CN101423974B - Evaluation device for the synthesis and evaluation of complex small crystals under magnetic field conditions - Google Patents
Evaluation device for the synthesis and evaluation of complex small crystals under magnetic field conditions Download PDFInfo
- Publication number
- CN101423974B CN101423974B CN200810172987XA CN200810172987A CN101423974B CN 101423974 B CN101423974 B CN 101423974B CN 200810172987X A CN200810172987X A CN 200810172987XA CN 200810172987 A CN200810172987 A CN 200810172987A CN 101423974 B CN101423974 B CN 101423974B
- Authority
- CN
- China
- Prior art keywords
- cup
- permanent magnet
- magnetic field
- evaluation
- synthesis
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000013078 crystal Substances 0.000 title claims abstract description 29
- 230000015572 biosynthetic process Effects 0.000 title claims abstract description 18
- 238000003786 synthesis reaction Methods 0.000 title claims abstract description 18
- 238000011156 evaluation Methods 0.000 title claims abstract description 12
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 24
- 229910001047 Hard ferrite Inorganic materials 0.000 claims description 4
- 230000002093 peripheral effect Effects 0.000 claims description 3
- 229910052779 Neodymium Inorganic materials 0.000 claims 1
- ZDVYABSQRRRIOJ-UHFFFAOYSA-N boron;iron Chemical compound [Fe]#B ZDVYABSQRRRIOJ-UHFFFAOYSA-N 0.000 claims 1
- QEFYFXOXNSNQGX-UHFFFAOYSA-N neodymium atom Chemical compound [Nd] QEFYFXOXNSNQGX-UHFFFAOYSA-N 0.000 claims 1
- 238000002474 experimental method Methods 0.000 abstract description 13
- 238000006243 chemical reaction Methods 0.000 abstract description 10
- 239000000463 material Substances 0.000 abstract description 6
- 230000000694 effects Effects 0.000 abstract description 4
- 150000001875 compounds Chemical class 0.000 abstract description 2
- 238000002360 preparation method Methods 0.000 abstract 1
- 238000009434 installation Methods 0.000 description 7
- 238000000034 method Methods 0.000 description 7
- 238000012360 testing method Methods 0.000 description 7
- 238000012216 screening Methods 0.000 description 6
- 238000011160 research Methods 0.000 description 5
- 238000004891 communication Methods 0.000 description 3
- 230000005611 electricity Effects 0.000 description 3
- 230000005389 magnetism Effects 0.000 description 3
- 229910001172 neodymium magnet Inorganic materials 0.000 description 3
- -1 polyethylene Polymers 0.000 description 3
- 239000004698 Polyethylene Substances 0.000 description 2
- 230000006698 induction Effects 0.000 description 2
- 229920000573 polyethylene Polymers 0.000 description 2
- 239000000523 sample Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 101100327917 Caenorhabditis elegans chup-1 gene Proteins 0.000 description 1
- QJVKUMXDEUEQLH-UHFFFAOYSA-N [B].[Fe].[Nd] Chemical compound [B].[Fe].[Nd] QJVKUMXDEUEQLH-UHFFFAOYSA-N 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 230000005426 magnetic field effect Effects 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000000935 solvent evaporation Methods 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 238000012916 structural analysis Methods 0.000 description 1
Images
Landscapes
- Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)
- Water Treatment By Electricity Or Magnetism (AREA)
Abstract
本发明涉及一种磁场条件下配合物小晶体合成评价装置,属于单晶生长领域。在配合物小晶体的合成实验中引入磁场干预机制,并且,适时地评价和掌握其影响规律,对于探寻有潜在价值的晶体材料苗子具有一定的科学意义。本案提供适于该目的的一种实验装置。本案装置包括两个叠放在一起的扁平盒状物,以及,许多的杯状物,杯状物的壁是中空的壁,杯状物的外侧面上装设有进水接口以及出水接口,每一个杯状物的进水接口以及出水接口分别与两个扁平盒状物联通,在杯状物的底部位置装设有永久磁铁。本案装置应用于对磁场干预下配合物小晶体制备过程中相关反应及效应的观察和评价。该装置可引导和强化符合相应合成实验探求目标的反应倾向以及结晶取向。
