CN101427408B - 具有减少co2排放的联合高效化石燃料发电设备/燃料电池系统 - Google Patents
具有减少co2排放的联合高效化石燃料发电设备/燃料电池系统 Download PDFInfo
- Publication number
- CN101427408B CN101427408B CN2005800179241A CN200580017924A CN101427408B CN 101427408 B CN101427408 B CN 101427408B CN 2005800179241 A CN2005800179241 A CN 2005800179241A CN 200580017924 A CN200580017924 A CN 200580017924A CN 101427408 B CN101427408 B CN 101427408B
- Authority
- CN
- China
- Prior art keywords
- carbon dioxide
- fuel cell
- gas
- anode
- generating system
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000000446 fuel Substances 0.000 title claims abstract description 99
- 239000002803 fossil fuel Substances 0.000 title claims abstract description 32
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 claims abstract description 144
- 229910002092 carbon dioxide Inorganic materials 0.000 claims abstract description 76
- 239000001569 carbon dioxide Substances 0.000 claims abstract description 70
- 239000007789 gas Substances 0.000 claims abstract description 55
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims abstract description 30
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 claims abstract description 19
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 claims abstract description 18
- 239000003345 natural gas Substances 0.000 claims abstract description 15
- 239000003546 flue gas Substances 0.000 claims abstract description 14
- 239000003034 coal gas Substances 0.000 claims abstract description 9
- 239000002912 waste gas Substances 0.000 claims description 42
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 12
- 239000001301 oxygen Substances 0.000 claims description 12
- 229910052760 oxygen Inorganic materials 0.000 claims description 12
- 238000007789 sealing Methods 0.000 claims description 11
- 238000002485 combustion reaction Methods 0.000 claims description 7
- 238000000926 separation method Methods 0.000 claims description 5
- 238000001816 cooling Methods 0.000 claims description 4
- 238000002407 reforming Methods 0.000 claims description 4
- 230000009919 sequestration Effects 0.000 abstract description 3
- 239000003245 coal Substances 0.000 description 7
- 239000001257 hydrogen Substances 0.000 description 7
- 229910052739 hydrogen Inorganic materials 0.000 description 7
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 6
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 6
- 238000003012 network analysis Methods 0.000 description 6
- 238000007599 discharging Methods 0.000 description 5
- 238000003487 electrochemical reaction Methods 0.000 description 5
- 230000001590 oxidative effect Effects 0.000 description 5
- 229910002091 carbon monoxide Inorganic materials 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- 239000003792 electrolyte Substances 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- 239000007800 oxidant agent Substances 0.000 description 3
- 238000011084 recovery Methods 0.000 description 3
- 239000004215 Carbon black (E152) Substances 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- 230000005611 electricity Effects 0.000 description 2
- 238000002309 gasification Methods 0.000 description 2
- 229930195733 hydrocarbon Natural products 0.000 description 2
- 150000002430 hydrocarbons Chemical class 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000001351 cycling effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000002737 fuel gas Substances 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- VUZPPFZMUPKLLV-UHFFFAOYSA-N methane;hydrate Chemical compound C.O VUZPPFZMUPKLLV-UHFFFAOYSA-N 0.000 description 1
