CN101422720B - Absorption filtration dearsenication method based on in-situ composite metal oxides generation - Google Patents
Absorption filtration dearsenication method based on in-situ composite metal oxides generation Download PDFInfo
- Publication number
- CN101422720B CN101422720B CN2008102267416A CN200810226741A CN101422720B CN 101422720 B CN101422720 B CN 101422720B CN 2008102267416 A CN2008102267416 A CN 2008102267416A CN 200810226741 A CN200810226741 A CN 200810226741A CN 101422720 B CN101422720 B CN 101422720B
- Authority
- CN
- China
- Prior art keywords
- arsenic
- mixed solution
- solution
- salt
- composite metal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Water Treatment By Sorption (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
Abstract
本发明属于吸附去除水中砷的材料领域,特别涉及以铁氧化物、锰氧化物、铝氧化物为基础的原位生成复合金属氧化物除砷吸附剂及应用方法,尤其在饮用水除砷中的应用。本发明采用原位制备方法制备得到原位生成复合金属氧化物除砷吸附剂由水合铁氧化物、水合羟基氢氧化铁、水合铝氧化物、水合羟基氧化铝、水合锰氧化物等组成。本发明提供原位生成复合金属氧化物除砷吸附剂可用于去除饮用水、地下水、工业废水中的砷,也可以用于去除湖泊、水库、河流等水体中砷污染物;此外,该吸附剂也可用于吸附去除水中的铜、铬、镉、铅等重金属和铁、锰、磷酸盐等污染物。The invention belongs to the field of materials for adsorbing and removing arsenic in water, in particular to an in-situ-generated composite metal oxide arsenic-removing adsorbent based on iron oxide, manganese oxide and aluminum oxide and its application method, especially in the removal of arsenic in drinking water Applications. The present invention adopts the in-situ preparation method to prepare the in-situ generated composite metal oxide arsenic-removing adsorbent, which is composed of hydrated iron oxide, hydrated ferric oxyhydroxide, hydrated aluminum oxide, hydrated aluminum oxyhydroxide, hydrated manganese oxide and the like. The present invention provides an in-situ composite metal oxide arsenic-removing adsorbent that can be used to remove arsenic in drinking water, groundwater, and industrial wastewater, and can also be used to remove arsenic pollutants in lakes, reservoirs, rivers, and other water bodies; in addition, the adsorbent It can also be used to adsorb and remove heavy metals such as copper, chromium, cadmium, lead, and pollutants such as iron, manganese, and phosphate in water.
Description
技术领域 technical field
本发明属于吸附去除水中砷等污染物的材料领域,特别涉及以铁氧化物、锰氧化物、铝氧化物为基础的原位生成复合金属氧化物除砷吸附剂及应用方法,尤其是在饮用水除砷中的应用方法。The invention belongs to the field of materials for adsorbing and removing pollutants such as arsenic in water, and particularly relates to an in-situ generated composite metal oxide adsorbent for removing arsenic based on iron oxide, manganese oxide, and aluminum oxide and its application method, especially for drinking The application method in the removal of arsenic from water.
背景技术 Background technique
砷是一种毒性很强的重金属元素,其在环境中存在将对人体、水生动植物等产生严重影响。此外,含砷水若被用于进行农业灌溉、渔业、景观等功能需求使用时,还有可能通过食物链富集作用间接地进入人体,并对人体健康造成威胁。长期饮用砷超标的水,将可能导致皮肤色素沉积、皮肤角质化、皮肤癌、肝癌、心血管疾病等一系列健康问题。为了控制饮用水、粮食、蔬菜、水果、水生动物(如鱼)等不同途径对人体等造成的砷暴露风险,我国通过标准的形式对不同水环境中砷浓度限值进行了严格的规定。例如,水环境质量标准中要求四类及其以上水体中砷浓度应该低于50μg/L;工业废水排放标准中规定排放入水体中的工业废水中砷浓度应低于0.50mg/L。此外,我国最新《生活饮用水卫生标准》(GB5749-2006)对砷浓度限值做出了更为严格的规定,要求饮用水中砷最大浓度必须低于10μg/L。Arsenic is a highly toxic heavy metal element, and its presence in the environment will have a serious impact on the human body, aquatic animals and plants. In addition, if arsenic-containing water is used for agricultural irrigation, fishery, landscape and other functional needs, it may also enter the human body indirectly through the enrichment of the food chain and pose a threat to human health. Drinking water with excessive arsenic for a long time may lead to a series of health problems such as skin pigmentation, skin keratinization, skin cancer, liver cancer, and cardiovascular disease. In order to control the risk of arsenic exposure to the human body caused by drinking water, food, vegetables, fruits, aquatic animals (such as fish), etc., my country has strictly regulated the concentration limit of arsenic in different water environments in the form of standards. For example, the water environment quality standard requires that the concentration of arsenic in water bodies of four types and above should be lower than 50 μg/L; the industrial wastewater discharge standard stipulates that the concentration of arsenic in industrial wastewater discharged into water bodies should be lower than 0.50 mg/L. In addition, my country's latest "Drinking Water Hygienic Standards" (GB5749-2006) has made stricter regulations on the limit of arsenic concentration, requiring that the maximum concentration of arsenic in drinking water must be lower than 10 μg/L.
水中砷的去除技术国内外研究的热点与难点问题。近十年来,恒河三角洲地区由于地下水砷污染导致数千万人通过饮用水途径暴露于砷并有数百万人因此出现砷中毒症状。为此,许多研究与技术开发工作着眼于饮用水中砷的去除,开发了大量的除砷新技术与新方法,如吸附、絮凝-沉淀-过滤、絮凝-直接过滤、电渗析、离子交换、膜分离等。在除砷吸附材料上,开发了活性氧化铝、赤泥、改性活性炭、羟基氧化铁、GFH、READ-As、锰砂、水合锰氧化物、氧化铁-氧化铝复合纳米材料、铁锰复合氧化物/硅藻土等材料。例如,李圭白等人前期申请的铁锰复合氧化物/硅藻土吸附材料(专利申请号:200610008135.8)能够充分实现三价砷(As(III))的氧化与五价砷(As(V))的吸附,从而表现出优异的吸附除砷能力。蔡亚岐等人发明的氧化铁-氧化铝复合纳米材料(专利申请号:CN200710118307.1)颗粒粒径细小、比表面积很大,从而表现出很强的去除水中砷等污染物的能力。The hot and difficult issues of domestic and foreign research on arsenic removal technology in water. In the past ten years, tens of millions of people have been exposed to arsenic through drinking water due to arsenic pollution in groundwater in the Ganges Delta region, and millions of people have suffered from arsenic poisoning symptoms. For this reason, a lot of research and technology development work has focused on the removal of arsenic in drinking water, and developed a large number of new technologies and methods for removing arsenic, such as adsorption, flocculation-precipitation-filtration, flocculation-direct filtration, electrodialysis, ion exchange, Membrane separation, etc. On the arsenic removal adsorption material, developed activated alumina, red mud, modified activated carbon, iron oxyhydroxide, GFH , READ-As , manganese sand, hydrated manganese oxide, iron oxide-alumina composite nanomaterials, iron-manganese composite oxide/diatomaceous earth and other materials. For example, the iron-manganese composite oxide/diatomite adsorption material (patent application number: 200610008135.8) previously applied by Li Guibai et al. can fully realize the oxidation of trivalent arsenic (As(III)) and the oxidation of pentavalent arsenic (As(V)). The adsorption, thus showing excellent adsorption capacity for arsenic removal. The iron oxide-alumina composite nanomaterial (patent application number: CN200710118307.1) invented by Cai Yaqi and others has a small particle size and a large specific surface area, which shows a strong ability to remove arsenic and other pollutants in water.
饮用水除砷过程中往往将上述材料装填在吸附罐中,含砷水流经吸附罐过程中砷污染物得以从水相中吸附去除。将吸附剂装填在吸附罐中形成吸附单元的方法,在农村小规模除砷工程中容易实现,设备运行管理维护简单。但是,对于处理规模为每天数万吨~数十万吨的除砷系统,采用此种方式往往需要数量庞大的吸附罐,这不仅大大增加了系统投资费用,也显著增大了系统运行、再生等操作的复杂程度。采用原位生成的除砷吸附剂吸附水中的砷,从而将溶解态砷转化为颗粒态砷,之后通过过滤单元将颗粒态砷从体系中去除。这种除砷方法工艺简单、操作方便,对于大规模除砷系统尤其具有很强的比较优势。申请者前期发明的由高锰酸钾与三氯化铁组成的复合氧化絮凝剂(申请专利号:200610008135.8)通过氧化作用将As(III)转化为As(V),再通过絮凝反应器、复合双层过滤柱和/或超滤膜过滤器将砷从体系中去除。但是,复合氧化絮凝剂中氧化剂高锰酸钾投量主要由水中As(III)的浓度决定,并为水中As(III)的当量投量。在这种条件下,不同充分发挥锰氧化物、铁氧化物之间的最佳组成配比,从而获得更为优异的除砷效果。此外,采用复合氧化絮凝剂除砷需要絮凝反应器、复合双层过滤柱和/或超滤膜过滤器等反应器,反应器过多,基建投资过大,不同单元之间的水量、压力调节过于复杂,不利于在大规模除砷水厂中使用。In the process of removing arsenic from drinking water, the above materials are often filled in the adsorption tank, and the arsenic pollutants can be adsorbed and removed from the water phase when the arsenic-containing water flows through the adsorption tank. The method of filling the adsorbent in the adsorption tank to form an adsorption unit is easy to implement in small-scale arsenic removal projects in rural areas, and the equipment operation, management and maintenance are simple. However, for arsenic removal systems with a processing scale of tens of thousands to hundreds of thousands of tons per day, this method often requires a large number of adsorption tanks, which not only greatly increases the investment cost of the system, but also significantly increases the system operation and regeneration. the complexity of operations. The in-situ generated arsenic removal adsorbent is used to adsorb arsenic in water, thereby converting dissolved arsenic into particulate arsenic, and then the particulate arsenic is removed from the system through a filter unit. This arsenic removal method has simple process and convenient operation, and has strong comparative advantages especially for large-scale arsenic removal systems. The composite oxidation flocculant (patent application number: 200610008135.8) invented by the applicant in the early stage is composed of potassium permanganate and ferric chloride, which converts As(III) into As(V) through oxidation, and then passes through the flocculation reactor, composite Double-layer filter columns and/or ultrafiltration membrane filters remove arsenic from the system. However, the dosage of the oxidant potassium permanganate in the composite oxidation flocculant is mainly determined by the concentration of As(III) in the water, and is the equivalent dosage of As(III) in the water. Under this condition, the optimal composition ratio between manganese oxide and iron oxide can be brought into full play, so as to obtain a more excellent arsenic removal effect. In addition, the use of composite oxidation flocculants to remove arsenic requires flocculation reactors, composite double-layer filter columns and/or ultrafiltration membrane filters and other reactors. There are too many reactors, too much capital investment, and water volume and pressure adjustment between different units. It is too complicated to be used in large-scale arsenic removal water plants.
因此,开发高效、成本低廉、使用方便且可满足大规模除砷需求的除砷吸附剂以及饮用水除砷方法,这是目前研究与工程应用中亟需解决的难点问题。Therefore, the development of highly efficient, low-cost, easy-to-use arsenic-removing adsorbents and arsenic-removing methods for drinking water that can meet the needs of large-scale arsenic removal is a difficult problem that needs to be solved urgently in current research and engineering applications.
发明内容 Contents of the invention
本发明的目的之一是针对水中的砷污染物,尤其是大规模饮用水除砷水厂水源中的砷,提供一种性能高效、经济可行、易于在工程中大规模应用的原位生成复合金属氧化除砷吸附剂。One of the objectives of the present invention is to provide an in-situ generation compound with high performance, economical feasibility, and easy large-scale application in engineering for arsenic pollutants in water, especially arsenic in large-scale drinking water arsenic removal water plants. Metal oxide arsenic removal adsorbent.
本发明的目的之二是提供原位生成复合金属氧化除砷吸附剂的制备方法。The second object of the present invention is to provide a preparation method for in-situ generation of composite metal oxide arsenic removal adsorbent.