The invention relates to a compound small crystal synthesis evaluation device under the condition of a magnetic field, which belongs to the field of single crystal growth. Introducing the magnetic field intervention mechanism in the synthesis experiment of small crystals of complexes, and timely evaluating and mastering the law of its influence, has certain scientific significance for exploring potential valuable seedlings of crystal materials. This case provides an experimental setup suitable for this purpose. The device in this case includes two flat boxes stacked together, and many cups, the wall of the cup is a hollow wall, and the outer surface of the cup is equipped with a water inlet and a water outlet. A water inlet port and a water outlet port of a cup are communicated with two flat box-shaped objects respectively, and a permanent magnet is installed at the bottom of the cup-shaped object. The device in this case is applied to the observation and evaluation of related reactions and effects in the preparation process of complex small crystals under the intervention of magnetic field. The device guides and strengthens the reaction tendency and crystallographic orientation in line with the goals sought by the corresponding synthetic experiments.
Description
技术领域technical field
本发明涉及一种磁场条件下配合物小晶体合成评价装置,属于C30B单晶生长领域。The invention relates to a compound small crystal synthesis evaluation device under a magnetic field condition, belonging to the field of C30B single crystal growth.
背景技术Background technique
配合物小晶体的合成探索、结构分析及其应用评价等研究工作具有双重意义,一方面,有助于进一步深入地探求相关科学规律,另一方面,某些具有潜在应用前景的新型功能性晶体材料也有望在这一过程中得以揭示。The research work on the synthesis, exploration, structural analysis and application evaluation of small complex crystals has dual meanings. On the one hand, it helps to further explore the relevant scientific laws. On the other hand, some new functional crystals with potential application prospects Materials are also expected to be revealed in the process.
这类研究中,首先要做的事情,是探查新晶体的合成条件,其中,室温或近室温条件下的溶剂挥发法因其温和的方式而通常被优先关注。The first thing to do in this type of research is to probe the synthesis conditions of new crystals, of which solvent evaporation at or near room temperature is usually prioritized because of its mildness.
由于存在诸多的可能影响配合物小晶体生长速率及晶体品质的条件因素,因而,筛查性的合成实验通常是必须的,这一类筛查性实验一般选择同时使用许多的小烧杯或试管展开平行的合成探查,优先选择小烧杯或试管是由这类实验的剂量以及与这种剂量相适应的溶剂挥发合成手段决定的。Because there are many conditional factors that may affect the growth rate and crystal quality of small crystals of complexes, screening synthesis experiments are usually necessary. This type of screening experiments is generally carried out using many small beakers or test tubes at the same time. For parallel synthetic probes, the preference for small beakers or test tubes is dictated by the dose for this type of experiment and the solvent-evaporative synthetic means appropriate to that dose.
上述实验通常只涉及数毫升至数十毫升滤清反应液这样一种较小的反应剂量。大体的合成步骤是,先将按设计配制的各滤清反应液分别置于不同的烧杯或试管里,在各小烧杯或试管的口部包覆开有一些微小空洞的聚乙烯膜,然后,将各小烧杯或试管静置于室内通风处,各小烧杯或试管内的溶剂经由各聚乙烯覆膜上的微小空洞缓慢挥发,逐渐反应、浓缩并进而形成相关配合物小晶体,之后,所得到的配合物小晶体被用于作进一步的理化分析与评价。The above experiments generally only involve a small reaction volume of several milliliters to tens of milliliters of the filtered reaction solution. The general synthesis steps are as follows: first place the filtered reaction solutions prepared according to the design in different beakers or test tubes, and cover the mouth of each small beaker or test tube with a polyethylene film with some tiny holes, and then, Put each small beaker or test tube in a ventilated place in the room, the solvent in each small beaker or test tube volatilizes slowly through the tiny holes on each polyethylene coating, gradually reacts, concentrates, and then forms small crystals of related complexes. After that, the The obtained small crystals of the complex were used for further physical and chemical analysis and evaluation.