- 239000003129 oil well Substances 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000010792 warming Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/06—Combination of fuel cells with means for production of reactants or for treatment of residues
- H01M8/0662—Treatment of gaseous reactants or gaseous residues, e.g. cleaning
- H01M8/0668—Removal of carbon monoxide or carbon dioxide
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/06—Combination of fuel cells with means for production of reactants or for treatment of residues
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/06—Combination of fuel cells with means for production of reactants or for treatment of residues
- H01M8/0606—Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
- H01M8/0612—Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/06—Combination of fuel cells with means for production of reactants or for treatment of residues
- H01M8/0606—Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
- H01M8/0612—Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
- H01M8/0637—Direct internal reforming at the anode of the fuel cell
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/14—Fuel cells with fused electrolytes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/14—Fuel cells with fused electrolytes
- H01M2008/147—Fuel cells with molten carbonates
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2250/00—Fuel cells for particular applications; Specific features of fuel cell system
- H01M2250/10—Fuel cells in stationary systems, e.g. emergency power source in plant
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2250/00—Fuel cells for particular applications; Specific features of fuel cell system
- H01M2250/40—Combination of fuel cells with other energy production systems
- H01M2250/402—Combination of fuel cell with other electric generators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04007—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
- H01M8/04014—Heat exchange using gaseous fluids; Heat exchange by combustion of reactants
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04082—Arrangements for control of reactant parameters, e.g. pressure or concentration
- H01M8/04089—Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
- H01M8/04111—Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants using a compressor turbine assembly
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04082—Arrangements for control of reactant parameters, e.g. pressure or concentration
- H01M8/04089—Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
- H01M8/04119—Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying
- H01M8/04156—Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying with product water removal
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/06—Combination of fuel cells with means for production of reactants or for treatment of residues
- H01M8/0662—Treatment of gaseous reactants or gaseous residues, e.g. cleaning
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B90/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02B90/10—Applications of fuel cells in buildings
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Fuel Cell (AREA)
- Treating Waste Gases (AREA)
Abstract
一种联合发电系统,其包括用于处理化石基燃料例如煤和天然气的化石燃料发电设备,该设备与具有阳极区和阴极区的碳酸盐燃料电池串联配置。该发电设备的烟道气专门用作燃料电池阴极区的入口气体。离开燃料电池阳极区的阳极废气进行包括封存废气中的二氧化碳的处理。
Description
技术领域
本发明涉及燃料电池系统,特别是具有提高效率的联合燃料电池和化石燃料发电设备系统。
背景技术
燃料电池是一种通过电化学反应将储存在碳氢化合物燃料中的化学能直接转变为电能的装置。通常,燃料电池包含被电解质隔开的阳极和阴极,该电解质起到电传导带电离子的作用。熔融碳酸盐燃料电池的操作是使反应物燃料气体经过阳极,同时使包含二氧化碳和氧气的氧化性气体经过阴极。
化石燃料发电设备通过燃烧诸如煤或天然气的化石燃料产生能量。燃烧过程的结果是化石燃料发电设备产生烟道气,通常该烟道气通过大气排放的方式得到处理。然而,这种排放对环境有害,因为它们包含大量的二氧化碳,而二氧化碳会造成地球变暖和气候变化。
因此,已使用许多方法来控制或限制化石燃料发电设备产生的烟道气排放中的二氧化碳含量。然而,从烟道气中分离二氧化碳的方法成本效率差,因为该气体中二氧化碳的浓度低(约10%)。