本发明的目的之三是提供原位生成复合金属氧化除砷吸附剂的应用方法,以及相应的反应器。The third object of the present invention is to provide an application method for in-situ generation of composite metal oxide arsenic removal adsorbent, and a corresponding reactor.
本发明所涉及的原位生成复合金属氧化除砷吸附剂的除砷技术原理在于:将具有优异除砷性能的水合铁氧化物(Fe2O3·xH2O)、水合氢氧化铁(Fe(OH)3·xH2O)、水合羟基氢氧化铁(FeOOH·xH2O)、水合铝氧化物(Al2O3·xH2O)、水合羟基氧化铝(AlOOH·xH2O)、水合氢氧化铝(Al(OH)3·xH2O)、水合锰氧化物(MnO2·xH2O)、水合羟基氢氧化锰(MnOOH·xH2O)等通过原位反应过程制得并进行复配,获得具有丰富活性吸附位点与表面羟基的原位生成复合金属氧化物除砷吸附剂。在吸附除砷过程中,利用除砷吸附剂表面活性位点的氧化、吸附、表面络合作用实现砷从水相中分离及其在吸附剂内部的固化;吸附了砷的吸附剂以及砷污染物在过滤单元过滤从水中去除得以净化。采用该除砷吸附剂去除饮用水源中的砷,处理水能够达到国家最新《生活饮用水卫生标准》(GB5749-2006)对砷的限值要求(<10μg/L)。该除砷吸附剂也能有效去除河流、湖泊、水库、地下水、工业废水等水体中砷污染物;此外,该吸附剂也可用于吸附去除上述水体中的铜、铬、镉、铅等重金属和铁、锰、磷酸盐等污染物。The principle of the arsenic removal technology for the in-situ generation of composite metal oxidation arsenic removal adsorbents involved in the present invention is: hydrated iron oxide (Fe 2 O 3 ·xH 2 O) with excellent arsenic removal performance, hydrated iron hydroxide (Fe (OH) 3 ·xH 2 O), hydrated ferric oxyhydroxide (FeOOH·xH 2 O), hydrated aluminum oxide (Al 2 O 3 ·xH 2 O), hydrated aluminum oxyhydroxide (AlOOH·xH 2 O), Hydrated aluminum hydroxide (Al(OH) 3 xH 2 O), hydrated manganese oxide (MnO 2 xH 2 O), hydrated manganese hydroxyhydroxide (MnOOH xH 2 O), etc. Compounding is carried out to obtain an in-situ-generated composite metal oxide arsenic-removing adsorbent with abundant active adsorption sites and surface hydroxyl groups. In the process of adsorption and removal of arsenic, the oxidation, adsorption, and surface complexation of the surface active sites of the arsenic removal adsorbent are used to realize the separation of arsenic from the water phase and its solidification inside the adsorbent; the adsorbent that adsorbs arsenic and the arsenic pollution The substances are filtered and removed from the water in the filter unit to be purified. The arsenic-removing adsorbent is used to remove arsenic in drinking water sources, and the treated water can meet the limit requirement (<10 μg/L) for arsenic in the latest National Sanitary Standard for Drinking Water (GB5749-2006). The arsenic-removing adsorbent can also effectively remove arsenic pollutants in water bodies such as rivers, lakes, reservoirs, groundwater, and industrial wastewater; in addition, the adsorbent can also be used to adsorb and remove heavy metals such as copper, chromium, cadmium, and lead in the above-mentioned water bodies and Iron, manganese, phosphate and other pollutants.
本发明所述的原位生成复合金属氧化物除砷吸附剂由铁盐溶液、铝盐溶液、亚铁盐溶液、高锰酸盐溶液经化学反应制备而成。原位生成复合金属氧化物除砷吸附剂的复配组分包括水合铁氧化物(Fe2O3·xH2O)、水合氢氧化铁(Fe(OH)3·xH2O)、水合羟基氢氧化铁(FeOOH·xH2O)、水合铝氧化物(Al2O3·xH2O)、水合羟基氧化铝(AlOOH·xH2O)、水合氢氧化铝(Al(OH)3·xH2O)、水合锰氧化物(MnO2·xH2O)和水合羟基氢氧化锰(MnOOH·xH2O)等,其中X为水分子的个数。The in-situ composite metal oxide arsenic-removing adsorbent of the present invention is prepared from iron salt solution, aluminum salt solution, ferrous salt solution and permanganate solution through chemical reaction. The composite components of the in-situ composite metal oxide adsorbent for arsenic removal include hydrated iron oxide (Fe 2 O 3 ·xH 2 O), hydrated iron hydroxide (Fe(OH) 3 ·xH 2 O), hydrated hydroxyl Iron hydroxide (FeOOH xH 2 O), hydrated aluminum oxide (Al 2 O 3 xH 2 O), hydrated aluminum oxyhydroxide (AlOOH xH 2 O), hydrated aluminum hydroxide (Al(OH) 3 xH 2 O), hydrated manganese oxide (MnO 2 ·xH 2 O) and hydrated manganese hydroxyhydroxide (MnOOH·xH 2 O), etc., where X is the number of water molecules.
在上述原位生成复合金属氧化物除砷吸附剂中还可以进一步与硅酸钠、聚硅酸钠、聚磷酸钠、磷酸钠、聚丙烯酰胺(PAM)等组分复配。The above-mentioned in-situ composite metal oxide adsorbent for removing arsenic can be further compounded with components such as sodium silicate, sodium polysilicate, sodium polyphosphate, sodium phosphate, polyacrylamide (PAM).
在上述原位生成复合金属氧化物除砷吸附剂中还可以进一步与硅藻土、高岭土、红壤、赤泥、粘土等组分复配。其中,上述材料的颗粒粒径在100目以下。In the above-mentioned in-situ composite metal oxide arsenic removal adsorbent, it can further be compounded with diatomite, kaolin, red soil, red mud, clay and other components. Wherein, the particle size of the above materials is below 100 mesh.
所述的铁盐可选自氯化铁、硫酸铁、硝酸铁、聚合氯化铁、聚合硫酸铁、聚合硝酸铁等中的一种或大于一种以上的混合盐。The iron salt can be selected from one or more than one mixed salts of ferric chloride, ferric sulfate, ferric nitrate, polyferric chloride, polyferric sulfate, polyferric nitrate, etc.
所述的铝盐溶液选自硫酸铝、氯化铝、聚合硫酸铝、聚合氯化铝、硝酸铝、聚合硝酸铝、明矾等溶液中的一种或大于一种以上的混合物。The aluminum salt solution is selected from one or a mixture of more than one of solutions such as aluminum sulfate, aluminum chloride, polyaluminum sulfate, polyaluminum chloride, aluminum nitrate, polyaluminum nitrate, and alum.
所述的亚铁盐溶液包括氯化亚铁、硫酸亚铁、硝酸亚铁等溶液中的一种或大于一种以上的混合物。The ferrous salt solution includes one or more than one mixture of ferrous chloride, ferrous sulfate, ferrous nitrate and other solutions.
所述的高锰酸盐溶液包括高锰酸钾、高锰酸钠等溶液中的一种或大于一种以上的混合物。The permanganate solution includes one or a mixture of potassium permanganate, sodium permanganate and other solutions.
在上述的铝盐、铁盐、亚铁盐、高锰酸盐溶液中还可以加入钙盐、镁盐中的一种或大于一种以上的混合盐溶液;一般钙盐的摩尔数与铝盐(或铁盐、亚铁盐、高锰酸盐)的摩尔数的比为0~1:1,镁盐的摩尔数与铝盐(或铁盐、亚铁盐、高锰酸盐)的摩尔数的比为0~1:1。在上述的铝盐、铁盐、亚铁盐溶液中还可以加入锰盐溶液;一般锰盐的摩尔数与铝盐(或铁盐、亚铁盐、高锰酸盐)的摩尔数的比为0~2:1。In the above-mentioned aluminum salt, iron salt, ferrous salt, permanganate solution, one or more than one mixed salt solution of calcium salt and magnesium salt can also be added; (or iron salt, ferrous salt, permanganate) molar ratio is 0 to 1:1, the molar number of magnesium salt and aluminum salt (or ferric salt, ferrous salt, permanganate) molar ratio The ratio of numbers is 0 to 1:1. Can also add manganese salt solution in above-mentioned aluminum salt, iron salt, ferrous salt solution; The ratio of the molar number of general manganese salt and the molar number of aluminum salt (or ferric salt, ferrous salt, permanganate) is 0~2:1.
所述的钙盐可选自氯化钙、硫酸钙、硝酸钙等中的一种或大于一种以上的混合盐。The calcium salt can be selected from one or more than one mixed salts of calcium chloride, calcium sulfate, calcium nitrate and the like.
所述的镁盐可选自氯化镁、硫酸镁、硝酸镁等中的一种或大于一种以上的混合盐。The magnesium salt can be selected from one or more than one mixed salts of magnesium chloride, magnesium sulfate, magnesium nitrate and the like.
所述的锰盐可选自氯化锰、硫酸锰、硝酸锰等中的一种或大于一种以上的混合盐。The manganese salt can be selected from one or more than one mixed salts of manganese chloride, manganese sulfate, manganese nitrate and the like.
所述硅酸钠、聚硅酸钠、聚磷酸钠、磷酸钠、聚丙烯酰胺(PAM)等组分,其任意一种与铝盐(或铁盐、亚铁盐、高锰酸盐)的质量比为0~0.5:1。Components such as described sodium silicate, sodium polysilicate, sodium polyphosphate, sodium phosphate, polyacrylamide (PAM), any one of it and aluminum salt (or iron salt, ferrous salt, permanganate) The mass ratio is 0-0.5:1.
所述硅藻土、高岭土、红壤、赤泥、粘土等组分,其任意一种与铝盐(或铁盐、亚铁盐、高锰酸盐)的质量比为0~1000:1。The mass ratio of diatomite, kaolin, red soil, red mud, clay and other components to aluminum salt (or iron salt, ferrous salt, permanganate) is 0-1000:1.
本发明的原位生成复合金属氧化物除砷吸附剂的制备方法是采用原位制备方法进行制备,其中:The preparation method of the in-situ composite metal oxide arsenic removal adsorbent of the present invention is prepared by an in-situ preparation method, wherein:
一.采用异位制备方法进行制备原位生成复合金属氧化物除砷吸附剂1. Preparation of in situ composite metal oxide adsorbent for arsenic removal by ex situ preparation method
采用如下方式之一分别制得混合液A和混合液B:Prepare mixed solution A and mixed solution B respectively in one of the following ways:
1)将铁盐、铝盐、亚铁盐溶液进行混合获得混合液A,将高锰酸盐溶液作为混合液B;1) Mixing iron salt, aluminum salt and ferrous salt solution to obtain mixed solution A, using permanganate solution as mixed solution B;
2)将铝盐、亚铁盐溶液进行混合获得混合液A,将铁盐、高锰酸盐溶液进行混合获得混合液B;2) Mixing aluminum salt and ferrous salt solution to obtain mixed solution A, mixing ferric salt and permanganate solution to obtain mixed solution B;
3)将铁盐、亚铁盐溶液进行混合获得混合液A,将铝盐、高锰酸盐溶液进行混合获得混合液B;3) Mixing ferric salt and ferrous salt solution to obtain mixed solution A, mixing aluminum salt and permanganate solution to obtain mixed solution B;
4)将亚铁盐溶液进行混合获得混合液A,将铝盐、铁盐、高锰酸盐溶液进行混合获得混合液B。4) Mix the ferrous salt solution to obtain a mixed solution A, and mix the aluminum salt, iron salt, and permanganate solutions to obtain a mixed solution B.
在上述溶液中,铁、锰、铝元素任意二者之间的摩尔比范围为6:1~1:6。In the above solution, the molar ratio between any two elements of iron, manganese and aluminum is in the range of 6:1˜1:6.
将混合液A加入混合液B溶液中进行充分混合,或将混合液B加入混合液A溶液中进行充分混合,或将混合液A与混合液B同时加入一个容器中进行混合;混合之后反应时间范围为0.5min~5mm。Add the mixed solution A into the mixed solution B solution for thorough mixing, or add the mixed solution B into the mixed solution A solution for thorough mixing, or add the mixed solution A and the mixed solution B into a container at the same time for mixing; the reaction time after mixing The range is 0.5min~5mm.