在耗时费力地展开的上述探索过程中,最激动人心的莫过于偶然地发现在电、光、声、磁等方面有潜在价值的配合物晶体材料苗子,然而,本案设计人注意到,实际上,有潜在价值的配合物晶体材料苗子其发现机会稀少、罕见,宛如深海寻针。究其原因,是一般科研实验室在上述合成探索过程中所采用的实验方法均过于粗放,没有引入有助于培育在电、光、声、磁等方面有潜在价值的配合物晶体材料苗子的额外的辅助的引导因素,这使得目标晶体的探求效率低下。During the time-consuming and labor-intensive exploration process described above, the most exciting thing is to accidentally discover seedlings of complex crystal materials with potential value in electricity, light, sound, and magnetism. However, the designer of this case noticed that the actual In general, the chances of discovering potentially valuable complex crystal material seedlings are rare and rare, just like searching for a needle in the deep sea. The reason is that the experimental methods adopted by general scientific research laboratories in the above-mentioned synthetic exploration process are too extensive, and there is no introduction to help cultivate seedlings of complex crystal materials with potential value in electricity, light, sound, magnetism, etc. Additional auxiliary guiding factors, which make the search for target crystals inefficient.
在电、光、声、磁等任何方面哪怕仅有一丝特异表现的配合物小晶体都是弥足珍贵的晶体材料苗子,都是值得努力寻求的科学目标。Even small crystals of complexes with only a trace of specific performance in any aspects of electricity, light, sound, and magnetism are precious seedlings of crystal materials, and are scientific goals worth pursuing.
发明内容Contents of the invention
本发明所要解决的技术问题是,在筛查性合成实验探求模式中,引入额外的辅助的引导因素,特别是磁场引导因素,研发一种应用于考察、了解磁场条件下配合物小晶体相关反应及生长规律,评价相关诱导效应,进而有助于提高相关目标晶体合成探求效率的实验装置。The technical problem to be solved by the present invention is to introduce additional auxiliary guiding factors, especially magnetic field guiding factors, in the screening synthetic experiment mode, and to develop a method for investigating and understanding the related reactions of small crystals of complexes under magnetic field conditions. It is an experimental device that can improve the efficiency of synthesis and exploration of related target crystals by evaluating related induction effects and growth laws.
本发明通过如下方案解决所述技术问题,该方案提供一种磁场条件下配合物小晶体合成评价装置,该装置包括两个叠放在一起的扁平盒状物,扁平盒状物的外形轮廓呈圆饼状,有许多的接口装设在扁平盒状物的周边位置上,所述接口与扁平盒状物的内腔联通,以及,许多的杯状物,杯状物的承载腔的腔体形状呈圆柱状,所述杯状物的壁是中空的壁,杯状物的外侧面上装设有进水接口以及出水接口,每一个杯状物的进水接口以及出水接口均与其所属的杯状物的中空的壁联通,并且,每一个杯状物的进水接口以及出水接口分别与两个分别装设在不同扁平盒状物上的接口联通,在杯状物的底部位置装设有永久磁铁。所述杯状物的承载腔用于安置烧杯或试管。The present invention solves the technical problem through the following scheme, which provides a synthesis and evaluation device for complex small crystals under magnetic field conditions. The device includes two stacked flat boxes, and the outline of the flat boxes is Round cake shape, there are many interfaces installed on the peripheral position of the flat box, the interface communicates with the inner cavity of the flat box, and many cups, the cavity of the bearing cavity of the cup The shape is cylindrical, the wall of the cup is a hollow wall, and the outer surface of the cup is equipped with a water inlet and a water outlet. The hollow wall of the cup is connected, and the water inlet and outlet of each cup are respectively connected with two interfaces respectively installed on different flat boxes, and the bottom of the cup is installed with permanent magnet. The bearing cavity of the cup is used for placing beakers or test tubes.