美国专利No.5232793中公开了一种系统,其中通过使用与发电设备串联的碳酸盐燃料电池减少了化石燃料发电设备烟道气中的二氧化碳排放。在该系统中,将废气加入到氧化剂供给中,并将组合气体用作熔融碳酸盐燃料电池阴极的原料气。随后,燃料电池中的电化学反应导致原料气中的二氧化碳从燃料电池的阴极转移到阳极。从而,阳极废气具有高浓度的二氧化碳气体。这允许从废气中有效分离出二氧化碳气体,并随后进行处理或转变成可利用的形式。
专利NO.5232793的系统使用一种外部改进的燃料电池系统。该外部改进装置产生烟道气。为了有效回收CO2,还需要将改进燃料再循环到燃料电池的氧化剂供给线上。此外,该发明将燃料电池所需的具有环境温度的空气加入化石燃料发电设备的废气中。这需要进一步对送入燃料电池的氧化剂进行预热以便达到要求的工作温度。NO.5232793的单独空气添加和外部改进都增加了系统的复杂性和成本。它们同时降低了系统的效率。
因此,本发明的一个目标是提供包括化石燃料发电设备和碳酸盐燃料电池的联合发电系统,该系统试图减少上述的缺点。
本发明的另一目标是提供包括化石燃料发电设备和碳酸盐燃料电池的联合发电系统,该系统的复杂性较小并且具有提高的效率。
发明内容
根据本发明的原理,在包括化石燃料发电设备和碳酸盐燃料电池的联合发电系统中实现了上述和其它的目标,该系统优选具有内部重整,具有阳极区和阴极区,其中燃料电池阴极区的入口气体仅包含由化石燃料发电设备产生的烟道废气。离开燃料电池阳极区的阳极废气包含浓的二氧化碳气体,并且可进行进一步的处理。
进一步处理的一种形式中,对阳极废气进行处理以封存或隔离二氧化碳气体,并然后处理封存的气体。在该处理的另一种形式中,将该阳极废气送入耐二氧化碳的低温燃料电池中用作燃料。在处理的又一种形式中,将阳极废气通入二氧化碳分离器以除去和封存二氧化碳,并将剩余的废气再循环到燃料电池的阳极。在处理的又一种形式中,将阳极废气通入燃烧器中使废气中的氢气和一氧化碳转变为二氧化碳,随后对燃烧器的排出物进行二氧化碳的封存和去除。
附图说明
阅读下面与附图结合的详细说明,本发明的上述和其它特征及方面将更为显而易见,其中:
图1显示了依照本发明原理的联合发电系统,该系统包括化石燃料发电设备和碳酸盐燃料电池;
图2显示了图1所示的联合发电系统的替代性配置;和
图3显示了图1系统的另一种配置,该配置包含耐二氧化碳的低温燃料电池。
具体实施方式
图1显示了依照本发明原理的联合发电系统1。系统1包括化石燃料发电设备6和碳酸盐燃料电池组件10,燃料电池组件10具有阴极区12和阳极区14。如图所示,燃料电池10是内部重整或直接的熔融碳酸盐燃料电池,其中用于阳极的燃料在组件中得到内部重整。然而,也可以使用外部改进的碳酸盐燃料电池组件,在该情形中,在送至燃料电池阳极区之前使用改进器来改进燃料。
根据本发明的原理,将化石燃料发电设备6和碳酸盐燃料电池组件10串联设置,以便仅向组件的阴极区12供应来自发电设备的烟道废气。下文将更详细地讨论这种配置。
如图1所示,将诸如煤、天然气或其它碳氢化合物燃料的化石燃料从化石燃料供给2与空气供给4提供的空气一起提供至化石燃料发电设备6。化石燃料和空气在生产能量的发电设备6中发生燃烧反应,并产生输出的烟道废气。该烟道废气典型包含约10%的二氧化碳、19%的水、和9%的氧气以及余量的氮气。这些成分的精确量依赖于化石燃料的类型和空气供给4提供的空气量。可以通过调整空气供给4来改变氧气含量。
线路8将部分或全部的烟道废气耦合至阴极区12的入口12A,因此该烟道气是该入口的唯一氧化气体供给。同时,通过线路15将来自供给16的燃料,例如煤气、天然气或其它含氢燃料,送到阳极区14的入口14A。
可以理解的是,在燃料电池组件10中,阴极区12中的烟道废气和阳极区14中的改进氢气发生电化学反应产生能量输出。此外,这种电化学反应会在由电池的阴极区转移到阳极区的烟道气中产生较大部分(约65%-75%或更多)的二氧化碳。
更具体地,烟道气中的二氧化碳和氧气在燃料电池的阴极区12中反应产生碳酸根离子,该离子通过燃料电池的电解质被送到阳极区14。在阳极区14中,碳酸根离子被来自燃料的氢气还原产生水和二氧化碳。净结果是上面提及的烟道气中的较大部分的二氧化碳从阴极区转移到阳极区。因此,燃料电池10的阳极室的出口14B处的阳极废气具有高浓度的二氧化碳,从而允许二氧化碳气体更容易且更有效地被回收加以处理或转化为有用的形式。
特别地,耗尽二氧化碳的烟道气通过线路18经阴极出口12B离开阴极区12。阳极废气主要包含二氧化碳以及未反应的氢气、一氧化碳、水蒸气和痕量的其它气体,另一方面,该废气离开阳极出口14B并通过线路20输送用于进一步的处理。该处理包括封存或隔离气体中全部或部分的二氧化碳,由于二氧化碳的高浓度,现在可以更有效地进行该处理。
由于阴极和阳极气体在高温条件下离开燃料电池,通过单元17或单元19回收这些蒸气全部或部分的显热(sensible heat)。单元17与化石燃料发电设备锅炉的节热器或HRSG(热回收蒸气发生器)相似。事实上,单元17可以与发电设备装置结合,将本发明用于现有的发电设备时尤为如此。热回收并非所需的,但对于使效率最大化和使生产每KW能量的CO2排放最小化而言是需要的。
图1显示了处理阳极废气的不同形式。更具体而言,阳极废气通过线路20被带到二氧化碳分离器22,废气中的二氧化碳气体在这里与废气中的其它气体分离并被输出到线路24。典型地,在进入二氧化碳分离器22之前将该气体冷却,以便气体中的水凝结成液体从而易于通过水分离器21除去。这提高了CO2的浓度并使分离更容易。线路24将二氧化碳气体送至封存处理组件51,在这里气体被处理或转变成有用的形式。阳极废气中的剩余气体主要是包含氢气和一氧化碳的燃料,并通过线路32由系统中输出。可选地,可以将它们送至燃烧器34,同样为该燃烧器供应空气或来自氧气供给30的氧气。与氧气燃烧的优点在于消除了空气中二氧化碳和氮气的污染。二氧化碳和水是燃烧器34中燃烧反应的产物,并且二氧化碳也由线路36输运到组件52中进行封存处理。在CO2封存之前,可以将其冷却并在单元37中除去水。
图1所示的另一种处理形式中,将所有的阳极废气直接耦合到燃烧器34,如虚线26所示,而不经过二氧化碳分离器22或除水单元21。在燃烧器34中,使一氧化碳和未反应的氢气与氧气供给30提供的氧气反应产生另外的二氧化碳。如上文所述,具有高二氧化碳浓度的已燃烧气体通过线路36离开燃烧器34以便进行封存处理。这消除了使CO2分离器产生浓CO2蒸气以便封存的需要。
作为替代方案,在另一种处理形式中,阳极废气被送至组件53中进行封存处理,或者送至不需要进行二氧化碳分离或燃烧处理的其它最终用途。图1中的虚线38显示了这一点。
作为上述封存处理的实例,通过将二氧化碳气体送入深盐层或枯竭的油井或气井对其进行处理。也可以将阳极废气用于其它处理中,例如提高采收率法采油。
图2显示了图1的发电系统的改进配置。图2系统与图1系统的不同之处在于,线路32中的输出气体并不是由分离器22供给到燃烧器,而是将气体再循环到燃料入口线路15,在这里将它们加入到阳极区的燃料供给。可以理解的是,从阳极废气中除去二氧化碳并随后将阳极废气再循环到燃料电池阳极,通过减少需要由燃料供给16产生的燃料量提高了系统1的整体效率。
图3是图1中的联合发电系统1的另一种配置。在这种情形中,将燃料电池阳极区14产生的阳极废气用作耐二氧化碳低温燃料电池42的燃料源,例如磷酸或质子交换膜燃料电池。更具体而言,输送阳极废气的线路20将气体送到低温燃料电池42的阳极区44。在燃料电池42中,发生的电化学反应引起产生的阳极废气中的二氧化碳浓度升高,也会产生额外的能量并提高效率。阳极废气随后被线路48输送到二氧化碳封存组件54中。如图所示,阳极气体冷却系统可以包括转换单元23。这种系统将阳极气体中的CO和H2O转变为CO2和H2,它可以提高低温燃料电池的性能。
可以理解的是,根据化石燃料发电设备6所处理的化石燃料、发电设备6与燃料电池组件10的相对尺寸,可以对图1-3所示的本发明的系统1作进一步的修改。特别地,对化石燃料发电设备6与燃料电池组件10之间的动力循环进行适当的尺寸调整,允许从化石燃料进行有效的发电,同时分离存在于化石燃料中的多于2/3的二氧化碳。下面描述该联合发电系统的两个实施例。
实施例1
在这个实施例中,配置系统1使其串联结合熔融碳酸盐燃料电池10和煤处理发电设备6,如图2所示。将天然气从燃料供给16送到燃料电池阳极14。在这种配置中,煤处理发电设备6是适合于操作气化煤的常规燃气轮机,并且产生的能量占系统1所产生总能量的大约70%,而燃料电池10产生的能量占总能量的大约30%。