作为优化,在将混合液A、混合液B进行混合之前,还可以将硅酸钠、聚硅酸钠、聚磷酸钠、磷酸钠、聚丙烯酰胺(PAM)等中的一种或任意比的混合物加入混合液A和/或混合液B,并充分搅拌溶解;和/或,As an optimization, before mixing the mixed solution A and the mixed solution B, one or any ratio of sodium silicate, sodium polysilicate, sodium polyphosphate, sodium phosphate, polyacrylamide (PAM), etc. The mixture is added to Mixed Solution A and/or Mixed Solution B, and fully stirred to dissolve; and/or,
作为优化,在将混合液A、混合液B进行混合之前,还可以将硅藻土、高岭土、红壤、赤泥、粘土等组分中的一种或任意比的混合物加入混合液A和/或混合液B,并充分搅拌。As an optimization, before mixing the mixed solution A and the mixed solution B, one or any mixture of diatomite, kaolin, red soil, red mud, clay and other components can be added to the mixed solution A and/or Mix Solution B and stir well.
二.采用原位制备方法进行制备原位生成复合金属氧化物除砷吸附剂2. Using in-situ preparation method to prepare in-situ composite metal oxide adsorbent for arsenic removal
采用如下方式之一分别制得混合液A和混合液B:Prepare mixed solution A and mixed solution B respectively in one of the following ways:
1)将铁盐、铝盐、亚铁盐溶液进行混合获得混合液A,将高锰酸盐溶液作为混合液B;1) Mixing iron salt, aluminum salt and ferrous salt solution to obtain mixed solution A, using permanganate solution as mixed solution B;
2)将铝盐、亚铁盐溶液进行混合获得混合液A,将铁盐、高锰酸盐溶液进行混合获得混合液B;2) Mixing aluminum salt and ferrous salt solution to obtain mixed solution A, mixing ferric salt and permanganate solution to obtain mixed solution B;
3)将铁盐、亚铁盐溶液进行混合获得混合液A,将铝盐、高锰酸盐溶液进行混合获得混合液B;3) Mixing ferric salt and ferrous salt solution to obtain mixed solution A, mixing aluminum salt and permanganate solution to obtain mixed solution B;
4)将亚铁盐溶液进行混合获得混合液A,将铝盐、铁盐、高锰酸盐溶液进行混合获得混合液B。4) Mix the ferrous salt solution to obtain a mixed solution A, and mix the aluminum salt, iron salt, and permanganate solutions to obtain a mixed solution B.
在上述溶液中,铁、锰、铝元素任意二者之间的摩尔比范围为6:1~1:6。In the above solution, the molar ratio between any two elements of iron, manganese and aluminum is in the range of 6:1˜1:6.
将混合液A与混合液B分别投加入含砷水中,二者投加时间先后顺序可以是以下方式之一:先投加混合液A,充分混合后投加混合液B;先投加混合液B,充分混合后投加混合液A;混合液A与混合液B同时投加后充分混合。若为分开投加,混合液A与混合液B投加先后时间间隔为0.5min~2min。Add the mixed solution A and the mixed solution B into the arsenic-containing water respectively, and the order of adding the two can be one of the following ways: first add the mixed solution A, and then add the mixed solution B; add the mixed solution first B, add mixed solution A after fully mixing; mixed solution A and mixed solution B are added at the same time and then fully mixed. If it is added separately, the time interval between adding mixed solution A and mixed solution B is 0.5min~2min.
作为优化,在将混合液A、混合液B进行混合之前,还可以将硅酸钠、聚硅酸钠、聚磷酸钠、磷酸钠、聚丙烯酰胺(PAM)等中的一种或任意比的混合物加入混合液A和/或混合液B,并充分搅拌溶解,与混合液A和/或混合液B复配;和/或,As an optimization, before mixing the mixed solution A and the mixed solution B, one or any ratio of sodium silicate, sodium polysilicate, sodium polyphosphate, sodium phosphate, polyacrylamide (PAM), etc. The mixture is added to Mixed Solution A and/or Mixed Solution B, fully stirred and dissolved, and compounded with Mixed Solution A and/or Mixed Solution B; and/or,
作为优化,在将混合液A、混合液B进行混合之前,还可以将硅藻土、高岭土、红壤、赤泥、粘土等组分中的一种或任意比的混合物加入混合液A和/或混合液B,并充分搅拌,与混合液A和/或混合液B复配。As an optimization, before mixing the mixed solution A and the mixed solution B, one or any mixture of diatomite, kaolin, red soil, red mud, clay and other components can be added to the mixed solution A and/or Mixture B, and stir well, compound with Mixture A and/or Mixture B.
本发明的原位生成复合金属氧化物除砷吸附剂(采用异位方法得到的)的应用方法:在含砷水中加入原位生成复合金属氧化物除砷吸附剂,投量在0.1mg/L~5g/L之间,之后进行充分混合。其中,当原水砷浓度较高时(总砷>0.5mg/L),也可以采用二次或二次以上投加原位生成复合金属氧化物除砷吸附剂的方式进行处理。混合反应0.5min~5min之后,投加了原位生成复合金属氧化物除砷吸附剂之后的含砷水进入过滤反应器进行过滤。The application method of the in-situ-generated composite metal oxide arsenic-removing adsorbent (obtained by the ex-situ method) of the present invention: add the in-situ-generated composite metal oxide arsenic-removing adsorbent to the arsenic-containing water, and the dosage is 0.1mg/L ~5g/L, and then thoroughly mixed. Among them, when the concentration of arsenic in the raw water is high (total arsenic>0.5mg/L), it can also be treated by adding in-situ composite metal oxide arsenic removal adsorbent twice or more. After mixing and reacting for 0.5 to 5 minutes, the arsenic-containing water added with the in-situ-generated composite metal oxide arsenic-removing adsorbent enters the filter reactor for filtration.
本发明的原位生成复合金属氧化物除砷吸附剂(采用原位方法得到的)的应用方法:在含砷水中投加混合液A和/或混合液B。其中,混合液A与混合液B投加先后时间间隔为10S~2min;混合液A与混合液B反应获得的原位生成复合金属氧化物除砷吸附剂投量在0.5mg/L~5g/L之间。其中,当原水砷浓度较高时(总砷>0.5mg/L),也可以采用多次顺序投加混合液A或混合液B的方式进行处理。混合反应0.5min~5min之后,投加了原位生成复合金属氧化物除砷吸附剂之后的含砷水进入过滤反应器进行过滤。The application method of the in-situ generated composite metal oxide arsenic-removing adsorbent (obtained by the in-situ method) of the present invention: add mixed solution A and/or mixed solution B to arsenic-containing water. Among them, the time interval between the dosing of the mixed solution A and the mixed solution B is 10S~2min; Between L. Among them, when the concentration of arsenic in the raw water is high (total arsenic>0.5mg/L), it can also be treated by sequentially adding mixed solution A or mixed solution B several times. After mixing and reacting for 0.5 to 5 minutes, the arsenic-containing water added with the in-situ-generated composite metal oxide arsenic-removing adsorbent enters the filter reactor for filtration.
对于如上所述的过滤反应器,采用介质过滤的方式进行过滤。过滤介质滤料可以为石英砂、锰砂、磁铁矿、无烟煤、陶粒、活性氧化铝等中的一种或几种的混合物。滤料粒径范围为0.4mm~2mm,填料厚度为0.50m~1.5m。水流经过滤反应器的滤速范围在2m/h~15m/h之间。过滤介质滤料层下部还有承托层,承托层填料可以为砾石、活性氧化铝、石英砂、锰砂、磁铁矿、无烟煤、陶粒等。承托层粒径范围为2mm~16mm,填料厚度为0.2m~0.6m。含砷水通过过滤反应器的滤速范围在2m/h~15m/h之间。For the filter reactor as described above, media filter is used for filtering. Filter medium The filter material can be one or a mixture of quartz sand, manganese sand, magnetite, anthracite, ceramsite, activated alumina, etc. The filter material particle size ranges from 0.4mm to 2mm, and the filler thickness ranges from 0.50m to 1.5m. The filtration velocity range of water flowing through the filtration reactor is between 2m/h and 15m/h. There is a support layer at the lower part of the filter medium filter material layer, and the support layer filler can be gravel, activated alumina, quartz sand, manganese sand, magnetite, anthracite, ceramsite, etc. The particle size of the supporting layer ranges from 2mm to 16mm, and the filler thickness ranges from 0.2m to 0.6m. The filtration rate of the arsenic-containing water passing through the filter reactor ranges from 2m/h to 15m/h.
本发明进一步提供如图1所示的原位生成复合金属氧化物除砷吸附剂(采用原位制备方法得到的)除砷过程中应用的反应器。该反应器是在含砷水管道中设置混合液A和混合液B的加药口,药液投加之后设置一个管道混合器,之后进入介质过滤单元进行过滤。The present invention further provides a reactor used in the arsenic removal process of the in-situ generated composite metal oxide adsorbent for arsenic removal (obtained by the in-situ preparation method) as shown in FIG. 1 . In this reactor, the dosing port of mixed solution A and mixed solution B is set in the arsenic-containing water pipeline, and a pipeline mixer is set after the medicine solution is added, and then enters the medium filtration unit for filtration.
本发明进一步提供如图2所示的原位生成复合金属氧化物除砷吸附剂(采用异位制备方法得到的)除砷过程中应用的反应器。在含砷水管道中设置原位生成复合金属氧化物除砷吸附剂的加药口,吸附剂投加之后设置一个管道混合器,之后从进入过滤反应器进行过滤。The present invention further provides a reactor used in the arsenic removal process as shown in FIG. A dosing port for the in-situ generation of composite metal oxide arsenic-removing sorbent is set in the arsenic-containing water pipeline. After the sorbent is added, a pipeline mixer is set, and then it enters the filter reactor for filtration.
本发明实现的技术效果如下:The technical effect that the present invention realizes is as follows:
本发明涉及的原位生成复合金属氧化物除砷吸附剂,采用普通常见的水处理药剂和/或材料制备而成,制备方法简单,成本低廉,使用操作简便。本发明涉及的除砷吸附剂具有优异的除砷性能。The in-situ composite metal oxide arsenic-removing adsorbent involved in the present invention is prepared from common water treatment agents and/or materials, and has a simple preparation method, low cost, and easy operation. The arsenic-removing adsorbent involved in the invention has excellent arsenic-removing performance.
1.原位生成复合金属氧化物除砷吸附剂的制备方法简单,异位制备方法仅为将混合液A与混合液B进行混合,原位制备方法仅为将混合液A与混合液B顺序加入含砷水中,操作过程简单,易于实现;1. The preparation method of the in-situ composite metal oxide arsenic removal adsorbent is simple, the ex-situ preparation method is only to mix the mixed solution A and the mixed solution B, and the in-situ preparation method is only to mix the mixed solution A and the mixed solution B in sequence Adding to arsenic-containing water, the operation process is simple and easy to implement;
2.原位生成复合金属氧化物除砷吸附剂的制备所用的混合液A与混合液B为水处理中常用的净水药剂或净水材料,成本低廉;2. The mixed solution A and mixed solution B used in the preparation of the in-situ composite metal oxide arsenic-removing adsorbent are water purification agents or materials commonly used in water treatment, and the cost is low;
3.原位生成复合金属氧化物除砷吸附剂的除砷过程通过界面氧化、吸附、表面络合、螯合、吸附、共沉降、架桥、卷扫等多种途径实现,吸附位点丰富,多种作用机制协同,从而具有良好的除砷效果;3. The arsenic removal process of the in-situ generated composite metal oxide arsenic removal adsorbent is realized through various methods such as interface oxidation, adsorption, surface complexation, chelation, adsorption, co-sedimentation, bridging, sweeping, etc., with abundant adsorption sites , a variety of mechanisms of action synergistically, thus having a good arsenic removal effect;
4.原位生成复合金属氧化物除砷吸附剂的应用方法仅为将异位制备而得的原位生成复合金属氧化物除砷吸附剂投加在含砷水中,或将混合液A与混合液B先后投加含砷水中,之后进行充分混合与过滤即可,工程施工操作过程简单;4. The application method of the in-situ generated composite metal oxide arsenic removal adsorbent is only to add the in-situ generated composite metal oxide arsenic removal adsorbent prepared in situ to the arsenic-containing water, or mix the mixed solution A with the mixed Liquid B is added to arsenic-containing water successively, and then fully mixed and filtered, and the construction operation process is simple;
5.原位生成复合金属氧化物除砷吸附剂的应用能将水中的砷降低到国家地表水环境质量标准中三类水体对砷浓度的规定要求(<0.05mg/L);5. The application of the in-situ composite metal oxide arsenic removal adsorbent can reduce the arsenic concentration in the water to the requirement for the concentration of arsenic in the third type of water in the national surface water environmental quality standard (<0.05mg/L);
6.原位生成复合金属氧化物除砷吸附剂还可用于去除湖泊、水库、河流、地下水、工业废水等水体中砷污染物;6. The in-situ generation of composite metal oxide arsenic removal adsorbent can also be used to remove arsenic pollutants in lakes, reservoirs, rivers, groundwater, industrial wastewater and other water bodies;
7.原位生成复合金属氧化物除砷吸附剂除了去除水中砷之外,还可以用于吸附去除水中的铜、铬、镉、铅等重金属和铁、锰、磷酸盐等污染物。7. In-situ generation of composite metal oxides In addition to removing arsenic in water, the arsenic adsorbent can also be used to adsorb and remove heavy metals such as copper, chromium, cadmium, lead, and pollutants such as iron, manganese, and phosphate in water.
