CN101430376B - Target radar scattering cross-section pre-estimation system with graphics electromagnetic computation accelerated by index information - Google Patents
Target radar scattering cross-section pre-estimation system with graphics electromagnetic computation accelerated by index information Download PDFInfo
- Publication number
- CN101430376B CN101430376B CN2008102409116A CN200810240911A CN101430376B CN 101430376 B CN101430376 B CN 101430376B CN 2008102409116 A CN2008102409116 A CN 2008102409116A CN 200810240911 A CN200810240911 A CN 200810240911A CN 101430376 B CN101430376 B CN 101430376B
- Authority
- CN
- China
- Prior art keywords
- bin
- index
- module
- index information
- target
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Radar Systems Or Details Thereof (AREA)
Abstract
Description
技术领域technical field
本发明涉及一种隐身设计中的雷达散射截面预评估,更特别地说,是指一种利用索引信息加速图形电磁计算目标雷达散射截面的预评估系统。The present invention relates to a radar cross-section pre-evaluation in stealth design, more particularly, a pre-evaluation system that utilizes index information to accelerate graphic electromagnetic calculation of target radar cross-section.
背景技术Background technique
在预估电大尺寸复杂目标的雷达散射截面(RCS,Radar Cross Section)中,由于数值方法对于电大尺寸复杂目标的RCS计算尚显乏力,图形电磁计算方法越来越受到重视,与数值方法相比有不可比拟的计算速度。In estimating the radar cross section (RCS, Radar Cross Section) of electrically large and complex targets, because the numerical method is still weak for the RCS calculation of electrically large and complex targets, the graphical electromagnetic calculation method has been paid more and more attention. Compared with the numerical method There is incomparable computing speed.
图形电磁计算方法利用了计算机显示硬件的图形加速功能,通过红、绿、蓝三种单色光的照射,获得目标表面上对应每一像素点处的法矢,并利用深度缓存(Z-Buffer)来获得目标表面上对应每一像素点处的深度信息,计算出散射元之间的相位关系,结合复杂目标在高频区的物理光学近似和物理绕射理论,获得目标表面上对应每一像素点处的散射场及绕射场,目标的总散射场则由这些离散点处的散射场相干叠加而获得。在上述过程中,计算机GPU承担了目标表面法矢的计算,而目标间的遮挡即深度缓存信息也由GPU来完成。The graphics electromagnetic calculation method utilizes the graphics acceleration function of the computer display hardware to obtain the normal vector corresponding to each pixel on the target surface through the irradiation of red, green and blue monochromatic light, and uses the depth buffer (Z-Buffer ) to obtain the depth information corresponding to each pixel on the target surface, calculate the phase relationship between the scattering elements, and combine the physical optics approximation and physical diffraction theory of the complex target in the high frequency region to obtain the corresponding pixel on the target surface The scattered field and diffraction field at the pixel point, and the total scattered field of the target are obtained by the coherent superposition of the scattered field at these discrete points. In the above process, the computer GPU is responsible for the calculation of the normal vector of the target surface, and the occlusion between the targets, that is, the depth buffer information, is also completed by the GPU.
由于图形电磁计算方法需要通过两次光照才能获取目标表面法矢,涉及计算机耗时的内存交换次数多,并且采用GPU进行图形浮点运算,则精度不如CPU,造成了目标雷达散射截面预评估系统在运算时延长,精度下降。Since the graphical electromagnetic calculation method needs two illuminations to obtain the normal vector of the target surface, it involves a lot of time-consuming memory exchanges on the computer, and the GPU is used for graphics floating-point calculations, the accuracy is not as good as that of the CPU, resulting in the target radar cross-section pre-evaluation system. When the operation is extended, the accuracy decreases.
发明内容Contents of the invention
本发明利用了索引信息识别未被消隐的面元,通过计算机CPU来计算面元的散射积分,从而得到目标雷达散射截面。The invention utilizes the index information to identify the surface element that has not been blanked, and calculates the scattering integral of the surface element through the computer CPU, so as to obtain the radar scattering cross section of the target.