该实施例中的系统1配备有二氧化碳回收组件,该组件包括如图2所示的二氧化碳分离器22。此外,在二氧化碳分离器22中除去二氧化碳之后,将阳极废气再循环到阳极入口14A。尽管没有显示,但可以从分离器22向外部排出少部分废气,从而防止惰性气体如燃料蒸气中的氮气的积累。
在该实施例中,煤处理发电设备6所产生的二氧化碳中约75%可以被分离和封存,从而避免排放到大气中。所有燃料碳,煤气加天然气的大约65%被捕集。
使用该实施例中所描述的配置,在根据本发明的联合系统1上进行系统分析。随后将该系统分析与结合对煤气进行循环操作的常规燃气轮机的系统分析,以及对天然气进行操作且无二氧化碳回收的燃料电池组件的系统分析进行比较。对这些系统得到下面的效率和二氧化碳排放率:
能量循环 | 系统效率(LHV) | CO<sub>2</sub>排放(Lb/kWh) |
结合循环的常规燃气轮机 | 52.8%* | 1.85 |
简单循环天然气燃料电池 | 50.0% | 0.87 |
燃气轮机+燃料电池,具有实施例1的封存系统并向燃气轮机供给煤气 | 55.3% | 0.53 |
*基于煤气的气轮机效率且不包括气化效率损失
从上面的二氧化碳排放率可以看出,通过使用该实施例中所述的煤处理单元6与燃料电池10的串联配置,二氧化碳排放总共减少了65%。此外,由于将燃料再循环至燃料电池,系统1的效率高于单独使用的常规的煤发电设备6或燃料电池10的效率。
实施例2
在该实施例中,系统1包括与操作天然气的熔融碳酸盐燃料电池10串联配置的常规天然气发电设备6。该实施例中天然气发电设备6包含常规的燃气轮机,该燃气轮机燃烧天然气以产生能量。该系统1产生的阳极废气中的二氧化碳被输送到系统1以外并进行封存,并如图2所示。尽管该图中没有显示,但从阳极气体中分离出的部分CO2被送到阴极入口以维持有效燃料电池操作所需要的CO2浓度。剩余的CO2被封存。本实施例中的系统配置又一次实现了约65%的二氧化碳排放减少,并且实现了0.27磅CO2每kWh的极低排放水平。
对该实施例中描述的联合系统进行了系统分析,并与结合循环的常规循环燃气轮机以及燃料电池的系统分析进行了比较。对这些系统得到下面的效率和二氧化碳排放率:
能量循环 | 系统效率(LHV) | CO<sub>2</sub>排放(Lb/kWh) |
常规燃气轮机 | 56.3% | 0.77 |
简单循环天然气燃料电池 | 50.0% | 0.87 |
燃气轮机+燃料电池,具有实施例2的封存系统,向燃气轮机供给天然气 | 57.2% | 0.27 |
在所有情形中,应当清楚的是上述配置仅仅是体现本发明应用的许多特定实施方案中的例证。根据本发明的原理,在不背离本发明的主旨和范围的情况下可容易地设计出许多不同的其它配置。
Claims (17)
1.一种联合发电系统,包括:
产生含二氧化碳和氧的输出烟道气的化石燃料发电设备;
具有阳极区和阴极区的碳酸盐燃料电池;
其中所述碳酸盐燃料电池阴极区的入口气体仅包括所述输出烟道气。
2.根据权利要求1的联合发电系统,其中所述燃料电池是内部重整的熔融碳酸盐燃料电池。
3.根据权利要求1的联合发电系统,该系统还包含二氧化碳分离器,该分离器接收从所述燃料电池的所述阳极区输出的阳极废气,以便分离所述阳极废气中的二氧化碳气体。
4.根据权利要求3的联合发电系统,该系统还包括用于在所述二氧化碳分离器接收由所述燃料电池的所述阳极区排出的所述阳极废气之前,冷却和转移来自所述燃料电池的所述阳极区的阳极废气的组件。
5.根据权利要求3的联合发电系统,该系统还包含用于封存由所述二氧化碳分离器所分离的二氧化碳的封存组件。
6.根据权利要求3的联合发电系统,该系统还包含再循环组件,该组件在通过二氧化碳分离器将二氧化碳气体从所述阳极废气中分离后,用于将阳极废气再循环到所述燃料电池的所述阳极区。
7.根据权利要求6的联合发电系统,该系统还包含用于封存由二氧化碳分离器分离的二氧化碳的封存组件。
8.根据权利要求3的联合发电系统,该系统还包含燃烧器,该燃烧器在通过所述二氧化碳分离器从所述阳极废气中分离二氧化碳气体之后,用于使阳极废气与氧气燃烧。
9.根据权利要求8的联合发电系统,该系统还包含用于封存通过所述二氧化碳分离器分离出的二氧化碳以及所述燃烧器的输出中的二氧化碳的第一和第二封存组件。
10.根据权利要求2的联合发电系统,该系统还包含燃烧器,该燃烧器用于使所述燃料电池的所述阳极区产生的阳极废气与氧气燃烧,以便可以通过冷却输出气体分离所述燃烧器的所述输出气体中的二氧化碳。
11.根据权利要求1的联合发电系统,该系统还包含用于封存所述碳酸盐燃料电池的所述阳极区产生的阳极废气中的二氧化碳的封存组件。
12.根据权利要求1的联合发电系统,该系统还包含:
包括阴极和阳极的低温燃料电池;且
其中来自所述碳酸盐燃料电池的所述阳极区的阳极废气充当所述低温燃料电池的所述阳极的入口气体。
13.根据权利要求12的联合发电系统,其中所述低温燃料电池是耐二氧化碳的燃料电池。
14.根据权利要求12的联合发电系统,该系统还包含用于封存所述低温燃料电池的所述阳极的阳极废气中的二氧化碳的封存组件。
15.根据权利要求1的联合发电系统,其中所述化石燃料发电设备处理煤气和天然气中的一种,且其中煤气和天然气中的一种被输入到所述燃料电池的所述阳极区。
16.根据权利要求1的联合发电系统,其中所述化石燃料发电设备包含燃气轮机。
17.根据权利要求1的联合发电系统,该系统还包含用于向所述化石燃料发电设备供应空气的空气供给。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/860,740 US7396603B2 (en) | 2004-06-03 | 2004-06-03 | Integrated high efficiency fossil fuel power plant/fuel cell system with CO2 emissions abatement |
US10/860,740 | 2004-06-03 | ||
PCT/US2005/003359 WO2007015689A2 (en) | 2004-06-03 | 2005-02-04 | Integrated high efficiency fossil fuel power plan/fuel cell system with co2 emissions abatement |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101427408A CN101427408A (zh) | 2009-05-06 |
CN101427408B true CN101427408B (zh) | 2010-12-08 |
Family
ID=35449327
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2005800179241A Expired - Fee Related CN101427408B (zh) | 2004-06-03 | 2005-02-04 | 具有减少co2排放的联合高效化石燃料发电设备/燃料电池系统 |
Country Status (6)
Country | Link |
---|---|
US (1) | US7396603B2 (zh) |
EP (1) | EP1790027B1 (zh) |
JP (1) | JP2008507113A (zh) |
KR (1) | KR101137207B1 (zh) |
CN (1) | CN101427408B (zh) |
WO (1) | WO2007015689A2 (zh) |
Families Citing this family (84)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0364477A (ja) * | 1989-08-02 | 1991-03-19 | Nec Corp | 常圧処理装置 |
US20070166578A1 (en) * | 2005-12-29 | 2007-07-19 | Kevin Marchand | Electric Power Generation System Incorporating A Liquid Feed Fuel Cell |
US20070166586A1 (en) * | 2005-12-30 | 2007-07-19 | Kevin Marchand | Passive-pumping liquid feed fuel cell system |