所述永久磁铁可以是任何一种已知的永久磁铁,关于永久磁铁的技术含义是公知的,基于价格以及性能方面等方面的考虑,所述永久磁铁可以优选硬磁铁氧体永磁体或钕铁硼永磁体。硬磁铁氧体永磁体以及钕铁硼永磁体的技术含义当然也是公知的。The permanent magnet can be any known permanent magnet, and the technical meaning of the permanent magnet is well known. Based on considerations such as price and performance, the permanent magnet can be preferably a hard ferrite permanent magnet or a neodymium iron boron permanent magnet. The technical meaning of hard ferrite permanent magnets and NdFeB permanent magnets is of course also well known.
所述永久磁铁的形状可以是任何形状,例如方形、环形、U形、板形、梯形、条形等等,其装设方式可以是任何方式,例如可以将任何数量的任何形状的永久磁铁环置于所述杯状物的承载腔的底部侧边位置,也可将任何数量的任何形状的永久磁铁堆叠于所述杯状物的承载腔的底侧位置,当然还可以同时在所述杯状物的承载腔的底部侧边位置以及杯状物的承载腔的底侧位置装设任何数量的任何形状的永久磁铁。The shape of the permanent magnet can be any shape, such as square, ring, U-shaped, plate-shaped, trapezoidal, bar-shaped, etc., and its installation mode can be any way, such as any number of permanent magnet rings of any shape can be placed Placed at the bottom side of the bearing cavity of the cup, any number of permanent magnets of any shape can also be stacked at the bottom of the bearing cavity of the cup, of course, it can also be placed in the cup at the same time Any number of permanent magnets of any shape are installed at the bottom side position of the bearing cavity of the cup and the bottom side position of the bearing cavity of the cup.
为形成紧凑的高效率的装置结构,所述永久磁铁可以优选扁平板状的永久磁铁,与该优选的扁平板状的永久磁铁相适应的装设方式优选的是,该永久磁铁被扁平匣状物包覆其中,所述扁平匣状物的结构位置紧贴杯状物的承载腔的底部位置。内含扁平板状永久磁铁的所述扁平匣状物的结构与所述杯状物的承载腔的底部结构融为一体。In order to form a compact and high-efficiency device structure, the permanent magnet can be preferably a flat plate-shaped permanent magnet, and the installation method suitable for the preferred flat plate-shaped permanent magnet is preferably that the permanent magnet is formed by a flat box-shaped The object is wrapped therein, and the structural position of the flat box is close to the bottom position of the bearing cavity of the cup. The structure of the flat box containing the flat permanent magnet is integrated with the bottom structure of the carrying chamber of the cup.
所述杯状物的承载腔的尺寸可以是任意选定的尺寸,该尺寸可以根据各相关科研机构的惯常喜好而设定。由于多数情况下此类合成中选用的容器是一百毫升烧杯,因此,所述杯状物的承载腔的优选尺寸是与一百毫升烧杯相适应的尺寸,该优选尺寸的杯状物的承载腔其深度介于5.0厘米到6.0厘米之间,该优选尺寸的杯状物的承载腔的圆柱状腔体其直径介于5.3厘米到5.5厘米之间,该优选尺寸适合于宽紧适中地将常见规格的一百毫升烧杯的大部置于其中,该优选尺寸的杯状物的承载腔的所述深度尺寸范围以及所述圆柱形腔体直径尺寸范围的相应上限值以及相应下限值以及相应中间值都是可取的适当的优选尺寸值。The size of the bearing cavity of the cup can be selected arbitrarily, and the size can be set according to the customary preference of each relevant scientific research institution. Because the container selected in this type of synthesis is a one-hundred-milliliter beaker in most cases, the preferred size of the holding chamber of the cup is the size that is compatible with the one-hundred-milliliter beaker, and the carrying capacity of the cup of this preferred size is The depth of the cavity is between 5.0 cm and 6.0 cm, and the diameter of the cylindrical cavity of the cavity-bearing cup of the preferred size is between 5.3 cm and 5.5 cm. Most of the one hundred milliliter beakers of common specifications are placed therein, the corresponding upper limit and corresponding lower limit of the depth dimension range of the bearing cavity of the cup-shaped object of the preferred size and the diameter dimension range of the cylindrical cavity As well as the corresponding intermediate values are desirable appropriate preferred size values.