本发明的目标雷达散射截面预评估系统包括有面元建模模块1、编制索引信息模块2、实体显示模块3、解读索引信息模块4、几何信息解析模块5和目标雷达散射截面获取模块6;The target radar cross section pre-evaluation system of the present invention includes a surface
面元建模模块1一方面用于对任意一实体表面(实体可以是特种飞行器、舰船、车辆等装备)采用NURBS方法进行参数化建模,形成实体参数化表面;另一方面将该实体参数化表面进行网格剖分形成面劈模型结构,并以*.dxf文件格式保存。Surface
编制索引信息模块2通过面元索引N与面元颜色CN(R,G,B)的映射关系使面劈模型结构中每个面元有唯一颜色表示。The
在本发明中,面元索引N与面元颜色CN(R,G,B)的映射关系为N=R·65536+G·256+B。In the present invention, the mapping relationship between the bin index N and the bin color CN(R, G, B) is N=R·65536+G·256+B.
实体显示模块3依据面元颜色CN(R,G,B)对面劈模型结构进行上色;然后,使用OpenGL对面劈模型结构进行消隐处理,获得面劈模型结构中未被遮挡部分的有色面元FN(N∈{1,2,3,……,m}),N表示面元索引,m表示面元的个数。The
解读索引信息模块4首先使用OpenGL对读取有色面元FN(N∈{1,2,3,……,m})中的颜色,然后采用映射关系N=R·65536+G·256+B获得有色面元FN(N∈{1,2,3,……,m})的索引N(FN)。Interpreting the
几何信息解析模块5根据索引N(FN)访问面劈模型结构中与之相对应的面元,得到有色面元FN(N∈{1,2,3,……,m})的几何信息 The geometric
目标雷达散射截面获取模块6采用几何光学理论(GO)、物理光学近似(PO)和物理绕射理论(PTD)对几何信息进行散射积分计算处理,得到目标雷达散射截面。Target radar
附图说明Description of drawings
图1是本发明目标雷达散射截面预评估系统的结构框图。Fig. 1 is a structural block diagram of a target radar cross-section pre-evaluation system of the present invention.
图2是在目标雷达坐标系下的雷达视线简示图。Figure 2 is a simplified diagram of the radar line of sight in the target radar coordinate system.
具体实施方式Detailed ways
下面将结合附图和实施例对本发明做进一步的详细说明。The present invention will be further described in detail below in conjunction with the accompanying drawings and embodiments.
本发明的目标雷达散射截面预评估系统,在图形电磁方法的基础上,减少耗时的内存交换次数,且将目标表面法矢计算交给计算机CPU完成,同时,利用主流CPU的单指令多数据(SINGLE INSTRUCTION MULTIPLE DATA,SIMD)流处理模型的并行运算功能,加速法矢的计算过程。主要技术方案为:对目标模型的面元编号,建立面元的索引列表,将面元索引与面元颜色一一对应,同时将背景颜色置为黑色,即红(R)、绿(G)、蓝(B)三原色分量均为零,利用GPU完成面元消隐,由像素的颜色得到对应的面元索引,从而获得像素的法矢和深度值。整个过程无需光照,表面法矢在面元绘制阶段已经预先计算得到,只需读取一次颜色值,执行两次内存交换,比一般图形电磁计算少一次,从而缩短了计算时间。The target radar scattering cross-section pre-evaluation system of the present invention, on the basis of the graphic electromagnetic method, reduces the number of time-consuming memory exchanges, and the calculation of the normal vector of the target surface is completed by the computer CPU, and at the same time, the single instruction multiple data of the mainstream CPU is used (SINGLE INSTRUCTION MULTIPLE DATA, SIMD) The parallel operation function of the stream processing model accelerates the calculation process of the normal vector. The main technical solution is: number the surface elements of the target model, establish a surface element index list, correspond the surface element index to the surface element color one by one, and set the background color to black, that is, red (R) and green (G) The components of the three primary colors of , blue (B) are all zero, use the GPU to complete the bin blanking, and obtain the corresponding bin index from the color of the pixel, so as to obtain the normal vector and depth value of the pixel. The whole process does not require lighting, and the surface normal vector has been pre-calculated in the surface element drawing stage. It only needs to read the color value once and perform two memory exchanges, which is one less than the general electromagnetic calculation of graphics, thus shortening the calculation time.