US7743861B2 (en) * | 2006-01-06 | 2010-06-29 | Delphi Technologies, Inc. | Hybrid solid oxide fuel cell and gas turbine electric generating system using liquid oxygen |
US8715870B2 (en) * | 2006-05-11 | 2014-05-06 | Ford Motor Company | Gas reclaiming system and method |
KR100802283B1 (ko) * | 2006-09-01 | 2008-02-11 | 두산중공업 주식회사 | 연료극 배출가스의 재순환 방식을 적용한 연료전지 발전장치 |
US7862938B2 (en) * | 2007-02-05 | 2011-01-04 | Fuelcell Energy, Inc. | Integrated fuel cell and heat engine hybrid system for high efficiency power generation |
US7883803B2 (en) * | 2007-03-30 | 2011-02-08 | Bloom Energy Corporation | SOFC system producing reduced atmospheric carbon dioxide using a molten carbonated carbon dioxide pump |
US8138380B2 (en) * | 2007-07-13 | 2012-03-20 | University Of Southern California | Electrolysis of carbon dioxide in aqueous media to carbon monoxide and hydrogen for production of methanol |
EP2235777A1 (en) * | 2007-12-28 | 2010-10-06 | Saint-Gobain Ceramics & Plastics, Inc. | Fuel cell system |
US8062799B2 (en) | 2008-08-19 | 2011-11-22 | Fuelcell Energy, Inc. | High-efficiency dual-stack molten carbonate fuel cell system |
KR101142473B1 (ko) * | 2009-09-23 | 2012-05-08 | 한국전력공사 | 이산화탄소 냉매제조 및 히트펌프 연계 용융탄산염연료전지시스템 |
IT1397523B1 (it) | 2009-12-21 | 2013-01-16 | Ansaldo Fuel Cells Spa | Sistema e metodo per separare co2 da fumi di combustione mediante pile mcfc pluri-stack. |
US9673681B2 (en) * | 2009-12-29 | 2017-06-06 | Hopper Energy Systems, Inc. | Methods and systems for power generation by changing density of a fluid |
KR101309558B1 (ko) * | 2010-08-10 | 2013-09-24 | 한국전력공사 | 화력발전 시스템과 용융 탄산염 연료전지발전 시스템을 연계한 복합발전 시스템 |
JP2012159031A (ja) * | 2011-01-31 | 2012-08-23 | Electric Power Dev Co Ltd | ガス化炉ガス利用発電システム |
WO2012144675A1 (ko) * | 2011-04-22 | 2012-10-26 | 부산대학교 산학협력단 | 초청정석탄 또는 흑연을 이용하는 일산화탄소 발생장치가 구비된 고체산화물 연료전지시스템 |
GB2491562A (en) | 2011-05-23 | 2012-12-12 | Alstom Technology Ltd | Fossil fuel power plant with gas turbine and MCFC arrangements |
ITMI20111160A1 (it) * | 2011-06-24 | 2012-12-25 | Ansaldo Fuel Cells Spa | Sistema e metodo per separare co2 da fumi di combustione contenenti sox ed nox mediante celle a combustibile a carbonati fusi (mcfc) |
ITMI20111161A1 (it) * | 2011-06-24 | 2012-12-25 | Ansaldo Fuel Cells Spa | Sistema mcfc multi-stack e metodo per separare co2 da fumi di combustione contenenti nox e sox |
US9647286B2 (en) | 2011-11-16 | 2017-05-09 | Saudi Arabian Oil Company | System and method for generating power and enhanced oil recovery |
JP5970076B2 (ja) | 2011-11-21 | 2016-08-17 | サウジ アラビアン オイル カンパニー | 石油燃料を使用した水素および電気の複合生産のための方法およびシステム |
KR101441489B1 (ko) | 2011-12-05 | 2014-09-18 | 두산중공업 주식회사 | 연료 전지 시스템과 그 구동 방법 |
KR101441491B1 (ko) * | 2012-11-02 | 2014-09-17 | 두산중공업 주식회사 | 석탄가스화 복합발전 연계형 연료전지 시스템 및 가스 공급 방법 |
KR101461166B1 (ko) * | 2012-12-28 | 2014-11-12 | 포스코에너지 주식회사 | 하이브리드 발전 시스템 |
AU2014235203B2 (en) * | 2013-03-15 | 2017-12-21 | Exxonmobil Research And Engineering Company | Integrated power generation and chemical production using fuel cells |
US20140272615A1 (en) * | 2013-03-15 | 2014-09-18 | Exxonmobil Research And Engineering Company | Integrated power generation and carbon capture using fuel cells |
CN105209387B (zh) * | 2013-03-15 | 2017-03-15 | 埃克森美孚研究工程公司 | 用于氮化合物合成的集成熔融碳酸盐燃料电池 |
US9077007B2 (en) | 2013-03-15 | 2015-07-07 | Exxonmobil Research And Engineering Company | Integrated power generation and chemical production using fuel cells |
US9755258B2 (en) | 2013-09-30 | 2017-09-05 | Exxonmobil Research And Engineering Company | Integrated power generation and chemical production using solid oxide fuel cells |
US9819042B2 (en) * | 2013-09-30 | 2017-11-14 | Exxonmobil Research And Engineering Company | Fuel cell integration within a heat recovery steam generator |