方案中的许多一词,意指较多的数量,所述许多例如十个、二十个、三十个、四十个、五十个、六十个,等等。本案装置当然还可以包括一些附件,所述附件例如超级恒温槽,超级恒温槽的进出水接口可以分别与叠放在一起的两个扁平盒状物联通,所述超级恒温槽的技术含义是公知的,所述附件也可以进一步包括必要时装设在恒温水流通管路上的过滤器,以及,必要时装设在恒温水流通管路上的用于调节流量的阀门,此外,所述附件自然还包括在每个扁平盒状物的任何表面位置上装设的用于联通超级恒温槽的接口。The term "many" in the scheme means a larger number, such as ten, twenty, thirty, forty, fifty, sixty, etc. The device of this case can certainly also include some accessories, such as a super constant temperature tank, the water inlet and outlet interfaces of the super constant temperature tank can respectively communicate with two flat box-like objects stacked together, the technical meaning of the super constant temperature tank is well known Yes, the accessories may further include a filter installed on the constant temperature water circulation pipeline when necessary, and a valve for adjusting the flow rate installed on the constant temperature water circulation pipeline when necessary. In addition, the accessories naturally also include Any surface position of each flat box is provided with an interface for communicating with a super constant temperature bath.
本发明的优点是,在筛查性合成实验探求模式中,引入了额外的辅助的引导因素,特别是磁场引导因素,利用离子、分子以及原子等等各种反应参与单元的固有的对磁场的响应特性,从外部对反应体系施加磁场干预,由此引导和强化符合相应合成实验探求目标的反应倾向以及结晶取向,大体上相当于用磁场建立了一个宏观模板,诱使整个进程向所期望的方向演化,本案装置应用于考察、了解磁场条件下配合物小晶体相关反应及生长规律,评价相关诱导效应,并借以提高相关目标晶体的合成探求效率。The advantage of the present invention is that in the screening synthesis experiment mode, additional auxiliary guiding factors, especially magnetic field guiding factors, are introduced, utilizing the inherent resistance to the magnetic field of various reaction participation units such as ions, molecules and atoms. Response characteristics, applying a magnetic field to the reaction system from the outside, thereby guiding and strengthening the reaction tendency and crystallographic orientation that meet the goals of the corresponding synthesis experiment, which is roughly equivalent to using a magnetic field to establish a macroscopic template to induce the entire process to the desired direction. Direction evolution, the device in this case is used to investigate and understand the related reactions and growth laws of complex small crystals under magnetic field conditions, evaluate related induction effects, and improve the synthesis and search efficiency of related target crystals.
此外,本案装置的核心部分既可以在室温条件下使用,也可以与超级恒温槽联用;当与超级恒温槽联用时,则可以在温度受到精细控制的情况下展开相关磁场诱导筛查合成实验及相关效应评价等研究探索工作。In addition, the core part of the device in this case can be used at room temperature or in combination with a super constant temperature bath; when used in conjunction with a super constant temperature bath, relevant magnetic field-induced screening synthesis experiments can be carried out under the condition of finely controlled temperature and relevant effect evaluation and other research and exploration work.