参见图1所示,本发明的目标雷达散射截面预评估系统包括有面元建模模块1、编制索引信息模块2、实体显示模块3、解读索引信息模块4、几何信息解析模块5和目标雷达散射截面获取模块6;Referring to Fig. 1, the target radar cross section pre-evaluation system of the present invention includes a surface
面元建模模块1一方面用于对任意一实体表面(实体可以是特种飞行器、舰船、车辆等装备)采用NURBS方法进行参数化建模,形成实体参数化表面;另一方面将该实体参数化表面进行网格剖分形成面劈模型结构,并以*.dxf文件格式保存。Surface
编制索引信息模块2通过面元索引N与面元颜色CN(R,G,B)的映射关系使面劈模型结构中每个面元有唯一颜色表示。The
在本发明中,面元索引N与面元颜色CN(R,G,B)的映射关系为N=R·65536+G·256+B,R表示红色,G表示绿色,B表示蓝色。In the present invention, the mapping relationship between the bin index N and the bin color CN(R, G, B) is N=R·65536+G·256+B, where R represents red, G represents green, and B represents blue.
实体显示模块3依据面元颜色CN(R,G,B)对面劈模型结构进行上色;然后,使用OpenGL对面劈模型结构进行消隐处理,获得面劈模型结构中未被遮挡部分的有色面元FN(N∈{1,2,3,……,m}),N表示面元索引,m表示面元的个数。The
解读索引信息模块4首先使用OpenGL对读取有色面元FN(N∈{1,2,3,……,m})中的颜色,然后采用映射关系N=R·65536+G·256+B获得有色面元FN(N∈{1,2,3,……,m})的索引N(FN)。Interpreting the
几何信息解析模块5根据索引N(FN)访问面劈模型结构中与之相对应的面元,得到有色面元FN(N∈{1,2,3,……,m})的几何信息 The geometric
目标雷达散射截面获取模块6采用几何光学理论(GO)、物理光学近似(PO)和物理绕射理论(PTD)对几何信息进行散射积分计算处理,得到目标雷达散射截面。Target radar
参见图1所示,在本发明中,编制索引信息模块2中的面元索引N是指面劈模型结构中识别每一个面元所需要的序号,该序号可以根据设计者任意编写,如按数字顺次编号、或按字母编号等等。Referring to shown in Fig. 1, in the present invention, the panel index N in the
参见图1所示,本发明在目标雷达散射截面获取模块6中,为了计算不同雷达视线角下的目标雷达散射截面时,目标雷达坐标系记为xyz,雷达视线的单位方向矢量在目标雷达坐标系中可以表示为(Dx,Dy,Dz),如图2所示。目标雷达需要绕x轴和y轴旋转,使得目标雷达坐标系的oz轴与雷达视线方向重合。这时需要对目标面元法矢做坐标旋转变换。目标(或称目标雷达)与坐标平面oxz的夹角为α,目标在坐标平面oxz上的投影与坐标轴oz的夹角为β。Referring to shown in Fig. 1, in the present invention in the target radar scattering
目标雷达绕oy轴逆时针(按照右手定则)旋转β角度后的坐标转换矩阵Ry[β]为:The coordinate transformation matrix R y [β] after the target radar is rotated counterclockwise around the y axis (according to the right-hand rule) by an angle of β is:
目标雷达绕ox轴顺时针旋转α角度后的坐标转换矩阵RX[α]为:The coordinate transformation matrix R X [α] after the target radar rotates clockwise around the ox axis by an angle of α is:
目标雷达先绕oy轴、后绕ox轴旋转两次,即得到雷达视线角到目标雷达坐标系的转换矩阵Rtransform为:The target radar first rotates around the y-axis and then around the ox-axis twice, that is, the transformation matrix R transform from the radar sight angle to the target radar coordinate system is:
Rtransform=RY[β]·RX[α] (3)R transform =R Y [β]·R X [α] (3)
把目标雷达坐标系中的法矢转换到雷达视线角中,只需将该法矢乘以这两座标系之间的转换矩阵即可得到,只涉及加减乘和开方这几种基本运算。因此对于多个面元的法矢变换,可以应用主流CPU的单指令多数据(SINGLE INSTRUCTIONMULTIPLE DATA,SIMD)流处理模型的并行运算功能进行加速。To convert the normal vector in the target radar coordinate system to the radar line of sight angle, you only need to multiply the normal vector by the conversion matrix between the two coordinate systems to get it, only involving the basic addition, subtraction, multiplication and square root operation. Therefore, for the normal vector transformation of multiple surface elements, the parallel operation function of the single instruction multiple data (SINGLE INSTRUCTION MULTIPLE DATA, SIMD) stream processing model of the mainstream CPU can be used to accelerate.