CN105612648B (zh) * | 2013-09-30 | 2019-03-15 | 埃克森美孚研究工程公司 | 用串联涡轮机发电和捕集二氧化碳 |
US9556753B2 (en) | 2013-09-30 | 2017-01-31 | Exxonmobil Research And Engineering Company | Power generation and CO2 capture with turbines in series |
US10892507B2 (en) | 2014-01-31 | 2021-01-12 | Fuelcell Energy, Inc. | Reformer-electrolyzer-purifier (REP) assembly for hydrogen production, systems incorporating same and method of producing hydrogen |
US9812723B2 (en) | 2015-02-25 | 2017-11-07 | Fuelcell Energy, Inc. | Power producing gas separation system and method |
CN107530618A (zh) * | 2015-04-21 | 2018-01-02 | 埃克森美孚研究工程公司 | 低排放燃烧加热器 |
US9502728B1 (en) * | 2015-06-05 | 2016-11-22 | Fuelcell Energy, Inc. | High-efficiency molten carbonate fuel cell system with carbon dioxide capture assembly and method |
CA2956439C (en) * | 2015-10-08 | 2017-11-14 | 1304338 Alberta Ltd. | Method of producing heavy oil using a fuel cell |
EP3425716A1 (en) | 2015-11-16 | 2019-01-09 | Fuelcell Energy, Inc. | Energy storage using an rep with an engine |
WO2017087405A1 (en) | 2015-11-16 | 2017-05-26 | Fuelcell Energy, Inc. | System for capturing co2 from a fuel cell |
US10143960B2 (en) | 2015-11-17 | 2018-12-04 | Exxonmobil Research And Engineering Company | Staged complementary PSA system for low energy fractionation of mixed fluid |
CN108604696B (zh) | 2015-11-17 | 2021-10-19 | 燃料电池能有限公司 | 具有增强的co2捕集的燃料电池系统 |
CA3107519C (en) | 2015-11-17 | 2023-01-31 | Fuelcell Energy Inc. | Hydrogen and carbon monoxide generation using an rep with partial oxidation |
WO2017087154A1 (en) | 2015-11-17 | 2017-05-26 | Exxonmobil Research And Engineering Company | Staged pressure swing adsorption for simultaneous power plant emission control and enhanced hydrocarbon recovery |
WO2017087166A1 (en) | 2015-11-17 | 2017-05-26 | Exxonmobil Research And Engineering Company | Dual integrated psa for simultaneous power plant emission control and enhanced hydrocarbon recovery |
US10071337B2 (en) | 2015-11-17 | 2018-09-11 | Exxonmobil Research And Engineering Company | Integration of staged complementary PSA system with a power plant for CO2 capture/utilization and N2 production |
US10439242B2 (en) * | 2015-11-17 | 2019-10-08 | Exxonmobil Research And Engineering Company | Hybrid high-temperature swing adsorption and fuel cell |
CN106803597A (zh) * | 2015-11-26 | 2017-06-06 | 彭斯干 | 零碳排放化石燃料发电方法及装置系统 |
CA2914070C (en) | 2015-12-07 | 2023-08-01 | 1304338 Alberta Ltd. | Upgrading oil using supercritical fluids |
CA2920656C (en) | 2016-02-11 | 2018-03-06 | 1304342 Alberta Ltd. | Method of extracting coal bed methane using carbon dioxide |
US10797514B2 (en) * | 2016-02-25 | 2020-10-06 | Bloom Energy Corporation | Fuel cell system for information technology loads |
CA3117964C (en) * | 2016-04-21 | 2023-10-17 | Fuelcell Energy, Inc. | Molten carbonate fuel cell anode exhaust post-processing for carbon dioxide capture |
WO2017184802A1 (en) * | 2016-04-21 | 2017-10-26 | Fuelcell Energy, Inc. | Carbon dioxide removal from anode exhaust of a fuel cell by cooling/condensation |
CA3021733C (en) | 2016-04-21 | 2020-12-29 | Fuelcell Energy, Inc. | Fluidized catalytic cracking unit system with integrated reformer-electrolyzer-purifier |
US11362360B2 (en) | 2016-04-22 | 2022-06-14 | Fuelcell Energy, Inc. | In-situ monitoring of flue gas contaminants for fuel cell systems |
CN116435559A (zh) * | 2016-04-29 | 2023-07-14 | 燃料电池能有限公司 | 甲烷化阳极废气以提高二氧化碳捕获 |
WO2019071526A1 (zh) * | 2017-10-12 | 2019-04-18 | 彭斯干 | 零碳排放化石燃料发电方法及装置系统 |
US10897055B2 (en) | 2017-11-16 | 2021-01-19 | Fuelcell Energy, Inc. | Load following power generation and power storage using REP and PEM technology |