附图说明 Description of drawings
图1.本发明的原位生成复合金属氧化物除砷吸附剂(采用原位方法得到的)除砷过程中应用的过滤反应器的示意图。Fig. 1. Schematic diagram of the filter reactor used in the arsenic removal process of the in-situ generated composite metal oxide arsenic removal adsorbent (obtained by the in-situ method) of the present invention.
图2.本发明的原位生成复合金属氧化物除砷吸附剂(采用异位方法得到的)除砷过程中应用的过滤反应器的示意图。Fig. 2. A schematic diagram of a filter reactor used in the arsenic removal process of the in-situ generated composite metal oxide arsenic-removing adsorbent (obtained by an ex-situ method) of the present invention.
附图标记reference sign
图1figure 1
1.含砷水进水管 2.加药口A 3.加药口B1. Arsenic-containing
4.储药桶A 5.储药桶B 6.管道混合器4. Medicine
7.过滤反应器 8.过滤介质滤料层 9.承托层7.
10.出水管10. Outlet pipe
图2figure 2
1.含砷水进水管 2.加药口A 3.加药口B1. Arsenic-containing
4.储药桶A 5.储药桶B 6.管道混合器A4. Medicine
7.管道混合器B 8.过滤反应器 9.过滤介质滤料层7.
10.承托层 11.出水管10. Supporting
具体实施方式 Detailed ways
实施例1Example 1
材料制备:采用异位制备方法制备原位生成复合金属氧化物除砷吸附剂。储药桶A中配制由三氯化铁、三氯化铝、硫酸亚铁溶液组成的混合液A(三氯化铁、三氯化铝、硫酸亚铁浓度均为2g/L);储药桶B配制高锰酸盐溶液作为混合液B(高锰酸盐浓度为1g/L)。Material preparation: The in-situ-generated composite metal oxide adsorbent for arsenic removal was prepared by an ex-situ preparation method. Prepare mixed solution A (ferric chloride, aluminum chloride, ferrous sulfate concentration is 2g/L) that is made up of ferric chloride, aluminum trichloride, ferrous sulfate solution in medicine storage barrel A; Prepare permanganate solution in barrel B as mixed solution B (concentration of permanganate is 1g/L).
应用于含砷水净化:砷污染水体中砷浓度为0.20mg/L。将混合液A和混合液B同时打入管道混合器A,混合反应时间为2min,原位生成复合金属氧化物除砷吸附剂吸附含量为10mg/L,再与含砷水接触,通过管道混合器B充分混合后,经原位生成复合金属氧化物除砷吸附剂吸附去除砷之后的含砷水进入过滤反应器过滤,滤速为15m/h。过滤反应器出水砷浓度达到国家地表水环境质量标准三类水体对砷浓度的要求(<0.05mg/L)。Applied to the purification of arsenic-containing water: the concentration of arsenic in arsenic-polluted water is 0.20mg/L. Put the mixed solution A and the mixed solution B into the pipeline mixer A at the same time, the mixing reaction time is 2min, and the composite metal oxide is generated in situ to remove the arsenic adsorbent with an adsorption content of 10mg/L, and then contact with the arsenic-containing water, and mix through the pipeline After fully mixing in device B, the arsenic-containing water after the in-situ generation of composite metal oxide arsenic removal adsorbent adsorbs and removes arsenic enters the filter reactor for filtration, and the filtration rate is 15m/h. The concentration of arsenic in the effluent of the filter reactor meets the requirements for the concentration of arsenic in third-class water bodies of the national surface water environmental quality standard (<0.05mg/L).
实施例2Example 2
材料制备:采用异位方法制备原位生成复合金属氧化物除砷吸附剂。配制由三氯化铝、硫酸亚铁溶液组成的混合液A(三氯化铝、硫酸亚铁浓度均为1g/L);配制由三氯化铁、高锰酸盐溶液组成的混合液B(三氯化铁浓度为1g/L,高锰酸盐浓度为0.5g/L)。Material preparation: The in-situ-generated composite metal oxide adsorbent for arsenic removal was prepared by ex-situ method. Preparation of mixed solution A consisting of aluminum trichloride and ferrous sulfate solution (both concentrations of aluminum trichloride and ferrous sulfate are 1g/L); preparation of mixed solution B consisting of ferric chloride and permanganate solution (Concentration of ferric chloride is 1g/L, concentration of permanganate is 0.5g/L).
应用于含砷水净化:砷污染水体中砷浓度为0.20mg/L。将混合液A和混合液B同时打入管道混合器A,混合反应时间为2min,原位生成复合金属氧化物除砷吸附剂吸附含量为10mg/L,再与含砷水接触,通过管道混合器B充分混合后,经原位生成复合金属氧化物除砷吸附剂吸附去除砷之后的含砷水进入过滤反应器过滤,滤速为2m/h。过滤反应器出水砷浓度达到国家地表水环境质量标准三类水体对砷浓度的要求(<0.05mg/L)。Applied to the purification of arsenic-containing water: the concentration of arsenic in arsenic-polluted water is 0.20mg/L. Put the mixed solution A and the mixed solution B into the pipeline mixer A at the same time, the mixing reaction time is 2min, and the composite metal oxide is generated in situ to remove the arsenic adsorbent with an adsorption content of 10mg/L, and then contact with the arsenic-containing water, and mix through the pipeline After fully mixing in device B, the arsenic-containing water after the in-situ generation of composite metal oxide arsenic removal adsorbent to absorb and remove arsenic enters the filter reactor for filtration, and the filtration rate is 2m/h. The concentration of arsenic in the effluent of the filter reactor meets the requirements for the concentration of arsenic in third-class water bodies of the national surface water environmental quality standard (<0.05mg/L).
实施例3Example 3
材料制备:采用异位方法制备原位生成复合金属氧化物除砷吸附剂。配制由三氯化铁、硫酸亚铁溶液组成的混合液A(三氯化铁、硫酸亚铁浓度均为3g/L);配制由三氯化铝、高锰酸盐溶液组成的混合液B(三氯化铝浓度为3g/L,高锰酸盐浓度为1.5g/L)。Material preparation: The in-situ-generated composite metal oxide adsorbent for arsenic removal was prepared by ex-situ method. Preparation of mixed solution A consisting of ferric chloride and ferrous sulfate solution (concentrations of ferric chloride and ferrous sulfate are both 3g/L); preparation of mixed solution B composed of aluminum chloride and permanganate solution (The concentration of aluminum chloride is 3g/L, and the concentration of permanganate is 1.5g/L).
应用于含砷水净化:砷污染水体中砷浓度为0.20mg/L。将混合液A和混合液B同时打入管道混合器A,混合反应时间为2min,原位生成复合金属氧化物除砷吸附剂吸附含量为10mg/L,再与含砷水接触,通过管道混合器B充分混合后,经原位生成复合金属氧化物除砷吸附剂吸附去除砷之后的含砷水进入过滤反应器过滤,滤速为10m/h。过滤反应器出水砷浓度达到国家地表水环境质量标准三类水体对砷浓度的要求(<0.05mg/L)。Applied to the purification of arsenic-containing water: the concentration of arsenic in arsenic-polluted water is 0.20mg/L. Put the mixed solution A and the mixed solution B into the pipeline mixer A at the same time, the mixing reaction time is 2min, and the composite metal oxide is generated in situ to remove the arsenic adsorbent with an adsorption content of 10mg/L, and then contact with the arsenic-containing water, and mix through the pipeline After fully mixing in device B, the arsenic-containing water after the in-situ generation of composite metal oxide arsenic removal adsorbent adsorbs and removes arsenic enters the filter reactor for filtration, and the filtration rate is 10m/h. The concentration of arsenic in the effluent of the filter reactor meets the requirements for the concentration of arsenic in third-class water bodies of the national surface water environmental quality standard (<0.05mg/L).
实施例4Example 4
材料制备:采用异位方法制备原位生成复合金属氧化物除砷吸附剂。配制由硫酸亚铁溶液组成的混合液A(硫酸亚铁浓度均为3g/L);配制由三氯化铁、三氯化铝、高锰酸盐溶液组成的混合液B(三氯化铁和三氯化铝浓度均为3g/L,高锰酸盐浓度为1.5g/L)。Material preparation: The in-situ-generated composite metal oxide adsorbent for arsenic removal was prepared by ex-situ method. Preparation of mixed solution A (concentration of ferrous sulfate is 3g/L) composed of ferrous sulfate solution; preparation of mixed solution B (ferric chloride and aluminum chloride concentration are 3g/L, permanganate concentration is 1.5g/L).
应用于含砷水净化:砷污染水体中砷浓度为0.20mg/L。将混合液A和混合液B同时打入管道混合器A,混合反应时间为2min,原位生成复合金属氧化物除砷吸附剂吸附含量为10mg/L,再与含砷水接触,通过管道混合器B充分混合后,经原位生成复合金属氧化物除砷吸附剂吸附去除砷之后的含砷水进入过滤反应器过滤,滤速为8m/h。过滤反应器出水砷浓度达到国家地表水环境质量标准三类水体对砷浓度的要求(<0.05mg/L)。Applied to the purification of arsenic-containing water: the concentration of arsenic in arsenic-polluted water is 0.20mg/L. Put the mixed solution A and the mixed solution B into the pipeline mixer A at the same time, the mixing reaction time is 2min, and the composite metal oxide is generated in situ to remove the arsenic adsorbent with an adsorption content of 10mg/L, and then contact with the arsenic-containing water, and mix through the pipeline After fully mixing in device B, the arsenic-containing water after the in-situ generation of composite metal oxide arsenic removal adsorbent to absorb and remove arsenic enters the filter reactor for filtration, and the filtration rate is 8m/h. The concentration of arsenic in the effluent of the filter reactor meets the requirements for the concentration of arsenic in third-class water bodies of the national surface water environmental quality standard (<0.05mg/L).
实施例5Example 5
材料制备:采用异位方法制备原位生成复合金属氧化物除砷吸附剂。配制由三氯化铁、硫酸铁和硫酸亚铁溶液组成的混合液A(三氯化铁和硫酸铁浓度均为1.5mg/L、硫酸亚铁浓度为3g/L;);配制由三氯化铝、硫酸铝和高锰酸盐溶液组成的混合液B(三氯化铝和硫酸铝浓度均为1.5g/L,高锰酸盐浓度为1.5g/L)。Material preparation: The in-situ-generated composite metal oxide adsorbent for arsenic removal was prepared by ex-situ method. Preparation of mixed solution A (concentration of ferric chloride and ferric sulfate is 1.5mg/L, concentration of ferrous sulfate is 3g/L;) composed of ferric chloride, ferric sulfate and ferrous sulfate solution; Mixed solution B composed of aluminum chloride, aluminum sulfate and permanganate solution (the concentration of aluminum trichloride and aluminum sulfate is 1.5g/L, and the concentration of permanganate is 1.5g/L).