附图说明Description of drawings
图1是本案实施例示意图,该图示意地描述两个扁平盒状物与周边的杯状物之间的联通关系,图中额外地添加了两个示意地置于杯状物的承载腔位置的烧杯,为清晰地明了其关键结构的细节,图中并且对结构的局部进行了放大展示。Figure 1 is a schematic diagram of the embodiment of this case, which schematically describes the communication relationship between two flat boxes and the surrounding cups, and two additional bearing chambers schematically placed in the cups are added in the figure The beaker, in order to clearly understand the details of its key structure, the part of the structure is enlarged and displayed in the figure.
图2是本案实施例的俯视示意图,该图主要示意地描述本案装置的俯视角度下的结构轮廓。FIG. 2 is a schematic top view of the embodiment of the present case, which mainly schematically describes the structural outline of the device of the present case at a top view angle.
图中,1、6分别是两个装设位置不同的杯状物,2、5、7、8分别是四条装设位置不同的软管,3、4分别是叠放在一起的两个扁平盒状物,9是被扁平匣状物包覆其中的扁平板状的永久磁铁,扁平匣状物与杯状物的承载腔的底部结构融为一体。In the figure, 1 and 6 are two cups with different installation positions, 2, 5, 7 and 8 are four hoses with different installation positions, and 3 and 4 are two flat tubes stacked together. The box 9 is a flat plate-shaped permanent magnet covered by a flat box, and the flat box is integrated with the bottom structure of the bearing cavity of the cup.
具体实施方式Detailed ways
在图1所展示的本案实施例中,装置的结构包括两个叠放在一起的扁平盒状物,它们分别是扁平盒状物3以及扁平盒状物4,扁平盒状物3以及扁平盒状物4的外形轮廓均呈圆饼状,有许多的接口分别装设在扁平盒状物3以及扁平盒状物4的周边位置上,所述许多的接口分别与其所属的扁平盒状物3或扁平盒状物4的内腔联通,以及,许多的杯状物,在图1中仅绘出两个装设位置不同的杯状物,图1中绘出的杯状物分别是杯状物1和杯状物6,杯状物1和杯状物6结构相同,区别仅在于装设位置不同,各杯状物的承载腔的腔体形状呈圆柱状,呈圆柱状的杯状物的承载腔指的是杯状物的用于盛物的那部分空仓,杯状物的壁是中空的壁,杯状物的外侧面上装设有进水接口以及出水接口,每一个杯状物的进水接口以及出水接口均与其所属的杯状物的中空的壁联通,并且,每一个杯状物的进水接口以及出水接口分别与两个分别装设在不同扁平盒状物上的接口联通,在图1示例中,用于实现所述联通目的的管道分别是装设位置不同的四条软管2、5、7、8,实际装置中的用于同一目的的软管数量要远多于此,用于相同联通目的的所述软管当然也可以用任何其它形态的管道代替,所述其它形态的管道例如刚性的硬管或硬管组等等,在杯状物的底部位置装设有永久磁铁9。永久磁铁9既可用硬磁铁氧体永磁体,也可用钕铁硼永磁体。该例中,永久磁铁9是优选形状的呈扁平板状的永磁体,该优选形状的永久磁铁9被扁平匣状物包覆其中,包覆了永久磁铁9的扁平匣状物与杯状物的承载腔的底部贴合连接在一起。杯状物的承载腔的优选深度介于5.0厘米到6.0厘米之间,杯状物的承载腔的圆柱状腔体优选直径介于5.3厘米到5.5厘米之间,各所列尺寸范围的相应上限值、下限值以及中间值以及介于其间的其它值均为可用的可选的恰当的尺寸实施值。在与超级恒温槽联用时,超级恒温槽的进出水接口可以分别与叠放在一起的两个扁平盒状物联通,在图1示例中,没有绘出可在每一扁平盒状物的任何表面位置上装设的用于联通超级恒温槽的接口。在图2中展现的本例装置,其俯视轮廓呈辐射状,这种辐射状构造并且使得流经各个杯状物的恒温水流量分配均衡。在与超级恒温槽联用的情形下,凭借着超级恒温槽的波动微小的精细的温度控制,可以为磁场诱导下的晶体生长提供一个稳定的温度环境,该情形下,还可以设定在水浴可操作的全部温区范围内的任意指定温点,展开生长温度高度稳定的磁场诱导的指向期望目标的配合物小晶体批量筛查合成实验,籍由此装置支持下的规模化合成实验及其后的适时理化评价,有望对磁场效应逐步增加了解。In the embodiment of this case shown in Figure 1, the structure of the device includes two flat boxes stacked together, which are respectively a
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN200810172987XA CN101423974B (en) | 2008-10-21 | 2008-10-21 | Evaluation device for the synthesis and evaluation of complex small crystals under magnetic field conditions |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN200810172987XA CN101423974B (en) | 2008-10-21 | 2008-10-21 | Evaluation device for the synthesis and evaluation of complex small crystals under magnetic field conditions |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101423974A CN101423974A (en) | 2009-05-06 |
CN101423974B true CN101423974B (en) | 2010-10-27 |
Family
ID=40614841
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN200810172987XA Expired - Fee Related CN101423974B (en) | 2008-10-21 | 2008-10-21 | Evaluation device for the synthesis and evaluation of complex small crystals under magnetic field conditions |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101423974B (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102628187A (en) * | 2012-01-04 | 2012-08-08 | 宁波大学 | Device for constraining complex crystal growth by strong magnetic field relying on magnetic circuit technological principle |
CN102560680A (en) * | 2012-01-04 | 2012-07-11 | 宁波大学 | Research device for interfering with growth of complex crystal by using focusing strong magnetic field |
-
2008
- 2008-10-21 CN CN200810172987XA patent/CN101423974B/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
CN101423974A (en) | 2009-05-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101423973B (en) | Experimental device used to study the interference of magnetic field conditions on the crystallization of complexes | |
CN101423974B (en) | Evaluation device for the synthesis and evaluation of complex small crystals under magnetic field conditions | |
JP2025000752A (en) | Cell yield for synthetic tissue control and synthetic tissue microarray control | |
CN105548438A (en) | Continuous high pressure oxidation experimental device and method for natural gas hydrate gas release | |
CN102321729A (en) | Fluorescent microscopic counting method for detecting bacterial count in soil and sediment | |
CN101423975B (en) | Experimental device for investigating the effect of additional external field on the growth of complex small crystals | |
CN101984039B (en) | Experiment incubator capable of measuring depositional physicochemical parameters | |
CN105158429A (en) | Method for measuring content of biodegradable organic carbon (BDOC) in water | |
CN103608116B (en) | Processing of biological sample components | |
CN101514478B (en) | Experimental research device for the synthesis of complex small crystals under the condition of magnetic field intervention | |
US10329623B2 (en) | Synthetic tissue controls and synthetic tissue microarray controls | |
CN215415141U (en) | An experimental device for the application of nuclear magnetic resonance to observe microbubbles to promote the formation of hydrates | |
US20120262260A1 (en) | Magnetic microparticle localization device | |
CN203981475U (en) | A kind of slide sample dyeing apparatus | |
CN208980392U (en) | Fluid Magnetizer | |
CN210719232U (en) | A biosensor performance detection device | |
CN103642691B (en) | Deep-hole cell culture plate | |
CN113358684A (en) | Experimental device and method for promoting generation of hydrate by applying nuclear magnetic observation microbubbles | |
CN105695312A (en) | Microorganism gradient plate culture device and method | |
CN215975068U (en) | Biological energy wave activator | |
CN113167848A (en) | Miniature MR devices comprising cell culture microchambers and methods for making such devices | |
CN201276606Y (en) | Prospecting apparatus for complex small crystal synthesis | |
CN105734651B (en) | A kind of multi-functional Hall tank systems | |
CN201321504Y (en) | Straight dipping type constant temperature cultivating device for composition crystal synthesis experimental study | |
CN201279465Y (en) | Constant-temperature culturing device suitable for complexes crystal synthetic experiment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C17 | Cessation of patent right | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20101027 Termination date: 20131021 |