采用本发明提出的利用索引信息加速图形电磁计算目标雷达散射截面预评估系统进行目标雷达散射截面获取,具有如下优势:Using index information to accelerate graphic electromagnetic calculation target radar scattering cross section pre-evaluation system proposed by the present invention to obtain target radar scattering cross section has the following advantages:
1.内存交换次数少。一般GRECO方法通过两次光照才能获取目标表面法矢,涉及耗时的内存交换次数为三次,这种方法无需外加光照,需两次内存交换即可得到精确的像素法矢和深度值。1. The number of memory swaps is small. Generally, the GRECO method needs two illuminations to obtain the target surface normal vector, which involves three time-consuming memory exchanges. This method does not require additional illumination, and requires two memory exchanges to obtain accurate pixel normal vectors and depth values.
2.精度高。一般GRECO方法通过计算机GPU执行光照计算获取像素法矢,而这种方法中像素法矢为面元模型建立时CPU计算得到,由于GPU的浮点运算精度不如CPU,所以这种方法可以得到精确的像素法矢。2. High precision. Generally, the GRECO method uses the computer GPU to perform illumination calculations to obtain pixel normal vectors. In this method, the pixel normal vectors are calculated by the CPU when the surface element model is established. Since the floating-point calculation accuracy of the GPU is not as good as that of the CPU, this method can obtain accurate Pixel normal vector.
3.RCS计算过程得到加速。这种方法利用主流CPU的单指令多数据(SINGLEINSTRUCTION MULTIPLE DATA,SIMD)指令集的并行运算功能,加速法矢的旋转变换,还能对RCS计算过程中的像素求和进行并行运算。3. The RCS calculation process is accelerated. This method uses the parallel operation function of the single instruction multiple data (SINGLE INSTRUCTION MULTIPLE DATA, SIMD) instruction set of the mainstream CPU to accelerate the rotation transformation of the normal vector, and can also perform parallel operations on the pixel summation in the RCS calculation process.
4.能够利用面元索引访问保存面元信息的数组,得到精确的面元法矢和相对于观察方向的深度值,相比较计算机GPU的法矢和深度的浮点计算,精度更高。4. The panel index can be used to access the array storing the panel information, and the accurate panel normal vector and depth value relative to the viewing direction can be obtained. Compared with the floating-point calculation of the normal vector and depth of the computer GPU, the precision is higher.
5.整个过程无需单色光照,为得到面元法矢只需读取一次颜色值,执行一次内存交换,比一般图形电磁计算少两次;提出用主流CPU的单指令多数据(SINGLEINSTRUCTION MULTIPLE DATA,SIMD)流处理模型的并行运算功能同时处理多个面元法矢和深度值的计算,提高了计算速度,在保证精度的前提下在一定程度上缩短了计算时间。5. The whole process does not require monochromatic lighting. In order to obtain the surface element normal vector, it only needs to read the color value once and perform a memory exchange, which is twice less than the general electromagnetic calculation of graphics; it is proposed to use the single instruction multiple data (SINGLE INSTRUCTION MULTIPLE DATA) of the mainstream CPU , SIMD) stream processing model's parallel operation function simultaneously processes the calculation of multiple surface element normal vectors and depth values, which improves the calculation speed and shortens the calculation time to a certain extent under the premise of ensuring accuracy.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2008102409116A CN101430376B (en) | 2008-12-24 | 2008-12-24 | Target radar scattering cross-section pre-estimation system with graphics electromagnetic computation accelerated by index information |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2008102409116A CN101430376B (en) | 2008-12-24 | 2008-12-24 | Target radar scattering cross-section pre-estimation system with graphics electromagnetic computation accelerated by index information |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101430376A CN101430376A (en) | 2009-05-13 |
CN101430376B true CN101430376B (en) | 2011-05-04 |
Family
ID=40645886
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2008102409116A Expired - Fee Related CN101430376B (en) | 2008-12-24 | 2008-12-24 | Target radar scattering cross-section pre-estimation system with graphics electromagnetic computation accelerated by index information |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101430376B (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104991240A (en) * | 2015-07-13 | 2015-10-21 | 西安电子科技大学 | Target scattering cross section prediction method |