应用于含砷水净化:砷污染水体中砷浓度为0.20mg/L。将混合液A和混合液B同时打入管道混合器A,混合反应时间为3min,原位生成复合金属氧化物除砷吸附剂吸附含量为20mg/L,再与含砷水接触,通过管道混合器B充分混合后,经原位生成复合金属氧化物除砷吸附剂吸附去除砷之后的含砷水进入过滤反应器过滤,滤速为6m/h。过滤反应器出水砷浓度达到国家地表水环境质量标准三类水体对砷浓度的要求(<0.05mg/L)。Applied to the purification of arsenic-containing water: the concentration of arsenic in arsenic-polluted water is 0.20mg/L. Put the mixed solution A and the mixed solution B into the pipeline mixer A at the same time, the mixing reaction time is 3min, and the composite metal oxide is generated in situ to remove the arsenic. After fully mixing in device B, the arsenic-containing water after the in-situ generation of composite metal oxide arsenic removal adsorbent adsorbs and removes arsenic enters the filter reactor for filtration, and the filtration rate is 6m/h. The concentration of arsenic in the effluent of the filter reactor meets the requirements for the concentration of arsenic in third-class water bodies of the national surface water environmental quality standard (<0.05mg/L).
实施例6Example 6
材料制备:采用异位方法制备原位生成复合金属氧化物除砷吸附剂。配制由聚合三氯化铁、硫酸亚铁溶液组成的混合液A(聚合三氯化铁、硫酸亚铁浓度均为3g/L);配制由三氯化铝、聚合硫酸铝和高锰酸钾溶液组成的混合液B(三氯化铝和聚合硫酸铝浓度均为1.5g/L,高锰酸钾浓度为1.5g/L)。Material preparation: The in-situ-generated composite metal oxide adsorbent for arsenic removal was prepared by ex-situ method. Preparation of mixed solution A composed of polyferric chloride and ferrous sulfate solution (the concentration of both polyferric chloride and ferrous sulfate is 3g/L); Mixed solution B (concentrations of aluminum trichloride and polyaluminum sulfate are both 1.5 g/L, and potassium permanganate concentration is 1.5 g/L) composed of solutions.
应用于含砷水净化:砷污染水体中砷浓度为0.30mg/L。将混合液A和混合液B同时打入管道混合器A,混合反应时间为4min,原位生成复合金属氧化物除砷吸附剂吸附含量为10mg/L,再与含砷水接触,通过管道混合器B充分混合后,经原位生成复合金属氧化物除砷吸附剂吸附去除砷之后的含砷水进入过滤反应器过滤,滤速为4m/h。过滤反应器出水砷浓度达到国家地表水环境质量标准三类水体对砷浓度的要求(<0.05mg/L)。Applied to the purification of arsenic-containing water: the concentration of arsenic in arsenic-polluted water is 0.30mg/L. Put the mixed solution A and the mixed solution B into the pipeline mixer A at the same time, the mixing reaction time is 4min, and the composite metal oxide is generated in situ to remove the arsenic adsorbent with an adsorption content of 10mg/L, and then contact with the arsenic-containing water, and mix through the pipeline After fully mixing in device B, the arsenic-containing water after the in-situ generation of composite metal oxide arsenic removal adsorbent adsorbs and removes arsenic enters the filter reactor for filtration, and the filtration rate is 4m/h. The concentration of arsenic in the effluent of the filter reactor meets the requirements for the concentration of arsenic in third-class water bodies of the national surface water environmental quality standard (<0.05mg/L).
实施例7Example 7
材料制备:采用异位方法制备原位生成复合金属氧化物除砷吸附剂。配制由三氯化铁、三氯化铝、硫酸亚铁、氯化锰溶液组成的混合液A(三氯化铁、三氯化铝、硫酸亚铁、氯化锰浓度均为2g/L);配制高锰酸盐溶液作为混合液B(高锰酸盐浓度为1g/L)。Material preparation: The in-situ-generated composite metal oxide adsorbent for arsenic removal was prepared by ex-situ method. Prepare a mixed solution A consisting of ferric chloride, aluminum trichloride, ferrous sulfate, and manganese chloride solution (concentrations of ferric chloride, aluminum trichloride, ferrous sulfate, and manganese chloride are both 2 g/L) ; Prepare permanganate solution as mixed solution B (concentration of permanganate is 1g/L).
应用于含砷水净化:砷污染水体中砷浓度为0.30mg/L。将混合液A和混合液B同时打入管道混合器A,混合反应时间为4min,原位生成复合金属氧化物除砷吸附剂吸附含量为20mg/L,再与含砷水接触,通过管道混合器B充分混合后,经原位生成复合金属氧化物除砷吸附剂吸附去除砷之后的含砷水进入过滤反应器过滤,滤速为6m/h。过滤反应器出水砷浓度达到国家地表水环境质量标准三类水体对砷浓度的要求(<0.05mg/L)。Applied to the purification of arsenic-containing water: the concentration of arsenic in arsenic-polluted water is 0.30mg/L. Put the mixed solution A and the mixed solution B into the pipeline mixer A at the same time, the mixing reaction time is 4min, and the composite metal oxide is generated in situ to remove the arsenic adsorbent with an adsorption content of 20mg/L, and then contact with the arsenic-containing water, and mix through the pipeline After fully mixing in device B, the arsenic-containing water after the in-situ generation of composite metal oxide arsenic removal adsorbent adsorbs and removes arsenic enters the filter reactor for filtration, and the filtration rate is 6m/h. The concentration of arsenic in the effluent of the filter reactor meets the requirements for the concentration of arsenic in third-class water bodies of the national surface water environmental quality standard (<0.05mg/L).
实施例8Example 8
材料制备:采用异位方法制备原位生成复合金属氧化物除砷吸附剂。配制由三氯化铁、硫酸铁、硝酸铁、三氯化铝、硝酸铝、硫酸铝、硫酸亚铁、氯化锰、硫酸锰溶液组成的混合液A(三氯化铁、硫酸铁、硝酸铁、三氯化铝、硝酸铝、硫酸铝、硫酸亚铁、氯化锰、硫酸锰溶液均为2g/L);配制高锰酸盐溶液作为混合液B(高锰酸盐浓度为5g/L)。将混合液B加入混合液A中,搅拌混合10min。Material preparation: The in-situ-generated composite metal oxide adsorbent for arsenic removal was prepared by ex-situ method. Prepare mixed solution A (ferric chloride, ferric sulfate, nitric acid Iron, aluminum trichloride, aluminum nitrate, aluminum sulfate, ferrous sulfate, manganese chloride, manganese sulfate solution are all 2g/L); Prepare permanganate solution as mixed solution B (permanganate concentration is 5g/L L). Add mixed solution B to mixed solution A, and stir for 10 minutes.
应用于含砷水净化:砷污染水体中砷浓度为0.80mg/L。将混合液A和混合液B同时打入管道混合器A,混合反应时间为4min,原位生成复合金属氧化物除砷吸附剂吸附含量为40mg/L,再与含砷水接触,通过管道混合器B充分混合后,经原位生成复合金属氧化物除砷吸附剂吸附去除砷之后的含砷水进入过滤反应器过滤,滤速为4m/h。过滤反应器出水砷浓度达到国家地表水环境质量标准三类水体对砷浓度的要求(<0.05mg/L)。Applied to the purification of arsenic-containing water: the concentration of arsenic in arsenic-polluted water is 0.80mg/L. Put the mixed solution A and the mixed solution B into the pipeline mixer A at the same time, the mixing reaction time is 4min, and the composite metal oxide adsorbent for arsenic removal is generated in situ with an adsorption content of 40mg/L, and then contacted with arsenic-containing water and mixed through the pipeline After fully mixing in device B, the arsenic-containing water after the in-situ generation of composite metal oxide arsenic removal adsorbent adsorbs and removes arsenic enters the filter reactor for filtration, and the filtration rate is 4m/h. The concentration of arsenic in the effluent of the filter reactor meets the requirements for the concentration of arsenic in third-class water bodies of the national surface water environmental quality standard (<0.05mg/L).
实施例9Example 9
材料制备:采用异位方法制备原位生成复合金属氧化物除砷吸附剂。配制由三氯化铁、硫酸铁、硝酸铁、三氯化铝、硝酸铝、硫酸铝、硫酸亚铁、氯化锰、硫酸锰溶液组成的混合液A(三氯化铁、硫酸铁、硝酸铁、三氯化铝、硝酸铝、硫酸铝、硫酸亚铁、氯化锰、硫酸锰溶液均为2g/L);配制由高锰酸盐、聚合氯化铝、聚合硫酸铁、聚合硝酸铁溶液作为混合液B(高锰酸盐浓度为5g/L,聚合氯化铝、聚合硫酸铁、聚合硝酸铁溶液浓度为1g/L)。Material preparation: The in-situ-generated composite metal oxide adsorbent for arsenic removal was prepared by ex-situ method. Prepare mixed solution A (ferric chloride, ferric sulfate, nitric acid Iron, aluminum trichloride, aluminum nitrate, aluminum sulfate, ferrous sulfate, manganese chloride, manganese sulfate solution are 2g/L); prepared by permanganate, polyaluminum chloride, polyferric sulfate, polyferric nitrate The solution was used as mixed solution B (the concentration of permanganate was 5 g/L, and the concentration of polyaluminum chloride, polyferric sulfate, and polyferric nitrate solution was 1 g/L).
应用于含砷水净化:砷污染水体中砷浓度为0.15mg/L。将混合液A和混合液B同时打入管道混合器A,混合反应时间为4min,原位生成复合金属氧化物除砷吸附剂吸附含量为10mg/L,再与含砷水接触,通过管道混合器B充分混合后,经原位生成复合金属氧化物除砷吸附剂吸附去除砷之后的含砷水进入过滤反应器过滤,滤速为12m/h。过滤反应器出水砷浓度达到国家地表水环境质量标准三类水体对砷浓度的要求(<0.05mg/L)。Applied to the purification of arsenic-containing water: the concentration of arsenic in arsenic-polluted water is 0.15mg/L. Put the mixed solution A and the mixed solution B into the pipeline mixer A at the same time, the mixing reaction time is 4min, and the composite metal oxide is generated in situ to remove the arsenic adsorbent with an adsorption content of 10mg/L, and then contact with the arsenic-containing water, and mix through the pipeline After fully mixing in device B, the arsenic-containing water after the in-situ generation of composite metal oxide arsenic removal adsorbent adsorbs and removes arsenic enters the filter reactor for filtration, and the filtration rate is 12m/h. The concentration of arsenic in the effluent of the filter reactor meets the requirements for the concentration of arsenic in third-class water bodies of the national surface water environmental quality standard (<0.05mg/L).
实施例10Example 10
材料制备:采用异位方法制备原位生成复合金属氧化物除砷吸附剂。配制由三氯化铁、三氯化铝、硫酸亚铁、氯化钙、氯化镁溶液组成的混合液A(三氯化铁、三氯化铝、硫酸亚铁浓度均为2g/L,氯化钙、氯化镁溶液浓度为0.5g/L);配制高锰酸盐溶液作为混合液B(高锰酸盐浓度为1g/L)。Material preparation: The in-situ-generated composite metal oxide adsorbent for arsenic removal was prepared by ex-situ method. Prepare mixed solution A (concentrations of ferric chloride, aluminum trichloride and ferrous sulfate are 2g/L, and the concentration of ferric chloride, aluminum chloride, ferrous sulfate is 2g/L, Calcium, magnesium chloride solution concentration is 0.5g/L); Prepare permanganate solution as mixed solution B (permanganate concentration is 1g/L).
应用于含砷水净化:砷污染水体中砷浓度为0.20mg/L。将混合液A和混合液B同时打入管道混合器A,混合反应时间为4min,原位生成复合金属氧化物除砷吸附剂吸附含量为20mg/L,再与含砷水接触,通过管道混合器B充分混合后,经原位生成复合金属氧化物除砷吸附剂吸附去除砷之后的含砷水进入过滤反应器过滤,滤速为8m/h。过滤反应器出水砷浓度达到国家地表水环境质量标准三类水体对砷浓度的要求(<0.05mg/L)。Applied to the purification of arsenic-containing water: the concentration of arsenic in arsenic-polluted water is 0.20mg/L. Put the mixed solution A and the mixed solution B into the pipeline mixer A at the same time, the mixing reaction time is 4min, and the composite metal oxide is generated in situ to remove the arsenic adsorbent with an adsorption content of 20mg/L, and then contact with the arsenic-containing water, and mix through the pipeline After fully mixing in device B, the arsenic-containing water after the in-situ generation of composite metal oxide arsenic removal adsorbent to absorb and remove arsenic enters the filter reactor for filtration, and the filtration rate is 8m/h. The concentration of arsenic in the effluent of the filter reactor meets the requirements for the concentration of arsenic in third-class water bodies of the national surface water environmental quality standard (<0.05mg/L).