CA2997634A1 (en) | 2018-03-07 | 2019-09-07 | 1304342 Alberta Ltd. | Production of petrochemical feedstocks and products using a fuel cell |
WO2020053793A2 (en) * | 2018-09-12 | 2020-03-19 | Fuelcell Energy, Inc. | System including fuel cell assembly voltage monitor |
KR102289495B1 (ko) * | 2018-11-01 | 2021-08-12 | 고등기술연구원연구조합 | 연료전지를 이용한 이산화탄소 포집 시스템 및 그 방법 |
JP7258144B2 (ja) | 2018-11-30 | 2023-04-14 | フュエルセル エナジー, インコーポレイテッド | Co2利用率を向上させて動作させる燃料電池のための改質触媒パターン |
KR102610184B1 (ko) | 2018-11-30 | 2023-12-04 | 퓨얼셀 에너지, 인크 | 용융 탄산염 연료 전지를 위한 연료 전지 스테이징 |
JP7286769B2 (ja) | 2018-11-30 | 2023-06-05 | エクソンモービル・テクノロジー・アンド・エンジニアリング・カンパニー | 溶融炭酸塩型燃料電池のカソード集電体構造 |
US11888187B2 (en) | 2018-11-30 | 2024-01-30 | ExxonMobil Technology and Engineering Company | Operation of molten carbonate fuel cells with enhanced CO2 utilization |
WO2020112770A1 (en) | 2018-11-30 | 2020-06-04 | Exxonmobil Research And Engineering Company | Regeneration of molten carbonate fuel cells for deep co 2 capture |
WO2020112806A1 (en) | 2018-11-30 | 2020-06-04 | Exxonmobil Research And Engineering Company | Layered cathode for molten carbonate fuel cell |
WO2020112774A1 (en) | 2018-11-30 | 2020-06-04 | Exxonmobil Research And Engineering Company | Elevated pressure operation of molten carbonate fuel cells with enhanced co2 utilization |
EP3898506B1 (en) | 2018-12-18 | 2022-12-14 | L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | Method of integrating a fuel cell with a steam methane reformer |
US11201337B2 (en) | 2018-12-21 | 2021-12-14 | Fuelcell Energy, Inc. | System and method for removing water and hydrogen from anode exhaust |
US11495806B2 (en) | 2019-02-04 | 2022-11-08 | Fuelcell Energy, Inc. | Ultra high efficiency fuel cell power generation system |
JP7525592B2 (ja) * | 2019-07-19 | 2024-07-30 | ブルーム エネルギー コーポレイション | 統合された発電及び排気処理システム、及び燃料電池システムの作動方法 |
WO2021107933A1 (en) | 2019-11-26 | 2021-06-03 | Exxonmobil Research And Engineering Company | Fuel cell module assembly and systems using same |
WO2021107935A1 (en) | 2019-11-26 | 2021-06-03 | Exxonmobil Research And Engineering Company | Operation of molten carbonate fuel cells with high electrolyte fill level |
US12334607B2 (en) | 2019-11-26 | 2025-06-17 | ExxonMobil Technology and Engineering Company | Fuel cell assembly with external manifold for parallel flow |
KR20230011914A (ko) | 2020-03-11 | 2023-01-25 | 퓨얼셀 에너지, 인크 | 탄소 포집을 위한 증기 메탄 개질 유닛 |
US11888195B2 (en) * | 2020-03-26 | 2024-01-30 | Hitachi, Ltd. | Fuel cell power generation system |
JP7695347B2 (ja) * | 2020-09-16 | 2025-06-18 | フュエルセル エナジー, インコーポレイテッド | 炭酸塩燃料電池からの二酸化炭素生成 |
CN112290656B (zh) * | 2020-11-23 | 2025-06-13 | 西安热工研究院有限公司 | 结合制氢储能及燃料电池技术的超临界co2太阳能发电系统及方法 |
US11978931B2 (en) | 2021-02-11 | 2024-05-07 | ExxonMobil Technology and Engineering Company | Flow baffle for molten carbonate fuel cell |
US20230010993A1 (en) * | 2021-07-12 | 2023-01-12 | Dioxycle | Carbon dioxide extraction electrolysis reactor |
US12315972B2 (en) * | 2021-07-12 | 2025-05-27 | Bloom Energy Corporation | Solid oxide fuel cell system containing low temperature oxidizer and method of operating same with reduced carbon monoxide output |
WO2023144076A1 (en) | 2022-01-25 | 2023-08-03 | Totalenergies Onetech | Carbon capture system |
CN118855590A (zh) | 2023-04-26 | 2024-10-29 | 通用电气技术有限公司 | 具有燃料电池和碳捕获系统的燃烧系统 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4921765A (en) * | 1989-06-26 | 1990-05-01 | The United States Of America As Represented By The United States Department Of Energy | Combined goal gasifier and fuel cell system and method |
CN1050338A (zh) * | 1989-09-19 | 1991-04-03 | 石川岛播磨重工业株式会社 | 利用和回收燃烧废气中二氧化碳的方法和装置 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ZA815969B (en) * | 1981-02-13 | 1983-03-30 | Westinghouse Electric Corp | High temperature fuel cell systems |
