) referred to by the block f of the following frame is TRD, and the time distance between the current frame (frame B6) and the forward reference frame (frame P5) is TRF , the temporal distance between the current frame (frame B6) and the backward reference frame (frame B7) is TRB, then the motion vector MVF and the motion vector MVB are obtained by (Equation 1) and (Equation 5), respectively. the
下面,用图8(c)来说明模式选择为直接模式情况下的第七例。这里,设由直接模式来解码帧B6的块a。本例中,对上述说明的帧序号变更(再映射)相对索引的分配,后向参照帧变为帧P9。此时,利用编码帧P9中、位置与块a相同的块f时使用的运动矢量g,帧P9作为帧B6的后向参照帧。运动矢量g被存储在运动矢量存储部1406中。块a使用利用运动矢量g生成的运动矢量,根据作为前向参照帧的帧P5与作为后向参照帧的帧P9,进行双向预测。例如,若与上述第一例的情况一样,使用生成平行于运动矢量g的运动矢量的方法,则用于得到块a的运动补偿图像数据的运动矢量对于帧P5变为运动矢量h,对于帧P9变为运动矢量i。 Next, a seventh example in the case where the mode selection is the direct mode will be described with reference to FIG. 8(c). Here, it is assumed that block a of frame B6 is decoded by direct mode. In this example, the assignment of the relative index is changed (remapped) to the frame number described above, and the backward reference frame becomes the frame P9. At this time, frame P9 is used as a backward reference frame of frame B6 by using the motion vector g used when encoding the block f at the same position as block a in frame P9. The motion vector g is stored in the motion
此时,若设作为前向运动矢量的运动矢量h的大小为MVF,设作为后向运动矢量的运动矢量i的大小为MVB,运动矢量g的大小为MV,当前帧(帧B6)的后向参照帧(帧P9)与其后向参照帧的块所参照的帧(帧P5)的时间距离为TRD,当前帧(帧B6)与前向参照帧(帧P5)的时间距离为TRF,则运动矢量h的大小MVF、运动矢量i的大小MVB分别由(式1)、(式2)求出。 At this time, if the size of the motion vector h as the forward motion vector is MVF, the size of the motion vector i as the backward motion vector is MVB, and the size of the motion vector g is MV, the current frame (frame B6) after The time distance to the frame (frame P5) referred to by the block of the reference frame (frame P9) and its backward reference frame is TRD, and the time distance between the current frame (frame B6) and the forward reference frame (frame P5) is TRF, then The magnitude MVF of the motion vector h and the magnitude MVB of the motion vector i are obtained by (Equation 1) and (Equation 2), respectively. the
将如此生成的运动补偿图像数据输出到加法运算部1408。加法运算部1408将输入的预测误差图像数据与运动补偿图像数据相加,生成解码图像数据。生成的解码图像数据经开关1410输出到帧存储器1407。 The motion compensation image data generated in this way is output to the
如上所述,完成帧B6的一个宏块的处理。通过同样处理,顺序解码其余的宏块。若解码全部帧B6的宏块,则解码帧B8。 As described above, the processing of one macroblock of frame B6 is completed. Through the same process, the remaining macroblocks are sequentially decoded. If all the macroblocks of frame B6 are decoded, then frame B8 is decoded. the
(帧B8的解码处理)(Decoding processing of frame B8)
码列分析部1401、模式解码部1403、和预测误差解码部1402中生成预测误差图像数据以前的动作与帧P9的解码处理时一样,所以省略说明。 Operations up to generation of prediction error image data in the code
运动补偿解码部1405根据输入的运动矢量信息等,生成运动补偿图像数据。帧B8参照帧B7作为前向参照帧,参照P9作为后向参照帧,进行编码,这些帧被解码后,保持在帧存储器1407中。 The motion
在模式选择为双向预测的帧间预测编码时,运动补偿解码部1405根据前向运动矢量信息,从帧存储器1407中取得前向参照图像数据。另外,根据后向运动矢量信息,从帧存储器1407中取得后向参照图像数据。运动补偿解码部1405通过加法平均前向参照图像数据与后向参照图像数据,生成运动补偿图像数据。 When the mode selection is bidirectional predictive interframe predictive coding, the motion
在模式选择为直接模式的情况下,运动补偿解码部1405取得运动矢量存储部1406中存储的帧P9的运动矢量。运动补偿解码部1405使用该运动矢量,从帧存储器1407中取得前向参照图像数据和后向参照图像数据。运动补偿解码部1405通过加法平均前向参照图像数据和后向参照图像数据,生成运动补偿图像数据。 When the mode selection is the direct mode, the motion
用图8(d)来说明模式选择为直接模式时的一例。其中,设解码帧B8的块a,并设为作为后向参照帧的帧P9中、与块a位于相同位置上的块b。另外,设块b的前向运动矢量为运动矢量c。该运动矢量c参照帧P5。此时,使用参照利用运动矢量c生成的帧B7的运动矢量d来作为对块a的前向运动矢量,使用参照利用运动矢量c生成的帧P9的运动矢量e作为后向运动矢量。例如,作为利用运动矢量c的方法,有生成平行于运动矢量c的运动矢量的方法。设加法平均根据这些运动矢量得到的前向参照图像数据与后向参照图像数据后的图像数据为运动补偿图像数据。 An example when the mode selection is the direct mode will be described with reference to FIG. 8( d ). Here, block a of frame B8 is decoded, and block b located at the same position as block a in frame P9 which is a backward reference frame is assumed. Also, let the forward motion vector of block b be motion vector c. This motion vector c refers to the frame P5. At this time, a motion vector d referring to frame B7 generated using motion vector c is used as a forward motion vector for block a, and a motion vector e referring to frame P9 generated using motion vector c is used as a backward motion vector. For example, as a method of using the motion vector c, there is a method of generating a motion vector parallel to the motion vector c. The image data obtained by adding and averaging the forward-reference image data and the backward-reference image data obtained from these motion vectors is motion-compensated image data. the