实施例11Example 11
材料制备:采用异位方法制备原位生成复合金属氧化物除砷吸附剂。配制由三氯化铁、三氯化铝、硫酸亚铁、硅酸钠、聚硅酸钠、聚磷酸钠溶液组成的混合液A(三氯化铁、三氯化铝、硫酸亚铁浓度均为2g/L,硅酸钠、聚硅酸钠、聚磷酸钠溶液浓度为0.5g/L);配制高锰酸盐溶液作为混合液B(高锰酸盐浓度为1g/L)。Material preparation: The in-situ-generated composite metal oxide adsorbent for arsenic removal was prepared by ex-situ method. Preparation of mixed solution A consisting of ferric chloride, aluminum trichloride, ferrous sulfate, sodium silicate, sodium polysilicate, and sodium polyphosphate solution (concentrations of ferric chloride, aluminum trichloride, and ferrous sulfate are equal to 2g/L, sodium silicate, sodium polysilicate, sodium polyphosphate solution concentration is 0.5g/L); prepare permanganate solution as mixed solution B (permanganate concentration is 1g/L).
应用于含砷水净化:砷污染水体中砷浓度为0.63mg/L。将混合液A和混合液B同时打入管道混合器A,混合反应时间为5min,原位生成复合金属氧化物除砷吸附剂吸附含量为40mg/L,再与含砷水接触,通过管道混合器B充分混合后,经原位生成复合金属氧化物除砷吸附剂吸附去除砷之后的含砷水进入过滤反应器过滤,滤速为4m/h。过滤反应器出水砷浓度达到国家地表水环境质量标准三类水体对砷浓度的要求(<0.05mg/L)。Applied to the purification of arsenic-containing water: the concentration of arsenic in arsenic-polluted water is 0.63mg/L. Put the mixed solution A and the mixed solution B into the pipeline mixer A at the same time, the mixing reaction time is 5min, and the composite metal oxide adsorbent for arsenic removal is generated in situ with an adsorption content of 40mg/L, and then contacted with arsenic-containing water and mixed through the pipeline After fully mixing in device B, the arsenic-containing water after the in-situ generation of composite metal oxide arsenic removal adsorbent adsorbs and removes arsenic enters the filter reactor for filtration, and the filtration rate is 4m/h. The concentration of arsenic in the effluent of the filter reactor meets the requirements for the concentration of arsenic in third-class water bodies of the national surface water environmental quality standard (<0.05mg/L).
实施例12Example 12
材料制备:采用异位方法制备原位生成复合金属氧化物除砷吸附剂。配制由三氯化铁、三氯化铝、硫酸亚铁、硅酸钠和PAM溶液组成的混合液A(三氯化铁、三氯化铝、硫酸亚铁浓度均为2g/L,硅酸钠和PAM溶液浓度均为1g/L);配制高锰酸盐溶液作为混合液B(高锰酸盐浓度为4g/L)。Material preparation: The in-situ-generated composite metal oxide adsorbent for arsenic removal was prepared by ex-situ method. Prepare mixed solution A (concentrations of ferric chloride, aluminum trichloride and ferrous sulfate are 2g/L, silicic acid Sodium and PAM solution concentrations are 1g/L); prepare permanganate solution as mixed solution B (permanganate concentration is 4g/L).
应用于含砷水净化:砷污染水体中砷浓度为0.63mg/L。将混合液A和混合液B同时打入管道混合器A,混合反应时间为5min,原位生成复合金属氧化物除砷吸附剂吸附含量为40mg/L,再与含砷水接触,通过管道混合器B充分混合后,经原位生成复合金属氧化物除砷吸附剂吸附去除砷之后的含砷水进入过滤反应器过滤,滤速为4m/h。过滤反应器出水砷浓度达到国家地表水环境质量标准三类水体对砷浓度的要求(<0.05mg/L)。Applied to the purification of arsenic-containing water: the concentration of arsenic in arsenic-polluted water is 0.63mg/L. Put the mixed solution A and the mixed solution B into the pipeline mixer A at the same time, the mixing reaction time is 5min, and the composite metal oxide adsorbent for arsenic removal is generated in situ with an adsorption content of 40mg/L, and then contacted with arsenic-containing water and mixed through the pipeline After fully mixing in device B, the arsenic-containing water after the in-situ generation of composite metal oxide arsenic removal adsorbent adsorbs and removes arsenic enters the filter reactor for filtration, and the filtration rate is 4m/h. The concentration of arsenic in the effluent of the filter reactor meets the requirements for the concentration of arsenic in third-class water bodies of the national surface water environmental quality standard (<0.05mg/L).
实施例13Example 13
材料制备:采用异位方法制备原位生成复合金属氧化物除砷吸附剂。配制由三氯化铁、三氯化铝、硫酸亚铁溶液组成的混合液A(三氯化铁、三氯化铝、硫酸亚铁浓度均为2g/L);配制由高锰酸盐、硅酸钠和PAM溶液组成的混合液B(高锰酸盐浓度为4g/L,硅酸钠和PAM溶液浓度均为1g/L)。Material preparation: The in-situ-generated composite metal oxide adsorbent for arsenic removal was prepared by ex-situ method. Prepare mixed solution A (concentrations of ferric chloride, aluminum chloride and ferrous sulfate are 2g/L) consisting of ferric chloride, aluminum trichloride and ferrous sulfate solution; prepare permanganate, Mixed solution B composed of sodium silicate and PAM solution (the concentration of permanganate is 4g/L, and the concentration of sodium silicate and PAM solution is 1g/L).
应用于含砷水净化:砷污染水体中砷浓度为0.63mg/L。将混合液A和混合液B同时打入管道混合器A,混合反应时间为5min,原位生成复合金属氧化物除砷吸附剂吸附含量为40mg/L,再与含砷水接触,通过管道混合器B充分混合后,经原位生成复合金属氧化物除砷吸附剂吸附去除砷之后的含砷水进入过滤反应器过滤,滤速为5m/h。过滤反应器出水砷浓度达到国家地表水环境质量标准三类水体对砷浓度的要求(<0.05mg/L)。Applied to the purification of arsenic-containing water: the concentration of arsenic in arsenic-polluted water is 0.63mg/L. Put the mixed solution A and the mixed solution B into the pipeline mixer A at the same time, the mixing reaction time is 5min, and the composite metal oxide adsorbent for arsenic removal is generated in situ with an adsorption content of 40mg/L, and then contacted with arsenic-containing water and mixed through the pipeline After fully mixing in device B, the arsenic-containing water after the in-situ generation of composite metal oxide arsenic removal adsorbent adsorbs and removes arsenic enters the filter reactor for filtration, and the filtration rate is 5m/h. The concentration of arsenic in the effluent of the filter reactor meets the requirements for the concentration of arsenic in third-class water bodies of the national surface water environmental quality standard (<0.05mg/L).
实施例14Example 14
材料制备:采用异位方法制备原位生成复合金属氧化物除砷吸附剂。配制由三氯化铁、三氯化铝、硫酸亚铁溶液(三氯化铁、三氯化铝、硫酸亚铁浓度均为2g/L),并加入硅藻土、高岭土、红壤、粉煤灰、赤泥、粘土(硅藻土、高岭土、红壤、粉煤灰、赤泥、粘土浓度均为5g/L)并搅拌混合获得混合液A;配制由高锰酸盐、硅酸钠、PAM溶液组成的混合液B(高锰酸盐浓度为4g/L,硅酸钠和PAM溶液浓度均为1g/L)。Material preparation: The in-situ-generated composite metal oxide adsorbent for arsenic removal was prepared by ex-situ method. Prepare ferric chloride, aluminum trichloride, ferrous sulfate solution (concentration of ferric chloride, aluminum trichloride, ferrous sulfate is 2g/L), and add diatomite, kaolin, red soil, pulverized coal Ash, red mud, clay (diatomaceous earth, kaolin, red soil, fly ash, red mud, clay concentration are all 5g/L) and stirred to obtain mixed solution A; prepared by permanganate, sodium silicate, PAM Mixed solution B of solution composition (permanganate concentration is 4g/L, sodium silicate and PAM solution concentration are 1g/L).
应用于含砷水净化:砷污染水体中砷浓度为1.00mg/L。将混合液A和混合液B同时打入管道混合器A,混合反应时间为5min,原位生成复合金属氧化物除砷吸附剂吸附含量为65mg/L,再与含砷水接触,通过管道混合器B充分混合后,经原位生成复合金属氧化物除砷吸附剂吸附去除砷之后的含砷水进入过滤反应器过滤,滤速为3m/h。过滤反应器出水砷浓度达到国家地表水环境质量标准三类水体对砷浓度的要求(<0.05mg/L)。Applied to the purification of arsenic-containing water: the concentration of arsenic in arsenic-polluted water is 1.00mg/L. Put the mixed solution A and the mixed solution B into the pipeline mixer A at the same time, the mixing reaction time is 5min, and the composite metal oxide adsorbent for arsenic removal is generated in situ with an adsorption content of 65mg/L, and then contacted with arsenic-containing water and mixed through the pipeline After fully mixing in device B, the arsenic-containing water after the in-situ generation of composite metal oxide arsenic removal adsorbent to absorb and remove arsenic enters the filter reactor for filtration, and the filtration rate is 3m/h. The concentration of arsenic in the effluent of the filter reactor meets the requirements for the concentration of arsenic in third-class water bodies of the national surface water environmental quality standard (<0.05mg/L).
实施例15Example 15
材料制备:采用异位方法制备原位生成复合金属氧化物除砷吸附剂。配制由三氯化铁、三氯化铝、硫酸亚铁溶液(三氯化铁、三氯化铝、硫酸亚铁浓度均为2g/L),并加入硅藻土、高岭土(硅藻土、高岭土浓度均为50g/L)并搅拌混合获得混合液A;配制由高锰酸盐、硅酸钠、PAM溶液并加入红壤、粉煤灰、赤泥、粘土等充分搅拌获得混合液B(高锰酸盐浓度为4g/L,硅酸钠、和PAM溶液浓度为1g/L,红壤、粉煤灰、赤泥、粘土的浓度均为50g/L)。Material preparation: The in-situ-generated composite metal oxide adsorbent for arsenic removal was prepared by ex-situ method. Prepare ferric chloride, aluminum trichloride, ferrous sulfate solution (concentration of ferric chloride, aluminum trichloride, ferrous sulfate is 2g/L), and add diatomite, kaolin (diatomite, The concentration of kaolin is 50g/L) and stirred and mixed to obtain mixed solution A; the preparation is made of permanganate, sodium silicate, PAM solution and added red soil, fly ash, red mud, clay, etc. and fully stirred to obtain mixed solution B (high The concentration of manganate is 4g/L, the concentration of sodium silicate and PAM solution is 1g/L, and the concentration of red soil, fly ash, red mud and clay is 50g/L).
应用于含砷水净化:砷污染水体中砷浓度为1.00mg/L。将混合液A和混合液B同时打入管道混合器A,混合反应时间为5min,原位生成复合金属氧化物除砷吸附剂吸附含量为65mg/L,再与含砷水接触,通过管道混合器B充分混合后,经原位生成复合金属氧化物除砷吸附剂吸附去除砷之后的含砷水进入过滤反应器过滤,滤速为3m/h。过滤反应器出水砷浓度达到国家地表水环境质量标准三类水体对砷浓度的要求(<0.05mg/L)。Applied to the purification of arsenic-containing water: the concentration of arsenic in arsenic-polluted water is 1.00mg/L. Put the mixed solution A and the mixed solution B into the pipeline mixer A at the same time, the mixing reaction time is 5min, and the composite metal oxide adsorbent for arsenic removal is generated in situ with an adsorption content of 65mg/L, and then contacted with arsenic-containing water and mixed through the pipeline After fully mixing in device B, the arsenic-containing water after the in-situ generation of composite metal oxide arsenic removal adsorbent to absorb and remove arsenic enters the filter reactor for filtration, and the filtration rate is 3m/h. The concentration of arsenic in the effluent of the filter reactor meets the requirements for the concentration of arsenic in third-class water bodies of the national surface water environmental quality standard (<0.05mg/L).