JPH081804B2 (ja) * | 1985-12-11 | 1996-01-10 | 株式会社日立製作所 | 内部改質型溶融炭酸塩燃料電池 |
JPH01246770A (ja) * | 1988-03-28 | 1989-10-02 | Hitachi Ltd | 溶融炭酸塩型燃料電池の出力制御法 |
US6187465B1 (en) | 1997-11-07 | 2001-02-13 | Terry R. Galloway | Process and system for converting carbonaceous feedstocks into energy without greenhouse gas emissions |
JPH11191427A (ja) * | 1997-12-26 | 1999-07-13 | Ishikawajima Harima Heavy Ind Co Ltd | 排ガスからの電力回収方法 |
US7118606B2 (en) * | 2001-03-21 | 2006-10-10 | Ut-Battelle, Llc | Fossil fuel combined cycle power system |
US7220502B2 (en) * | 2002-06-27 | 2007-05-22 | Intellergy Corporation | Process and system for converting carbonaceous feedstocks into energy without greenhouse gas emissions |
US7163758B2 (en) * | 2003-06-27 | 2007-01-16 | Hce, Llc | Integrated plasma fuel cell process |
-
2004
- 2004-06-03 US US10/860,740 patent/US7396603B2/en active Active
-
2005
- 2005-02-04 CN CN2005800179241A patent/CN101427408B/zh not_active Expired - Fee Related
- 2005-02-04 WO PCT/US2005/003359 patent/WO2007015689A2/en active Application Filing
- 2005-02-04 JP JP2007529811A patent/JP2008507113A/ja active Pending
- 2005-02-04 EP EP05858344A patent/EP1790027B1/en not_active Expired - Lifetime
- 2005-02-04 KR KR1020077000125A patent/KR101137207B1/ko not_active Expired - Lifetime
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4921765A (en) * | 1989-06-26 | 1990-05-01 | The United States Of America As Represented By The United States Department Of Energy | Combined goal gasifier and fuel cell system and method |
CN1050338A (zh) * | 1989-09-19 | 1991-04-03 | 石川岛播磨重工业株式会社 | 利用和回收燃烧废气中二氧化碳的方法和装置 |
Also Published As
Publication number | Publication date |
---|---|
CN101427408A (zh) | 2009-05-06 |
WO2007015689A3 (en) | 2009-04-09 |
EP1790027A2 (en) | 2007-05-30 |
KR20070057131A (ko) | 2007-06-04 |
WO2007015689A2 (en) | 2007-02-08 |
EP1790027B1 (en) | 2012-04-11 |
US20050271914A1 (en) | 2005-12-08 |
KR101137207B1 (ko) | 2012-04-19 |
US7396603B2 (en) | 2008-07-08 |
JP2008507113A (ja) | 2008-03-06 |
EP1790027A4 (en) | 2009-12-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101427408B (zh) | 具有减少co2排放的联合高效化石燃料发电设备/燃料电池系统 | |
JP6397502B2 (ja) | 水素製造のための改質装置・電解装置・精製装置(rep)組立体、同組立体を組み込むシステムおよび水素製造方法 | |
KR101142472B1 (ko) | 탄화수소발생장치를 포함하는 용융탄산염연료전지시스템 | |
US20040219400A1 (en) | Hybrid fuel cell/desalination systems and method for use | |
KR101309558B1 (ko) | 화력발전 시스템과 용융 탄산염 연료전지발전 시스템을 연계한 복합발전 시스템 | |
CN105209378A (zh) | 在发电中减少NOx | |
JPS61114478A (ja) | 燃料電池装置 | |
JP2002319428A (ja) | 溶融炭酸塩型燃料電池発電設備 | |
KR102289495B1 (ko) | 연료전지를 이용한 이산화탄소 포집 시스템 및 그 방법 | |
WO2012170375A1 (en) | Fuel cell and reciprocating gas/diesel engine hybrid system | |
CN109473702A (zh) | 一种固体氧化物燃料电池尾气处理系统以及处理方法 | |
CN107018674B (zh) | 用于生产高压蒸汽的具有废热回收的燃料电池系统 | |
CN117307107A (zh) | 回收利用系统及回收利用方法 | |
CN1151575C (zh) | 固体氧化物燃料电池蒸汽轮机联合发电系统 | |
Milewski et al. | Reducing CO2 emissions from a coal fired power plant by using a molten carbonate fuel cell | |
CN216213576U (zh) | 一种熔融碳酸盐燃料电池发电系统 | |
CN215418261U (zh) | 一种熔融碳酸盐燃料电池发电系统 | |
CN115976539A (zh) | 基于无氮燃烧和二氧化碳循环的可再生能源利用系统 | |
Milewski et al. | The reduction of co2 emission of gas turbine power plant by using a molten carbonate fuel cell | |
CN114122460A (zh) | 一种sofc能源系统 | |
CN113224363A (zh) | 一种熔融碳酸盐燃料电池发电系统及其工作方法 | |
CN112164817A (zh) | 一种固体氧化物燃料电池发电系统 | |
CN113831939B (zh) | 发电并捕集二氧化碳的系统及方法 | |
JPH0665060B2 (ja) | 溶融炭酸塩型燃料電池発電システム | |
CN1216433C (zh) | 两级阴极循环预热燃料电池发电系统 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C17 | Cessation of patent right | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20101208 Termination date: 20130204 |