此时,若设作为前向运动矢量的运动矢量d的大小为MVF,设作为后向运动矢量的运动矢量e的大小为MVB,运动矢量c的大小 为MV,当前帧(帧B8)的后向参照帧(帧P9)与其后向参照帧的块b所参照的帧(帧P5)的时间距离为TRD,当前帧(帧B8)与前向参照帧(帧B7)的时间距离为TRF,当前帧(帧B8)与后向参照帧(帧P9)的时间距离为TRB,则运动矢量d的大小MVF、运动矢量e的大小MVB分别由(式1)、(式5)求出。 At this time, if the size of the motion vector d as the forward motion vector is MVF, the size of the motion vector e as the backward motion vector is MVB, and the size of the motion vector c is MV, the current frame (frame B8) after The time distance to the frame (frame P5) referred to by the block b of the reference frame (frame P9) and its backward reference frame is TRD, and the time distance between the current frame (frame B8) and the forward reference frame (frame B7) is TRF, The temporal distance between the current frame (frame B8) and the backward reference frame (frame P9) is TRB, then the magnitude MVF of the motion vector d and the magnitude MVB of the motion vector e are obtained by (Equation 1) and (Equation 5), respectively. the
将如此生成的运动补偿图像数据输出到加法运算部1408。加法运算部1408将输入的预测误差图像数据与运动补偿图像数据相加,生成解码图像数据。生成的解码图像数据经开关1410输出到帧存储器1407。 The motion compensation image data generated in this way is output to the
如上所述,完成帧B8的一个宏块的处理。通过同样处理,顺序解码其余的宏块。下面,通过对应于帧种类的同样处理来解码各帧。 As described above, the processing of one macroblock of frame B8 is completed. Through the same process, the remaining macroblocks are sequentially decoded. Next, each frame is decoded by the same process corresponding to the frame type. the
接着,帧存储器控制部1404如上所述将帧存储器1407中保持的各帧的图像数据如图6(a)所示按时间顺序替换后,作为输出图像输出。 Next, the frame
如上所述,在本发明的动态图像解码方法中,当使用双向预测来解码进行帧间预测编码处理的B帧时,作为用作前向参照帧和后向参照帧的帧,使用已解码完的在显示时间顺序中位于附近的帧,进行解码。 As described above, in the moving image decoding method of the present invention, when decoding a B frame subjected to inter-frame predictive coding processing using bidirectional prediction, as frames used as a forward reference frame and a backward reference frame, decoded frames are used. The nearby frames in the display time order are decoded. the
另外,在B帧中选择直接模式作为编码模式的情况下,通过参照运动矢量存储部1406中保持的已解码完的后向参照帧的运动矢量,从已解码完的图像数据中取得参照图像数据,并得到运动补偿图像数据。 In addition, when the direct mode is selected as the encoding mode for the B frame, the reference image data is obtained from the decoded image data by referring to the motion vector of the decoded backward reference frame held in the motion
通过这种动作,在使用双向预测来编码进行帧间预测编码处理的B帧时,在解码使用显示时间顺序中位于附近的帧作为用作前向参照帧和后向参照帧的帧、并进行编码后生成的码列时,可正确进行解码处理。 With this operation, when encoding a B frame subjected to an inter-frame predictive encoding process using bidirectional prediction, frames located nearby in the order of display time are used as frames serving as forward reference frames and backward reference frames for decoding, and When the code sequence generated after encoding can be correctly decoded. the
另外,在本实施例中,对直接模式说明了7个实例,但例如也可 使用通过后向参照帧的相同位置上的块的解码方法等、对每个宏块或块唯一确定的一个方法,也可以块或宏块单位来切换多个方法并使用。在使用多个方法的情况下,使用码列中记录的、表示使用哪个直接模式的信息来进行解码。此时,运动补偿解码部1405的动作随该信息而变化。例如,在以运动补偿的块单位附加该信息的情况下,模式解码部确定使用哪个直接模式来进行编码,并将之传送给运动补偿解码部1405。另外,运动补偿解码部1405按照使用哪个直接模式,使用本实施例中说明的解码方法来进行解码处理。 In addition, in this embodiment, seven examples have been described for the direct mode, but a method uniquely determined for each macroblock or block may be used, for example, by decoding a block at the same position in a backward reference frame. , and multiple methods can be switched and used in units of blocks or macroblocks. When a plurality of methods are used, decoding is performed using information indicating which direct mode is used recorded in the code string. At this time, the operation of the motion
另外,在本实施例中,说明在I或P帧间夹着3个B帧的帧结构情况,但该B帧的个数也可以是其它值,例如4个或5个。 In addition, in this embodiment, a case of frame structure in which three B frames are sandwiched between I or P frames is described, but the number of B frames may be other values, such as four or five. the
另外,在本实施例中,说明解码P帧参照1个显示时间顺序上位于前或后的已编码完的I或P帧进行编码、B帧参照两个显示时间顺序上位于前或后的附近已编码完的帧进行编码的码列的情况,但在这些帧是P帧的情况下,可以是将显示时间顺序中位于前或后的多个已编码完的I帧或P帧作为参照帧替补、并参照各块中最大的1个帧来编码的码列,在为B帧的情况下,可以是将显示时间顺序中位于前或后的附近多个已编码完的帧作为参照帧替补,并参照各块中最大的两个帧来编码的码列。 In addition, in this embodiment, it is explained that the decoded P frame is coded by referring to one coded I or P frame that is located before or after the display time sequence, and the B frame is coded by referring to two nearby locations that are located before or after the display time sequence. In the case of the encoded code sequence of the encoded frame, but in the case where these frames are P frames, multiple encoded I frames or P frames located before or after the display time sequence can be used as reference frames Substitute and refer to the code sequence encoded by the largest frame in each block. In the case of a B frame, multiple encoded frames near the front or back in the display time sequence can be used as reference frame substitutes , and refer to the code sequence encoded by the largest two frames in each block. the
运动补偿解码部1405在将运动矢量存储在运动矢量存储部1406中时,在由双向预测或直接模式来编码对象块的情况下,可存储前向和后向两者的运动矢量,也可仅存储前向运动矢量。若仅存储前向运动矢量,则可削减运动矢量存储部1406的存储器量。 When storing the motion vector in the motion
(实施例3) (Example 3)
通过将实现上述各实施例中所示动态图像编码方法或动态图像解码方法结构用的程序记录在软盘等存储媒体中,可在独立的计算机系统中简单实施上述各实施例中所示的处理。 By recording a program for realizing the structure of the moving picture encoding method or moving picture decoding method shown in each of the above embodiments on a storage medium such as a floppy disk, the processing shown in each of the above embodiments can be easily implemented in an independent computer system. the
图17是使用存储了上述各实施例的动态图像编码方法和动态图 像解码方法的软盘,通过计算机系统来实施情况下的说明图。 Fig. 17 is an explanatory diagram in the case of implementing a computer system using a floppy disk storing the moving picture coding method and the moving picture decoding method of each of the above-mentioned embodiments. the
图17(b)表示从软盘的正面看到的外观、截面结构及软盘,图17(a)表示作为记录媒体主体的软盘的物理格式的实例。软盘FD内置于壳体F内,在该盘的表面,从外向内以同心圆状形成多个轨道Tr,沿角度方向将各轨道分割成16个扇区Se。因此,在存储上述程序的软盘中,在上述软盘FD上分配的区域中,记录作为上述程序的动态图像编码方法。 Fig. 17(b) shows the appearance, cross-sectional structure and floppy disk seen from the front of the floppy disk, and Fig. 17(a) shows an example of the physical format of the floppy disk which is the main body of the recording medium. The floppy disk FD is housed in the case F, and on the surface of the disk, a plurality of tracks Tr are formed concentrically from the outside to the inside, and each track is divided into 16 sectors Se along the angular direction. Therefore, on the floppy disk storing the above-mentioned program, the video encoding method as the above-mentioned program is recorded in an area allocated on the floppy disk FD. the
另外,图17(c)表示在软盘FD上进行上述程序的记录再现用的结构。在将上述程序记录在软盘FD中的情况下,经软盘驱动器从计算机系统Cs写入作为上述程序的动态图像编码方法或动态图像解码方法。另外,在通过软盘内的程序在计算机系统中构筑上述动态图像编码方法的情况下,通过软盘驱动器从软盘中读出程序,并传送到计算机系统。 17(c) shows a configuration for recording and reproducing the above-mentioned program on the floppy disk FD. When the above-mentioned program is recorded on the floppy disk FD, the video encoding method or the video decoding method as the above-mentioned program is written from the computer system Cs via the floppy disk drive. In addition, when implementing the above-mentioned video coding method in a computer system with a program in a floppy disk, the program is read from the floppy disk with a floppy disk drive and transferred to the computer system. the
在上述说明中,将软盘用作记录媒体来进行说明,但即使使用光盘也一样进行。另外,记录媒体不限于此,IC卡、ROM盒等只要是可记录程序的媒体,都可同样实施。 In the above description, a floppy disk is used as the recording medium, but the same can be done even if an optical disk is used. In addition, the recording medium is not limited thereto, and any program-recordable medium such as an IC card or a ROM cassette can be implemented in the same manner. the
这里,还说明上述实施例中所示动态图像编码方法或动态图像解码方法的应用实例及使用该应用实例的系统。 Here, an application example of the moving picture encoding method or moving picture decoding method shown in the above-mentioned embodiments and a system using the application example will also be described. the
图18是表示实现实现内容配送服务的内容提供系统ex100的整体结构框图。将通信服务的提供区分割成所期望的大小,并在各小区内分别设置作为固定无线站的基站ex107-ex110。 Fig. 18 is a block diagram showing the overall configuration of a content providing system ex100 for realizing a content distribution service. The communication service provision area is divided into desired sizes, and base stations ex107-ex110 serving as fixed wireless stations are installed in each cell. the
内容提供系统ex100例如经因特网服务提供商ex102和电话网ex104及基站ex107-ex110,将计算机ex111、PDA(personal digitalassistant:个人数字助理)ex112、摄像机ex113、手机ex114、带摄像机的手机ex115等各设备于因特网ex101上。 The content providing system ex100 connects various devices such as a computer ex111, a PDA (personal digital assistant) ex112, a camera ex113, a mobile phone ex114, and a mobile phone with a camera ex115 via the Internet service provider ex102, the telephone network ex104, and the base stations ex107-ex110. On the Internet ex101. the
但是,内容提供系统ex100不限于图18的组合,也可任意组合后连接。另外,也可不经作为固定基站的基站ex107-ex110而将各设 备直接连接于电话网ex104上。 However, the content providing system ex100 is not limited to the combination shown in FIG. 18, and may be connected in any combination. In addition, each device may be directly connected to the telephone network ex104 without passing through the base stations ex107-ex110 which are fixed base stations. the
摄像机ex113是数字摄像机等可拍摄动态图像的设备。另外,手机是PDC(Personal Digital Communications:个人数字通信)方式、CDMA(Code Division Multiple Access:码分多址)方式、W-CDMA(Wideband-Code Division Multiple Access:宽带码分多址)方式、或GSM(Global System for Mobile Communications:移动通信全球系统)方式的手机机,或PHS(Personal Handyphone System:个人手机系统)等,是哪种都无妨。 The camera ex113 is a device capable of shooting moving images such as a digital video camera. In addition, the mobile phone is PDC (Personal Digital Communications: Personal Digital Communications) method, CDMA (Code Division Multiple Access: Code Division Multiple Access) method, W-CDMA (Wideband-Code Division Multiple Access: Wideband Code Division Multiple Access) method, or GSM (Global System for Mobile Communications: Global System for Mobile Communications) mobile phone, or PHS (Personal Handyphone System: Personal Handyphone System), etc., it does not matter. the
另外,流服务器ex103通过基站ex109、电话网ex104与摄像机ex113连接,使用摄像机ex113,可根据用户发送的编码处理后的数据来进行现场配送等。摄像数据的编码处理可由摄像机ex113进行,也可由进行数据发送处理的服务器等进行。另外,摄像机ex116拍摄的动态图像数据也可经计算机ex111发送到流服务器ex103。摄像机ex116是数字摄像机等可拍摄静止图像、动态图像的设备。由此,动态数据的编码由摄像机ex116还是由计算机ex111进行无关紧要。另外,编码处理变为在计算机ex111或摄像机ex116具有的LSIex117中进行处理。也可将动态图像编码、解码用软件装载在作为计算机ex111可读取的记录媒体的任一存储媒体(CD-ROM、软盘、硬盘等)中。并且,也可由带摄像机的手机ex115来发送动态图像数据。此时的动态图像数据是由手机ex115具有的LSI进行编码处理后的数据。 In addition, the streaming server ex103 is connected to the camera ex113 through the base station ex109 and the telephone network ex104, and the video camera ex113 can be used for on-site distribution and the like based on the coded data sent by the user. The encoding processing of the captured data may be performed by the camera ex113, or may be performed by a server or the like that performs data transmission processing. In addition, video data captured by the camera ex116 can also be sent to the streaming server ex103 via the computer ex111. The camera ex116 is a device capable of shooting still images and moving images, such as a digital video camera. Thus, it does not matter whether the encoding of the motion data is carried out by the camera ex116 or by the computer ex111. In addition, encoding processing is performed in the LSI ex117 included in the computer ex111 or the camera ex116. The software for video encoding and decoding can also be loaded on any storage medium (CD-ROM, floppy disk, hard disk, etc.) that can be read by the computer ex111. In addition, moving image data can also be sent from the mobile phone ex115 with a camera. The video data at this time is encoded by the LSI included in the mobile phone ex115. the
在该内容提供系统ex100中,用户与上述实施例一样编码处理由摄像机ex113、摄像机ex116等拍摄的内容(例如拍摄音乐现场的照片等),并发送到流服务器ex103,另一方面,流服务器ex103向有要求的客户机流配送上述内容数据。作为客户机,有可解码上述编码处理后数据的计算机ex111、PDAex112、摄像机ex113、手机ex114等。从而,内容提供系统ex100可由客户机接收并再现编码后的数据,并通过由客户机实时接收并解码、再现,还可实现个人广播。In this content providing system ex100, the user encodes and processes the content captured by the camera ex113, the camera ex116, etc. (for example, a picture of a music scene, etc.), and sends it to the streaming server ex103. On the other hand, the streaming server ex103 The content data described above is streamed to the requesting client. As clients, there are computers ex111, PDA ex112, video cameras ex113, mobile phones ex114, etc., which can decode the encoded data. Therefore, the content providing system ex100 can receive and reproduce coded data by the client, and by receiving, decoding and reproducing the data in real time by the client, personal broadcasting can also be realized.
在构成该系统的各设备的编码、解码中,也可使用上述各实施例中所示动态图像编码装置或动态图像解码装置。 The video encoding device or the video decoding device shown in the above-mentioned embodiments may also be used for encoding and decoding of each device constituting the system. the
作为一例,说明手机。 As an example, a mobile phone will be described. the
图19是表示使用上述实施例中说明的动态图像编码方法和动态图像解码方法的手机ex115的图。手机ex115具有:天线ex201,与基站ex110之间收发信电波;CCD摄像机等摄像部ex203,可拍摄照片、静止图像;液晶显示器等显示部ex202,显示解码摄像部ex203拍摄的照片、天线ex201接收的照片等的数据;主体部,由操作键ex204群构成;扬声器等声音输出部ex208,进行声音输出;麦克风等声音输入部ex205,进行声音输入;记录媒体ex207,保存拍摄的动态图像或静止图像的数据、接收到的邮件数据、动态图像数据或静止图像数据等编码数据或解码数据;开槽部ex206,可将记录媒体ex207安装在手机ex115上。记录媒体ex207在SD卡等塑料外壳内存储作为可电改写或擦除的非易失性存储的EEPROM(ElectricallyErasable and Programmable Read Only Memory:电可擦除只读存储器)之一的闪存元件。 Fig. 19 is a diagram showing a mobile phone ex115 using the video encoding method and video decoding method described in the above-mentioned embodiments. The mobile phone ex115 has: an antenna ex201, which transmits and receives radio waves with the base station ex110; an imaging unit ex203 such as a CCD camera, which can take photos and still images; a display unit ex202 such as a liquid crystal display, which displays and decodes photos taken by the imaging unit ex203 and received by the antenna ex201 Data such as photos; the main body is composed of a group of operation keys ex204; the sound output part ex208 such as a speaker is used for sound output; the sound input part ex205 such as a microphone is used for sound input; the recording medium ex207 is used for storing captured moving images or still images Encoded data or decoded data such as data, received mail data, moving image data, or still image data; the slotting part ex206 enables the recording medium ex207 to be mounted on the mobile phone ex115. The recording medium ex207 stores a flash memory element as one of EEPROM (Electrically Erasable and Programmable Read Only Memory: Electrically Erasable Read Only Memory) which is electrically rewritable or erasable nonvolatile storage in a plastic case such as an SD card. the
用图20来说明手机ex115。手机ex115经同步总线ex313,对主控制部ex311彼此连接电源电路部ex310、操作输入控制部ex304、图像编码部ex312、摄像机接口部ex303、LCD(Liquid Crystal Display:液晶显示器)控制部ex302、图像解码部ex309、复用分离部ex308、记录再现部ex307、调制解调电路部ex306和声音处理部ex305,主控制部ex311统一控制具备显示部ex202及操作键ex204的主体部的各部。 Use Figure 20 to illustrate the mobile phone ex115. The mobile phone ex115 is connected to the main control unit ex311 via the synchronous bus ex313. The unit ex309, the demultiplexing unit ex308, the recording and reproducing unit ex307, the modem circuit unit ex306, the audio processing unit ex305, and the main control unit ex311 collectively control each unit of the main unit including the display unit ex202 and the operation keys ex204. the
电源电路部ex310若通过用户操作将结束通话及电源键变为接通状态,则从电池组向各部供电,由此,将带摄像机的数字手机ex115启动到可操作状态。 The power supply circuit unit ex310, when the call end and the power button are turned on by the user operation, supplies power from the battery pack to each unit, thereby activating the digital mobile phone with camera ex115 to an operable state. the
手机ex115根据由CPU、ROM及RAM等构成的主控制部ex311 的控制,通过声音处理部ex305将声音通话模式时由声音输入部ex205收集的声音信号变换为数字声音信号,并由调制解调电路部ex306对该信号进行扩频处理,在由收发信电路部ex301实施数模变换处理及频率变换处理后,经天线ex201进行发送。另外,手机机ex115放大声音通话模式时由天线ex201接收到的接收数据,实施频率变换处理及逆扩频处理,在由声音处理部ex305变换为模拟声音数据后,经声音输出部ex208输出。 The mobile phone ex115 converts the sound signal collected by the sound input part ex205 into a digital sound signal through the sound processing part ex305 through the sound processing part ex305 according to the control of the main control part ex311 composed of CPU, ROM and RAM, etc. The portion ex306 performs spread spectrum processing on the signal, and after the digital-to-analog conversion processing and the frequency conversion processing are performed by the transceiver circuit portion ex301, the signal is transmitted through the antenna ex201. In addition, the mobile phone ex115 amplifies the reception data received by the antenna ex201 in the voice call mode, performs frequency conversion processing and inverse spread spectrum processing, converts it into analog voice data by the voice processing unit ex305, and outputs it through the voice output unit ex208. the
在数据通信模式时发送电子邮件的情况下,经操作输入控制部ex304,将由主体部的操作键ex204的操作输入的电子邮件的文本数据发送到主控制部ex311。主控制部ex311通过调制解调电路ex306对文本数据进行扩频处理,并由收发信电路部ex301实施数模变换处理及频率变换处理后,经天线ex201发送到基站ex110。 When sending an e-mail in the data communication mode, the text data of the e-mail input by operating the operation keys ex204 of the main body is sent to the main control unit ex311 via the operation input control unit ex304. The main control unit ex311 spreads the text data through the modulation and demodulation circuit ex306, and after the digital-to-analog conversion and frequency conversion are performed by the transceiver circuit ex301, the text data is sent to the base station ex110 through the antenna ex201. the
在数据通信模式时发送图像数据的情况下,经摄像机接口部ex303,将由摄像部ex203拍摄的图像数据提供给图像编码部ex312。另外,在不发送图像数据的情况下,也可经摄像机接口部ex303及LCD控制部ex302,在显示部ex202中直接显示由摄像部ex203拍摄的图像数据。 In the case of transmitting image data in the data communication mode, the image data captured by the imaging unit ex203 is supplied to the image encoding unit ex312 via the camera interface unit ex303. In addition, when the image data is not transmitted, the image data captured by the imaging unit ex203 can be directly displayed on the display unit ex202 via the camera interface unit ex303 and the LCD control unit ex302. the
图像编码部ex312具有本发明中说明的动态图像编码装置,通过由上述实施例所示动态图像编码装置中所用编码方法压缩编码从摄像部ex203提供的图像数据,变换为编码图像数据,并发送到复用分离部ex308。与此同时,手机机ex115将在摄像部ex203拍摄中由声音输入部ex205收集的声音作为数字声音数据,经声音处理部ex305发送到复用分离部ex308。 The image encoding unit ex312 has the moving image encoding device described in the present invention, compresses and encodes the image data supplied from the imaging unit ex203 by the encoding method used in the moving image encoding device shown in the above embodiments, converts it into encoded image data, and sends it to Multiplexing and separating part ex308. At the same time, the mobile phone ex115 sends the voice collected by the voice input unit ex205 during shooting by the camera unit ex203 as digital voice data to the multiplexing and demultiplexing unit ex308 via the voice processing unit ex305. the
复用分离部ex308以规定方式复用从图像编码部ex312提供的编码图像数据和从声音处理部ex305提供的声音数据,并由调制解调电路ex306扩频处理结果得到的复用数据,在由收发信电路部ex301实施数模变换处理及频率变换处理后,经天线ex201发送。The demultiplexing unit ex308 multiplexes the encoded image data supplied from the image encoding unit ex312 and the audio data supplied from the audio processing unit ex305 in a predetermined manner, and the multiplexed data obtained by the modulation and demodulation circuit ex306 spreads the result of the processing, and is processed by the modem circuit ex306. The transmission and reception circuit unit ex301 performs digital-to-analog conversion processing and frequency conversion processing, and then transmits through the antenna ex201.
在数据通信模式时接收链接到主页等上的动态图像文件数据的情况下,调制解调电路ex306逆扩频处理经天线ex201从基站ex110接收到的接收数据,并将结果得到的复用数据发送到复用分离部ex308。 In the case of receiving moving image file data linked to a homepage, etc. in the data communication mode, the modem circuit ex306 inversely spreads the received data received from the base station ex110 via the antenna ex201, and transmits the resulting multiplexed data to the multiplexing and separating unit ex308. the
在解码经天线ex201接收到的复用数据中,复用分离部ex308通过分离复用数据,分成图像数据的位充和声音数据的位流,经同步总线ex313将该编码图像数据提供给图像解码部ex309,同时,将该声音数据提供给声音处理部ex305。 In decoding the multiplexed data received via the antenna ex201, the demultiplexing unit ex308 separates the multiplexed data into a bit stream of image data and a bit stream of audio data, and supplies the encoded image data to image decoding via a synchronous bus ex313. part ex309, and at the same time, provide the sound data to the sound processing part ex305. the
图像解码部ex309具有本发明中说明的动态图像解码装置,通过以对应于上述实施例中所示编码方法的解码方法来解码图像数据的位流,生成再现动态图像数据,并经LCD控制部ex302提供给显示部ex202,从而,显示链接于例如主页上的动态图像文件中包含的动态图像数据。与此同时,声音处理部ex305将声音数据变换为模拟声音数据后,将之提供给声音输出部ex208,由此再现链接于例如主页上的动态图像文件中包含的声音数据。 The image decoding unit ex309 has the moving image decoding device described in the present invention, generates and reproduces moving image data by decoding the bit stream of the image data by a decoding method corresponding to the encoding method shown in the above-mentioned embodiments, and transmits the data through the LCD control unit ex302. It is provided to the display unit ex202 to display the moving image data included in the moving image file linked to, for example, the homepage. At the same time, the audio processing unit ex305 converts the audio data into analog audio data and supplies it to the audio output unit ex208, thereby reproducing audio data included in a video file linked to, for example, a homepage. the
不限于上述系统的实例,最近,基于卫星、地面波的数字广播成为话题,如图21所示,数据广播用系统中也可装载上述实施例的至少动态图像编码装置或动态图像解码装置之一。具体而言,广播站ex409经电波将照片信息的位流传送到通信或广播卫星ex410。接收到位流的广播卫星ex410发出广播用电波,具有卫星广播接收设备的家用的天线ex406接收该电波,通过电视(接收机)ex401或机顶盒(STB)ex407等装置解码位流,进行再现。另外,读取、解码作为记录媒体的CD或DVD等存储媒体ex402中记录的位流的再现装置ex403中也可安装上述实施例中所示的动态图像解码装置。此时,再现的照片信号显示于监视器ex404中。另外,也可在连接于有线电视用电缆ex405或卫星/地面波广播的天线ex406上的机顶盒ex407内安装动态图像解码装置,并由电视的监视器ex408来进行再现。此时, 也可不在机顶盒、而在电视机内装载动态图像解码装置。另外,具有天线ex411的汽车ex412也可从卫星ex410或从基站ex107等接收信号,并在汽车ex412具有的汽车导航装置ex413等显示装置中再现动态图像。 Not limited to the example of the above-mentioned system, recently, digital broadcasting based on satellite and terrestrial waves has become a topic. As shown in FIG. . Specifically, the broadcast station ex409 transmits the bit stream of photo information to the communication or broadcast satellite ex410 via radio waves. The broadcast satellite ex410 receiving the bit stream emits radio waves for broadcasting, and the home antenna ex406 equipped with satellite broadcast receiving equipment receives the radio waves, and the bit stream is decoded and reproduced by devices such as a television (receiver) ex401 or a set-top box (STB) ex407. In addition, the video decoding device shown in the above-mentioned embodiments may also be installed in the playback device ex403 that reads and decodes the bit stream recorded on the storage medium ex402 such as CD or DVD as the recording medium. At this time, the reproduced photo signal is displayed on the monitor ex404. In addition, a video decoding device may be installed in a set-top box ex407 connected to a cable ex405 for cable TV or an antenna ex406 for satellite/terrestrial broadcasting, and the video may be reproduced by a TV monitor ex408. In this case, instead of the set-top box, the moving image decoding device may be installed in the television. Also, a car ex412 equipped with an antenna ex411 can receive signals from a satellite ex410 or a base station ex107, etc., and reproduce moving images on a display device such as a car navigation system ex413 included in the car ex412. the
另外,也可由上述实施例所示动态图像编码装置编码图像信号,并记录在记录媒体中。作为具体例,有在DVD盘ex412中记录图像信号的DVD记录器,或在硬盘中记录的盘记录器等记录器ex420。另外,也可记录在SD卡ex422中。若记录器ex420具备上述实施例所示动态图像解码装置,则可再现DVD盘ex421或SD卡ex422中记录的图像信号,并由监视器ex408进行显示。 In addition, the video signal may be coded by the video coding apparatus shown in the above-mentioned embodiments, and recorded on a recording medium. As a specific example, there is a recorder ex420 such as a DVD recorder for recording image signals on a DVD disk ex412 or a disk recorder for recording on a hard disk. In addition, it can also be recorded in the SD card ex422. If the recorder ex420 is equipped with the video decoding device shown in the above-mentioned embodiment, the video signal recorded on the DVD disc ex421 or SD card ex422 can be reproduced and displayed on the monitor ex408. the
汽车导航装置ex413的结构在例如图20所示结构中,考虑去除摄像部ex203与摄像机接口部ex303、图像编码部ex312后的结构,计算机ex111或电视机(接收机)ex401也可同样考虑。 The structure of the car navigation device ex413 is, for example, the structure shown in FIG. 20 excluding the camera unit ex203, the camera interface unit ex303, and the image encoding unit ex312. The computer ex111 or the television (receiver) ex401 can also be considered in the same way. the
上述手机ex114等的终端除具有编码器、解码器两者的收发信型终端外,还考虑仅具有编码器的发送终端、仅具有解码器的接收终端等3种安装形式。 For terminals such as the above-mentioned mobile phone ex114, in addition to transmitting and receiving terminals having both encoders and decoders, three types of installation types are conceivable: transmitting terminals having only encoders and receiving terminals only having decoders. the
这样,可将上述实施例中所示动态图像编码方法或动态图像解码方法用于上述任一设备、系统中,由此,可得到上述实施例中说明的效果。 In this way, the dynamic image encoding method or the dynamic image decoding method shown in the above-mentioned embodiments can be used in any of the above-mentioned devices and systems, thereby obtaining the effects described in the above-mentioned embodiments. the
另外,本发明不限于上述实施例,在不脱离本发明的范围内,可进行各种变形和更正。 In addition, this invention is not limited to the said Example, Various deformation|transformation and correction are possible in the range which does not deviate from this invention. the
如上所述,根据本发明的动态图像编码方法,在编码B帧时,可将显示时间顺序中较近的帧用作参照帧,由此,可提高运动补偿时的预测效率,故提高编码效率。 As described above, according to the moving image coding method of the present invention, when coding B frames, frames closer in display time order can be used as reference frames, thereby improving prediction efficiency during motion compensation, thereby improving coding efficiency. . the
另外,在直接模式下,通过对第2参照帧的第1运动矢量进行换算,可不必发送运动矢量信息,且提高预测效率。 In addition, in the direct mode, by converting the first motion vector of the second reference frame, it is not necessary to send motion vector information, and the prediction efficiency is improved. the
另外,在直接模式下,通过对第2参照帧在直接模式下实质上使 用的第1运动矢量进行换算,可不必发送运动矢量信息,并且即使在直接模式下编码第2参照帧内同一位置的块时,也可提高预测效率。 In addition, in the direct mode, by converting the first motion vector substantially used in the direct mode of the second reference frame, it is not necessary to send the motion vector information, and even if the same position in the second reference frame is coded in the direct mode The prediction efficiency can also be improved when there are blocks. the
另外,在直接模式下,通过对编码第2参照帧内同一位置的块时使用的第2运动矢量进行换算,可不必发送运动矢量信息,并且即使在第2参照帧内同一位置的块仅具有第2运动矢量的情况下,也可提高预测效率。 In addition, in the direct mode, by converting the second motion vector used when encoding the block at the same position in the second reference frame, it is not necessary to send motion vector information, and even if the block at the same position in the second reference frame only has Also in the case of the second motion vector, prediction efficiency can be improved. the
另外,通过将直接模式下的运动矢量强制设置为0,在选择直接模式的情况下,可不必发送运动矢量信息,并可不必运动矢量的换算处理,削减处理量。 In addition, by forcibly setting the motion vector in the direct mode to 0, when the direct mode is selected, it is not necessary to transmit the motion vector information, and the conversion process of the motion vector is unnecessary, thereby reducing the amount of processing. the
另外,在直接模式下,通过对在后P帧的运动矢量进行换算,在第2参照帧是B帧的情况下,不必存储该B帧的运动矢量。另外,不必发送运动矢量的信息,并可提高预测效率。 Also, in the direct mode, by converting the motion vector of the succeeding P frame, when the second reference frame is a B frame, it is not necessary to store the motion vector of the B frame. In addition, it is not necessary to transmit information of motion vectors, and prediction efficiency can be improved. the
另外,在直接模式下,若第2参照帧具有第1运动矢量,则对第1运动矢量进行换算,另外,若第2参照帧不具有第1运动矢量而仅具有第2运动矢量,则对该第2运动矢量进行换算,所以不必向码列附加运动矢量信息,可提高预测效率。 In addition, in the direct mode, if the second reference frame has the first motion vector, then the first motion vector is converted, and if the second reference frame does not have the first motion vector but only has the second motion vector, then the Since the second motion vector is scaled, it is not necessary to add motion vector information to the code string, and prediction efficiency can be improved. the
另外,根据本发明的动态图像解码方法,在解码码列时,可正确进行解码处理,该码列通过使用显示时间顺序中位于附近的帧、作为使用双向预测来进行帧间预测编码处理时用作第1参照和第2参照的帧来编码而生成。 In addition, according to the moving picture decoding method of the present invention, decoding processing can be correctly performed when decoding a code sequence that is used when performing inter-frame predictive encoding processing using bidirectional prediction by using frames located nearby in the order of display time. The first reference frame and the second reference frame are coded and generated. the
产业上的可使用性 Industrial availability
如上所述,本发明的动态图像编码方法和动态图像解码方法用作在例如手机、DVD装置和个人计算机等中、编码对应于构成动态图像的各帧的图像数据来生成码列、同时解码生成的码列用的方法。As described above, the moving picture encoding method and moving picture decoding method of the present invention are used, for example, in mobile phones, DVD devices, personal computers, etc., to encode image data corresponding to each frame constituting a moving picture to generate a code sequence, and simultaneously decode and generate The method used for the code column.
Claims (4)
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP056919/2002 | 2002-03-04 | ||
JP2002056919 | 2002-03-04 | ||
JP118598/2002 | 2002-04-19 | ||
JP2002118598 | 2002-04-19 | ||
JP2002193027 | 2002-07-02 | ||
JP193027/2002 | 2002-07-02 |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB038053462A Division CN100474933C (en) | 2002-03-04 | 2003-02-26 | Moving picture coding method and moving picture decoding device |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101431681A CN101431681A (en) | 2009-05-13 |
CN101431681B true CN101431681B (en) | 2011-03-30 |
Family
ID=40646805
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN 200810184669 Expired - Lifetime CN101431681B (en) | 2002-03-04 | 2003-02-26 | Image decoding method and image decoding device |
CN 200810184664 Expired - Lifetime CN101431679B (en) | 2002-03-04 | 2003-02-26 | Method and device for encoding of picture |
CN 200810184668 Expired - Lifetime CN101431680B (en) | 2002-03-04 | 2003-02-26 | Method and device for encoding of picture |
Family Applications After (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN 200810184664 Expired - Lifetime CN101431679B (en) | 2002-03-04 | 2003-02-26 | Method and device for encoding of picture |
CN 200810184668 Expired - Lifetime CN101431680B (en) | 2002-03-04 | 2003-02-26 | Method and device for encoding of picture |
Country Status (1)
Country | Link |
---|---|
CN (3) | CN101431681B (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102378000B (en) * | 2010-08-13 | 2013-07-17 | 炬力集成电路设计有限公司 | Video frequency decoding device and method thereof |
AU2011362447B2 (en) * | 2011-03-14 | 2015-09-24 | Hfi Innovation Inc. | Method and apparatus for deriving temporal motion vector prediction |
US8942288B2 (en) * | 2011-11-02 | 2015-01-27 | Tagivan Ii Llc | Moving picture coding method, moving picture coding apparatus, moving picture decoding method, and moving picture decoding apparatus |
CN105898328A (en) * | 2015-12-14 | 2016-08-24 | 乐视云计算有限公司 | Self-reference coding included setting method and device for reference frame set |
CN114788274A (en) * | 2019-10-10 | 2022-07-22 | 北京达佳互联信息技术有限公司 | Video encoding and decoding method and device using triangular partition |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5386234A (en) * | 1991-11-13 | 1995-01-31 | Sony Corporation | Interframe motion predicting method and picture signal coding/decoding apparatus |
CN1136877A (en) * | 1993-07-07 | 1996-11-27 | Rca.汤姆森许可公司 | Method and apparatus for providing compressed non-interlaced scanned video signal |
EP0863674A2 (en) * | 1997-03-07 | 1998-09-09 | General Instrument Corporation | Prediction and coding of bi-directionally predicted video object planes for interlaced digital video |
-
2003
- 2003-02-26 CN CN 200810184669 patent/CN101431681B/en not_active Expired - Lifetime
- 2003-02-26 CN CN 200810184664 patent/CN101431679B/en not_active Expired - Lifetime
- 2003-02-26 CN CN 200810184668 patent/CN101431680B/en not_active Expired - Lifetime
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5386234A (en) * | 1991-11-13 | 1995-01-31 | Sony Corporation | Interframe motion predicting method and picture signal coding/decoding apparatus |
CN1136877A (en) * | 1993-07-07 | 1996-11-27 | Rca.汤姆森许可公司 | Method and apparatus for providing compressed non-interlaced scanned video signal |
EP0863674A2 (en) * | 1997-03-07 | 1998-09-09 | General Instrument Corporation | Prediction and coding of bi-directionally predicted video object planes for interlaced digital video |
Also Published As
Publication number | Publication date |
---|---|
CN101431681A (en) | 2009-05-13 |
CN101431679A (en) | 2009-05-13 |
CN101431680B (en) | 2012-01-25 |
CN101431680A (en) | 2009-05-13 |
CN101431679B (en) | 2011-08-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN100474933C (en) | Moving picture coding method and moving picture decoding device | |
CN101873488B (en) | Motion picture encoding method and device, and motion picture decoding method and device | |
JP4130783B2 (en) | Motion vector encoding method and motion vector decoding method | |
CN100589576C (en) | Motion compensation method, image encoding method and image decoding method | |
KR100976672B1 (en) | Video coding method and video decoding method | |
WO2003098939A1 (en) | Moving image encoding method, moving image decoding method, and data recording medium | |
JP2004096705A (en) | Motion vector coding method and motion vector decoding method | |
JP2004048711A (en) | Method for coding and decoding moving picture and data recording medium | |
JP3878591B2 (en) | Video encoding method and video decoding method | |
CN101431681B (en) | Image decoding method and image decoding device | |
JP2004194274A (en) | Motion picture encoding method, motion picture decoding method and recording medium | |
JP2004260236A (en) | Encoding method and decoding method of moving picture | |
JP2004048632A (en) | Method for encoding and decoding motion picture | |
JP4406239B2 (en) | Motion compensation method and motion compensation device | |
JP2006187039A (en) | Motion picture coding method and motion picture decoding method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
ASS | Succession or assignment of patent right |
Owner name: MATSUSHITA ELECTRIC (AMERICA) INTELLECTUAL PROPERT Free format text: FORMER OWNER: MATSUSHITA ELECTRIC INDUSTRIAL CO, LTD. Effective date: 20141009 |
|
C41 | Transfer of patent application or patent right or utility model | ||
TR01 | Transfer of patent right |
Effective date of registration: 20141009 Address after: Seaman Avenue Torrance in the United States of California No. 2000 room 200 Patentee after: PANASONIC INTELLECTUAL PROPERTY CORPORATION OF AMERICA Address before: Osaka Japan Patentee before: Matsushita Electric Industrial Co.,Ltd. |
|
CX01 | Expiry of patent term | ||
CX01 | Expiry of patent term |
Granted publication date: 20110330 |