实施例16Example 16
采用原位方法制备原位生成复合金属氧化物除砷吸附剂。配制由三氯化铁、三氯化铝、硫酸亚铁溶液组成的混合液A(三氯化铁、三氯化铝、硫酸亚铁浓度均为2g/L);配制高锰酸盐溶液作为混合液B(高锰酸盐浓度为1g/L)。The in-situ composite metal oxide adsorbent for arsenic removal was prepared by an in-situ method. Prepare mixed solution A (ferric chloride, aluminum chloride, ferrous sulfate concentration is 2g/L) that is formed by iron trichloride, aluminum trichloride, ferrous sulfate solution; Prepare permanganate solution as Mixed solution B (concentration of permanganate is 1g/L).
砷污染水体中砷浓度为0.20mg/L。将混合液A打入加药口2,30s后将混合液B打入加药口3,混合液A和混合液B进入管道混合器,混合反应时间为2min,原位生成复合金属氧化物除砷吸附剂吸附,原位生成复合金属氧化物除砷吸附剂吸附生成量为10mg/L,经原位生成复合金属氧化物除砷吸附剂吸附去除砷之后的含砷水进入过滤反应器过滤,滤速为12m/h。过滤反应器出水砷浓度达到国家地表水环境质量标准三类水体对砷浓度的要求(<0.05mg/L)。The concentration of arsenic in arsenic-polluted water is 0.20mg/L. Put the mixed solution A into the
实施例17Example 17
采用原位方法制备原位生成复合金属氧化物除砷吸附剂。配制由三氯化铁、三氯化铝、硫酸亚铁溶液组成的混合液A(三氯化铁、三氯化铝、硫酸亚铁浓度均为2g/L);配制高锰酸盐溶液作为混合液B(高锰酸盐浓度为1g/L)。The in-situ composite metal oxide adsorbent for arsenic removal was prepared by an in-situ method. Prepare mixed solution A (ferric chloride, aluminum chloride, ferrous sulfate concentration is 2g/L) that is formed by iron trichloride, aluminum trichloride, ferrous sulfate solution; Prepare permanganate solution as Mixed solution B (concentration of permanganate is 1g/L).
砷污染水体中砷浓度为0.20mg/L。将混合液A打入加药口2,30s后将混合液B打入加药口3,混合液A和混合液B进入管道混合器,混合反应时间为2min,原位生成复合金属氧化物除砷吸附剂吸附,原位生成复合金属氧化物除砷吸附剂吸附生成量为10mg/L,经原位生成复合金属氧化物除砷吸附剂吸附去除砷之后的含砷水进入过滤反应器过滤,滤速为12m/h。过滤反应器出水砷浓度达到国家地表水环境质量标准三类水体对砷浓度的要求(<0.05mg/L)。The concentration of arsenic in arsenic-polluted water is 0.20mg/L. Put the mixed solution A into the
实施例18Example 18
采用原位方法制备原位生成复合金属氧化物除砷吸附剂。配制由三氯化铁、三氯化铝、硫酸亚铁溶液组成的混合液A(三氯化铁、三氯化铝、硫酸亚铁浓度均为2g/L);配制由高锰酸盐、硅酸钠、PAM溶液组成的混合液B(高锰酸盐浓度为4g/L,硅酸钠和PAM溶液浓度为1g/L)。The in-situ composite metal oxide adsorbent for arsenic removal was prepared by an in-situ method. Prepare mixed solution A (concentrations of ferric chloride, aluminum chloride and ferrous sulfate are 2g/L) consisting of ferric chloride, aluminum trichloride and ferrous sulfate solution; prepare permanganate, Mixed solution B composed of sodium silicate and PAM solution (the concentration of permanganate is 4g/L, and the concentration of sodium silicate and PAM solution is 1g/L).
砷污染水体中砷浓度为2.0mg/L。将混合液A打入加药口2,10s后将混合液B打入加药口3,混合液A和混合液B进入管道混合器,混合反应时间为4min,原位生成复合金属氧化物除砷吸附剂吸附,原位生成复合金属氧化物除砷吸附剂吸附生成量为20mg/L,经原位生成复合金属氧化物除砷吸附剂吸附去除砷之后的含砷水进入过滤反应器过滤,滤速为6m/h。过滤反应器出水砷浓度达到国家地表水环境质量标准三类水体对砷浓度的要求(<0.05mg/L)。The concentration of arsenic in arsenic-polluted water is 2.0mg/L. Put the mixed solution A into the
实施例19Example 19
采用原位方法制备原位生成复合金属氧化物除砷吸附剂。配制由三氯化铁、三氯化铝、硫酸亚铁溶液(三氯化铁、三氯化铝、硫酸亚铁浓度均为2g/L),并加入硅藻土、高岭土、红壤、粉煤灰、赤泥、粘土(硅藻土、高岭土、红壤、粉煤灰、赤泥、粘土浓度均为5g/L)并搅拌混合获得混合液A;配制由高锰酸盐、硅酸钠、PAM溶液组成的混合液B(高锰酸盐浓度为4g/L,硅酸钠和PAM溶液浓度为1g/L)。The in-situ composite metal oxide adsorbent for arsenic removal was prepared by an in-situ method. Prepare ferric chloride, aluminum trichloride, ferrous sulfate solution (concentration of ferric chloride, aluminum trichloride, ferrous sulfate is 2g/L), and add diatomite, kaolin, red soil, pulverized coal Ash, red mud, clay (diatomaceous earth, kaolin, red soil, fly ash, red mud, clay concentration are all 5g/L) and stirred to obtain mixed solution A; prepared by permanganate, sodium silicate, PAM Mixture B of solution composition (the concentration of permanganate is 4g/L, and the concentration of sodium silicate and PAM solution is 1g/L).
砷污染水体中砷浓度为2.0mg/L。将混合液A打入加药口2,10s后将混合液B打入加药口3,混合液A和混合液B进入管道混合器,混合反应时间为5min,原位生成复合金属氧化物除砷吸附剂吸附,原位生成复合金属氧化物除砷吸附剂吸附生成量为40mg/L,经原位生成复合金属氧化物除砷吸附剂吸附去除砷之后的含砷水进入过滤反应器过滤,滤速为2m/h。过滤反应器出水砷浓度达到国家地表水环境质量标准三类水体对砷浓度的要求(<0.05mg/L)。The concentration of arsenic in arsenic-polluted water is 2.0mg/L. Put the mixed solution A into the
实施例20Example 20
采用原位方法制备原位生成复合金属氧化除砷吸附剂。配制由三氯化铁、三氯化铝、硫酸亚铁溶液(三氯化铁、三氯化铝、硫酸亚铁浓度均为2g/L),并加入硅藻土、高岭土(硅藻土、高岭土浓度均为50g/L)并搅拌混合获得混合液A;配制由高锰酸盐、硅酸钠、PAM溶液并加入红壤、粉煤灰、赤泥、粘土等充分搅拌获得混合液B(高锰酸盐浓度为4g/L,硅酸钠、PAM溶液浓度为1g/L,红壤、粉煤灰、赤泥、粘土的浓度均为50g/L)。The in-situ composite metal oxide adsorbent for arsenic removal was prepared by an in-situ method. Prepare ferric chloride, aluminum trichloride, ferrous sulfate solution (concentration of ferric chloride, aluminum trichloride, ferrous sulfate is 2g/L), and add diatomite, kaolin (diatomite, The concentration of kaolin is 50g/L) and stirred and mixed to obtain mixed solution A; the preparation is made of permanganate, sodium silicate, PAM solution and added red soil, fly ash, red mud, clay, etc. and fully stirred to obtain mixed solution B (high The concentration of manganate is 4g/L, the concentration of sodium silicate and PAM solution is 1g/L, and the concentration of red soil, fly ash, red mud and clay is 50g/L).
砷污染水体中砷浓度为2.0mg/L。将混合液A打入加药口2,10s后将混合液B打入加药口3,混合液A和混合液B进入管道混合器,混合反应时间为4min,原位生成复合金属氧化物除砷吸附剂吸附,原位生成复合金属氧化物除砷吸附剂吸附生成量为50mg/L,经原位生成复合金属氧化物除砷吸附剂吸附去除砷之后的含砷水进入过滤反应器过滤,滤速为3m/h。过滤反应器出水砷浓度达到国家地表水环境质量标准三类水体对砷浓度的要求(<0.05mg/L)。The concentration of arsenic in arsenic-polluted water is 2.0mg/L. Put the mixed solution A into the
实施例21Example 21
采用原位方法制备原位生成复合金属氧化物除砷吸附剂。配制由三氯化铁、三氯化铝、硫酸亚铁溶液(三氯化铁、三氯化铝、硫酸亚铁浓度均为2g/L),并加入硅藻土、高岭土(硅藻土、高岭土浓度均为50g/L)并搅拌混合获得混合液A;配制由高锰酸盐、硅酸钠、PAM溶液并加入红壤、粉煤灰、赤泥、粘土等充分搅拌获得混合液B(高锰酸盐浓度为4g/L,硅酸钠和PAM溶液浓度为1g/L,红壤、粉煤灰、赤泥、粘土的浓度均为50g/L)。The in-situ composite metal oxide adsorbent for arsenic removal was prepared by an in-situ method. Prepare ferric chloride, aluminum trichloride, ferrous sulfate solution (concentration of ferric chloride, aluminum trichloride, ferrous sulfate is 2g/L), and add diatomite, kaolin (diatomite, The concentration of kaolin is 50g/L) and stirred and mixed to obtain mixed solution A; the preparation is made of permanganate, sodium silicate, PAM solution and added red soil, fly ash, red mud, clay, etc. and fully stirred to obtain mixed solution B (high The concentration of manganate is 4g/L, the concentration of sodium silicate and PAM solution is 1g/L, and the concentration of red soil, fly ash, red mud and clay is 50g/L).