CN106156431B (en) * | 2016-07-08 | 2019-04-23 | 西安电子科技大学 | Simulation Method of Electromagnetic Scattering of Conductor Target Based on NURBS Surface Modeling |
CN107171994B (en) * | 2017-06-06 | 2020-06-05 | 南京理工大学 | Radio fuze signal identification and reconstruction system and method |
GB2564144B (en) | 2017-07-05 | 2020-01-08 | Advanced Risc Mach Ltd | Context data management |
CN111562976B (en) * | 2019-02-13 | 2023-04-18 | 同济大学 | GPU (graphics processing unit) acceleration method and system for radar imaging of electrically large target |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101216556A (en) * | 2007-12-27 | 2008-07-09 | 复旦大学 | Numerical simulation method of compound electromagnetic scattering between electrically large complex object and rough surface background |
-
2008
- 2008-12-24 CN CN2008102409116A patent/CN101430376B/en not_active Expired - Fee Related
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101216556A (en) * | 2007-12-27 | 2008-07-09 | 复旦大学 | Numerical simulation method of compound electromagnetic scattering between electrically large complex object and rough surface background |
Also Published As
Publication number | Publication date |
---|---|
CN101430376A (en) | 2009-05-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11747766B2 (en) | System and method for near-eye light field rendering for wide field of view interactive three-dimensional computer graphics | |
US10614620B2 (en) | Systems and methods for computer-based visualization, rendering, and representation of regions of space using point clouds | |
Chan et al. | GRay: a massively parallel GPU-based code for ray tracing in relativistic spacetimes | |
US11393157B2 (en) | Robust ray-triangle in intersection | |
Heinrich et al. | Continuous parallel coordinates | |
US7783860B2 (en) | Load misaligned vector with permute and mask insert | |
US5973705A (en) | Geometry pipeline implemented on a SIMD machine | |
US20220067513A1 (en) | Efficient softmax computation | |
US7564459B2 (en) | Resolution-independent curve rendering using programmable graphics hardware | |
US20200193685A1 (en) | Water tight ray triangle intersection without resorting to double precision | |
Chao et al. | Parallel algorithm for viewshed analysis on a modern GPU | |
CN101430376B (en) | Target radar scattering cross-section pre-estimation system with graphics electromagnetic computation accelerated by index information | |
Jones | 3D Distance from a Point to a Triangle | |
US20090150648A1 (en) | Vector Permute and Vector Register File Write Mask Instruction Variant State Extension for RISC Length Vector Instructions | |
Feng et al. | A parallel algorithm for viewshed analysis in three-dimensional Digital Earth | |
CN106991215B (en) | A GPU-based high-precision graphic electromagnetic scattering calculation method | |
US10706609B1 (en) | Efficient data path for ray triangle intersection | |
CN110471061A (en) | A kind of emulation mode and its system for realizing airborne synthetic aperture radar imaging | |
CN104011706B (en) | Figure illuminating engine including logarithm and opposition counting unit | |
US12159341B2 (en) | Common circuitry for triangle intersection and instance transformation for ray tracing | |
CN104573257B (en) | Electromagnetic shielding judgment method based on bin space diversity | |
Zhang et al. | Hybrid general-purpose computation on GPU (GPGPU) and computer graphics synthetic aperture radar simulation for complex scenes | |
CN118429528A (en) | Method, device and equipment for three-dimensional reconstruction of scene | |
Nagy et al. | New algorithm to find isoptic surfaces of polyhedral meshes | |
Wang et al. | Computer-aided synthesis of spherical and planar 4R linkages for four specified orientations |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20110504 Termination date: 20151224 |
|
EXPY | Termination of patent right or utility model |