砷污染水体中砷浓度为1.0mg/L。将混合液A打入加药口2,10s后将混合液B打入加药口3,混合液A和混合液B进入管道混合器,混合反应时间为3min,原位生成复合金属氧化物除砷吸附剂吸附,原位生成复合金属氧化物除砷吸附剂吸附生成量为25mg/L,经原位生成复合金属氧化物除砷吸附剂吸附去除砷之后的含砷水进入过滤反应器过滤,滤速为8m/h。过滤反应器出水砷浓度达到国家地表水环境质量标准三类水体对砷浓度的要求(<0.05mg/L)。The concentration of arsenic in arsenic-polluted water is 1.0mg/L. Put the mixed solution A into the
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2008102267416A CN101422720B (en) | 2008-11-24 | 2008-11-24 | Absorption filtration dearsenication method based on in-situ composite metal oxides generation |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2008102267416A CN101422720B (en) | 2008-11-24 | 2008-11-24 | Absorption filtration dearsenication method based on in-situ composite metal oxides generation |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101422720A CN101422720A (en) | 2009-05-06 |
CN101422720B true CN101422720B (en) | 2012-11-07 |
Family
ID=40613736
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2008102267416A Active CN101422720B (en) | 2008-11-24 | 2008-11-24 | Absorption filtration dearsenication method based on in-situ composite metal oxides generation |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101422720B (en) |
Families Citing this family (49)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101823801B (en) * | 2010-03-23 | 2012-09-26 | 中国地质大学(武汉) | Technique of in-situ remediation of high As groundwater |
CN102233259B (en) * | 2010-05-04 | 2012-12-26 | 北京林业大学 | Adsorbent for removing heavy metal from water and preparation method of adsorbent |
CN102553520A (en) * | 2010-12-08 | 2012-07-11 | 中国科学院生态环境研究中心 | Method for preparing, using and regenerating Fe-Mn-Al composite oxide/zeolite antimony removal adsorbent |
CN102145945A (en) * | 2011-02-21 | 2011-08-10 | 中国科学院生态环境研究中心 | Method for removing trace cadmium in high salt wastewater by combining polymer chelation with adsorption |
CN102145947B (en) * | 2011-02-24 | 2012-12-26 | 哈尔滨工业大学 | A water treatment method for in-situ generation of nano iron and manganese oxides to remove Tl+ and/or Cd2+ |
CN102126780B (en) * | 2011-04-25 | 2012-12-12 | 宜兴禾大水处理技术有限公司 | Application of efficient COD (chemical oxygen demand) remover to wastewater treatment |
CN102249455B (en) * | 2011-05-20 | 2012-07-25 | 杭州永腾膜科技有限公司 | Rural drinking water purification system with arsenic removal function |
CN102266749B (en) * | 2011-07-01 | 2013-07-31 | 清华大学 | Dispersive composite nano adsorbent and preparation method thereof applied to arsenic underwater removal |
WO2013028245A2 (en) * | 2011-08-23 | 2013-02-28 | Advanced Technology Materials, Inc. | Systems and methods for supplying phosphine for fumigation applications |
CN103357372A (en) * | 2012-03-30 | 2013-10-23 | 中国科学院生态环境研究中心 | Iron-aluminum-manganese composite metal oxide adsorbent for removing phosphate from water and preparation method thereof |
CN102603024B (en) * | 2012-04-12 | 2013-10-16 | 吉林建筑工程学院 | In-situ cadmium removal method for underground water |
CN102728300B (en) * | 2012-06-18 | 2016-04-13 | 中国科学院生态环境研究中心 | Compound magnetic nano adsorber of a kind of dopping manganese dioxide and preparation method thereof, application |
CN102773070B (en) * | 2012-08-26 | 2014-03-12 | 西安科技大学 | Preparation method of magnetic nanometer particle with activated aluminium oxide shell |
CN102941060B (en) * | 2012-11-28 | 2014-10-01 | 东北大学 | Manganese oxide diatomite composite adsorbent for treating lead-containing wastewater and preparation method thereof |
CN103316544B (en) * | 2013-07-12 | 2014-11-19 | 苏州微陶重金属过滤科技有限公司 | Wastewater treatment filtering material, and preparation method and use thereof |
CN104492372B (en) * | 2014-11-27 | 2017-06-27 | 山东省科学院新材料研究所 | A kind of preparation method and application thereof for absorbing heavy metal material in waste water |
CN104591333A (en) * | 2014-12-16 | 2015-05-06 | 中国地质大学(武汉) | In-situ oxidation iron plating arsenic removal process based on quartz sand supporting |
CN105006263B (en) * | 2015-06-19 | 2017-11-03 | 华东理工大学 | A kind of method of in-situ preparation mangano-manganic oxide processing nuclear power plant radioactive liquid waste |
CN105036262B (en) * | 2015-07-02 | 2018-06-22 | 华北电力大学 | A kind of method that ferro manganese composite oxides arsenic removal efficiency is improved using magnetic field |
CN105130057A (en) * | 2015-07-13 | 2015-12-09 | 江苏凯力克钴业股份有限公司 | Nickel and cobalt production enterprise raffinate waste water deep processing recovery device |
CN105355250B (en) * | 2015-10-16 | 2018-07-10 | 华东理工大学 | Method based on in-situ preparation birnessite processing nuclear power plant radioactive liquid waste |
CN105536718A (en) * | 2015-12-24 | 2016-05-04 | 淄博永辰环境影响评价有限公司 | Composite absorbent material for waste gas treatment |
CN105478086A (en) * | 2015-12-24 | 2016-04-13 | 淄博永辰环境影响评价有限公司 | Preparation method of composite adsorbing material of industrial wastewater heavy metal ions |
CN105668735A (en) * | 2016-01-21 | 2016-06-15 | 石鸿娟 | Modified composite aluminum polysilicate water-purifying agent |
CN105771878A (en) * | 2016-03-31 | 2016-07-20 | 辽宁大学 | Ferro-manganese modified aluminum oxide adsorbent and application thereof in As (III) adsorption |
WO2018023728A1 (en) * | 2016-08-05 | 2018-02-08 | Honeywell International Inc. | Water filter cartridge and method of processing the same |
CN106925236B (en) * | 2017-03-28 | 2019-05-14 | 武汉轻工大学 | A kind of gelatin-manganese dioxide composites preparation method and applications for adsorbing heavy metal |
CN108499520B (en) * | 2017-05-16 | 2021-05-14 | 新疆德安环保科技股份有限公司 | Preparation method of alpha-ferric oxide-sodium bentonite adsorbent for water treatment |
CN107324907B (en) * | 2017-08-09 | 2020-10-30 | 中国农业大学 | Soil phosphorus passivator with root promoting effect |
CN107812507A (en) * | 2017-11-08 | 2018-03-20 | 马鞍山菌菌食品科技有限公司 | A kind of ardealite metal-adsorbing material and preparation method thereof |
CN107837783A (en) * | 2017-11-23 | 2018-03-27 | 哈尔滨工业大学 | A kind of preparation method of ferrotitanium manganese tri compound arsenic-removing adsorption agent |
CN108046298B (en) * | 2017-12-20 | 2021-05-25 | 国标(北京)检验认证有限公司 | Method for purifying concentrated magnesium isotope oxide |
CN108554365A (en) * | 2018-03-26 | 2018-09-21 | 广州大学 | A kind of uranium absorption agent and preparation method thereof |
US11766641B2 (en) | 2018-05-23 | 2023-09-26 | Council Of Scientific And Industrial Research | Nanoadsorbent based user-friendly household filter for the purification of fluoride and arsenic contaminated drinking water |
CN108772041A (en) * | 2018-07-05 | 2018-11-09 | 刘青 | A kind of preparation method of aluminium hydroxide load type active carbon sorbing material |
CN109499524B (en) * | 2018-11-28 | 2021-11-05 | 北京工业大学 | A kind of preparation method of AlOOH/MnO2@diatomite composite material |
CN109772271B (en) * | 2019-03-14 | 2021-04-02 | 中国科学院生态环境研究中心 | Ferro-manganese modified algae adsorbent and preparation method thereof |
CN110215907A (en) * | 2019-07-01 | 2019-09-10 | 广州大学 | One kind is for chitosan/γ-AlOOH laminated film of Pb (II) absorption and its preparation method and application in water |
CN110302747B (en) * | 2019-07-09 | 2021-09-03 | 昆明理工大学 | Method for synchronously purifying arsenic ions and fluorine ions in industrial wastewater by mining stripped waste rocks |
CN110697855B (en) * | 2019-11-04 | 2022-02-11 | 常熟理工学院 | Flocculating agent and preparation method and application thereof |
CN110980859A (en) * | 2019-11-26 | 2020-04-10 | 昆明理工大学 | Method for removing arsenic in underground aqueous solution by using magnetite and manganese sand |
CN111085162B (en) * | 2019-12-31 | 2023-01-24 | 安徽海螺材料科技股份有限公司 | Superfine arsenic removal adsorbent, preparation method thereof and arsenic removal method |
CN111908653B (en) * | 2020-07-13 | 2022-09-23 | 矿冶科技集团有限公司 | Slow-release arsenic and antimony removal medicament, preparation method thereof and method for deeply treating heavy metal wastewater by adopting slow-release arsenic and antimony removal medicament |
CN112934165B (en) * | 2021-01-29 | 2022-11-18 | 华南理工大学 | Porous iron-manganese composite material for efficiently fixing and removing antimony pollution and preparation method and application thereof |
CN113185024B (en) * | 2021-04-25 | 2022-11-25 | 北京魔砂科技有限公司 | Method for purifying condensed water |
CN113578279B (en) * | 2021-09-07 | 2022-10-25 | 中国科学院生态环境研究中心 | A kind of wastewater treatment method based on β-lactoglobulin |
CN115043519A (en) * | 2022-05-26 | 2022-09-13 | 太原水质监测站有限公司 | Reaction tank for simultaneously removing arsenic and fluorine in underground water |
CN115501852A (en) * | 2022-09-01 | 2022-12-23 | 广州大学 | Preparation method and application of metal-doped alumina hydrate with high adsorption performance |
CN116332436B (en) * | 2023-05-19 | 2023-08-15 | 赛恩斯环保股份有限公司 | Manganese-containing wastewater treatment method |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6383981B1 (en) * | 1999-07-20 | 2002-05-07 | Süd-Chemie Inc. | Adsorbent for the removal of trace quantities from a hydrocarbon stream and process for its use |
CN1660703A (en) * | 2004-02-24 | 2005-08-31 | 罗姆和哈斯公司 | Method for removal of arsenic from water |
-
2008
- 2008-11-24 CN CN2008102267416A patent/CN101422720B/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6383981B1 (en) * | 1999-07-20 | 2002-05-07 | Süd-Chemie Inc. | Adsorbent for the removal of trace quantities from a hydrocarbon stream and process for its use |
CN1660703A (en) * | 2004-02-24 | 2005-08-31 | 罗姆和哈斯公司 | Method for removal of arsenic from water |
Also Published As
Publication number | Publication date |
---|---|
CN101422720A (en) | 2009-05-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101422720B (en) | Absorption filtration dearsenication method based on in-situ composite metal oxides generation | |
CN101423278B (en) | Multiple element composite metal oxidate arsenic removal settling agent and use method thereof | |
Wang et al. | MgFe2O4-biochar based lanthanum alginate beads for advanced phosphate removal | |
Yang et al. | Construction of a novel lanthanum carbonate-grafted ZSM-5 zeolite for effective highly selective phosphate removal from wastewater | |
Shan et al. | Remarkable phosphate removal and recovery from wastewater by magnetically recyclable La2O2CO3/γ-Fe2O3 nanocomposites | |
Lin et al. | A systematic review of metal organic frameworks materials for heavy metal removal: Synthesis, applications and mechanism | |
CN101507911B (en) | Aluminum-based composite oxide-based fluorine removal adsorption material, preparation method and application, and special device for preparation method | |
Li et al. | Tuning the morphology and adsorption capacity of Al-MIL-101 analogues with Fe3+ for phosphorus removal from water | |
Khan et al. | Equilibrium uptake, isotherm and kinetic studies of Cd (II) adsorption onto iron oxide activated red mud from aqueous solution | |
Kabir et al. | Arsenic removal methods for drinking water in the developing countries: technological developments and research needs | |
Pan et al. | Metastable nano-zirconium phosphate inside gel-type ion exchanger for enhanced removal of heavy metals | |
Prashantha Kumar et al. | Nanoscale materials as sorbents for nitrate and phosphate removal from water | |
Loganathan et al. | Defluoridation of drinking water using adsorption processes | |
Koh et al. | Critical review on lanthanum-based materials used for water purification through adsorption of inorganic contaminants | |
Shao et al. | Facile synthesis, characterization of a MnFe2O4/activated carbon magnetic composite and its effectiveness in tetracycline removal | |
WO2017096639A1 (en) | A magnetic adsorbent for removing arsenic and antimony by means of adsorption-superconducting magnetic separation and preparation method therefor | |
Song et al. | Removal of tetracycline residue from pharmaceutical wastewater by using 3D composite film | |
Tiwari et al. | Hybrid materials in the removal of diclofenac sodium from aqueous solutions: Batch and column studies | |
Zhang et al. | Removal of Cd (II) by modified maifanite coated with Mg-layered double hydroxides in constructed rapid infiltration systems | |
Ruthiraan et al. | An overview of magnetic material: preparation and adsorption removal of heavy metals from wastewater | |
CN101503239A (en) | Multicomponent composite flocculating setting agent and use in arsenic contamination water treatment | |
Akram et al. | Enhanced removal of phosphate using pomegranate peel-modified nickel‑lanthanum hydroxide | |
CN106076261A (en) | A kind of adsorbent for heavy metal and preparation method and application | |
CN101920191A (en) | A kind of activated carbon modified material and its application in removing arsenic from water | |
Ren et al. | Enhanced removal of ammonia nitrogen from rare earth wastewater by NaCl modified vermiculite: Performance and mechanism |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right | ||
TR01 | Transfer of patent right |
Effective date of registration: 20200921 Address after: Building 16, No.158, Jinfeng Road, science and Technology City, Suzhou high tech Zone, Suzhou, Jiangsu Province Patentee after: RESEARCH INSTITUTE FOR ENVIRONMENTAL INNOVATION (SUZHOU) TSINGHUA Address before: 100085 Beijing city Haidian District Shuangqing Road No. 18 Patentee before: Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences |