CN101411975A - Use of carbon-supported transitional metal carbides catalyst in hydrazine decomposition reaction - Google Patents
Use of carbon-supported transitional metal carbides catalyst in hydrazine decomposition reaction Download PDFInfo
- Publication number
- CN101411975A CN101411975A CNA2007101575627A CN200710157562A CN101411975A CN 101411975 A CN101411975 A CN 101411975A CN A2007101575627 A CNA2007101575627 A CN A2007101575627A CN 200710157562 A CN200710157562 A CN 200710157562A CN 101411975 A CN101411975 A CN 101411975A
- Authority
- CN
- China
- Prior art keywords
- catalyst
- carbon
- hydrazine decomposition
- hydrazine
- decomposition reaction
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000003054 catalyst Substances 0.000 title claims abstract description 81
- OAKJQQAXSVQMHS-UHFFFAOYSA-N Hydrazine Chemical compound NN OAKJQQAXSVQMHS-UHFFFAOYSA-N 0.000 title claims abstract description 60
- 238000000354 decomposition reaction Methods 0.000 title claims abstract description 27
- 229910052751 metal Inorganic materials 0.000 title description 2
- 239000002184 metal Substances 0.000 title description 2
- 150000001247 metal acetylides Chemical class 0.000 title 1
- 229910052723 transition metal Inorganic materials 0.000 claims abstract description 13
- 150000003624 transition metals Chemical class 0.000 claims abstract description 11
- 229910052721 tungsten Inorganic materials 0.000 claims abstract description 9
- 229910052750 molybdenum Inorganic materials 0.000 claims abstract description 5
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 4
- 229910052804 chromium Inorganic materials 0.000 claims abstract description 3
- 229910052742 iron Inorganic materials 0.000 claims abstract description 3
- 229910052758 niobium Inorganic materials 0.000 claims abstract description 3
- 229910052719 titanium Inorganic materials 0.000 claims abstract description 3
- 229910052720 vanadium Inorganic materials 0.000 claims abstract description 3
- 229910052726 zirconium Inorganic materials 0.000 claims abstract description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 50
- 229910052799 carbon Inorganic materials 0.000 claims description 12
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims description 11
- 239000003575 carbonaceous material Substances 0.000 claims description 7
- 238000011068 loading method Methods 0.000 claims description 4
- 229920000049 Carbon (fiber) Polymers 0.000 claims description 2
- 229910052796 boron Inorganic materials 0.000 claims description 2
- 239000006229 carbon black Substances 0.000 claims description 2
- 239000002041 carbon nanotube Substances 0.000 claims description 2
- 229910021393 carbon nanotube Inorganic materials 0.000 claims description 2
- 239000002131 composite material Substances 0.000 claims description 2
- 239000011203 carbon fibre reinforced carbon Substances 0.000 claims 1
- 239000002134 carbon nanofiber Substances 0.000 claims 1
- 239000000446 fuel Substances 0.000 abstract description 4
- 239000007788 liquid Substances 0.000 abstract description 3
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 abstract description 2
- 239000000203 mixture Substances 0.000 abstract description 2
- 239000003610 charcoal Substances 0.000 abstract 1
- 229910052593 corundum Inorganic materials 0.000 abstract 1
- 229910001845 yogo sapphire Inorganic materials 0.000 abstract 1
- 238000002360 preparation method Methods 0.000 description 12
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 10
- 239000001257 hydrogen Substances 0.000 description 10
- 229910052739 hydrogen Inorganic materials 0.000 description 10
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 8
- 238000006243 chemical reaction Methods 0.000 description 8
- 238000000034 method Methods 0.000 description 7
- 230000000694 effects Effects 0.000 description 6
- 229910052741 iridium Inorganic materials 0.000 description 6
- 239000002243 precursor Substances 0.000 description 6
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 4
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 4
- 239000007789 gas Substances 0.000 description 4
- 238000006698 hydrazinolysis reaction Methods 0.000 description 4
- 239000011259 mixed solution Substances 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- 239000000969 carrier Substances 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 description 3
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 230000003197 catalytic effect Effects 0.000 description 2
- 239000008367 deionised water Substances 0.000 description 2
- 229910021641 deionized water Inorganic materials 0.000 description 2
- 150000002431 hydrogen Chemical class 0.000 description 2
- 230000000977 initiatory effect Effects 0.000 description 2
- KBJMLQFLOWQJNF-UHFFFAOYSA-N nickel(ii) nitrate Chemical compound [Ni+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O KBJMLQFLOWQJNF-UHFFFAOYSA-N 0.000 description 2
- 239000012299 nitrogen atmosphere Substances 0.000 description 2
- -1 transition metal carbides Chemical class 0.000 description 2
- UONOETXJSWQNOL-UHFFFAOYSA-N tungsten carbide Chemical compound [W+]#[C-] UONOETXJSWQNOL-UHFFFAOYSA-N 0.000 description 2
- 230000001133 acceleration Effects 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 150000001722 carbon compounds Chemical class 0.000 description 1
- UFMZWBIQTDUYBN-UHFFFAOYSA-N cobalt dinitrate Chemical compound [Co+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O UFMZWBIQTDUYBN-UHFFFAOYSA-N 0.000 description 1
- 229910001981 cobalt nitrate Inorganic materials 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000005470 impregnation Methods 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 229910021392 nanocarbon Inorganic materials 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 229910000510 noble metal Inorganic materials 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 239000010970 precious metal Substances 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000005979 thermal decomposition reaction Methods 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
Landscapes
- Catalysts (AREA)
Abstract
Description
技术领域 technical field
本发明涉及用于肼分解反应的催化剂,具体的说是一种以炭材料为载体,以单组元或双组元过渡金属碳化物为活性组分的催化剂在肼分解反应中的应用。The invention relates to a catalyst for hydrazine decomposition reaction, in particular to the application of a catalyst with a carbon material as a carrier and a single-unit or two-unit transition metal carbide as an active component in the hydrazine decomposition reaction.
背景技术 Background technique
肼在常温下是一种稳定的液态物质,250℃左右可发生热分解反应。在催化剂的作用下可在较低温度下发生分解反应,生成高温高压的氮气、氢气和氨气混合气体。长期以来,肼作为液体燃料被广泛的应用于航天飞行器的姿态控制系统,飞机的应急动力系统,以及探空气球、沉船或潜艇的浮力装置等。Hydrazine is a stable liquid substance at normal temperature, and thermal decomposition reaction can occur at about 250°C. Under the action of the catalyst, the decomposition reaction can occur at a lower temperature to generate a high-temperature and high-pressure mixed gas of nitrogen, hydrogen and ammonia. For a long time, as a liquid fuel, hydrazine has been widely used in the attitude control system of aerospace vehicles, the emergency power system of aircraft, and the buoyancy devices of sounding balloons, sunken ships or submarines, etc.
目前使用最广泛的肼分解催化剂是美国Shell公司研制的20-40%Ir/γ-Al2O3催化剂[U.S.Pat.4,124,538]。但是,催化剂的活性组分铱是稀有的贵金属,是一种高级战略物资,价格昂贵;而且催化剂的载体是经过特殊加工的氧化铝,所以这种催化剂的成本很高。因此开发新型、低成本的肼分解催化剂成为各国科研工作者的研究重点。Currently the most widely used hydrazine decomposition catalyst is the 20-40% Ir/γ-Al 2 O 3 catalyst developed by the US Shell Company [USPat.4,124,538]. However, the active component of the catalyst, iridium, is a rare precious metal, a high-grade strategic material, and is expensive; and the carrier of the catalyst is specially processed alumina, so the cost of this catalyst is very high. Therefore, the development of new and low-cost hydrazine decomposition catalysts has become the research focus of scientific researchers in various countries.
[PCT Int.Appl.WO 9,633,803]报道了纯相的过渡金属碳化物用于肼分解反应的结果,表明此类催化剂具有与贵金属铱催化剂类似的肼分解活性。陈小伟等[CN 01101118.1]报道了以γ-Al2O3为载体的负载型Mo2C催化剂的肼分解活性。发动机的实验结果表明,这种催化剂在肼分解反应中有很好的催化活性。[PCT Int.Appl.WO 9,633,803] reported the results of pure-phase transition metal carbides used in hydrazinolysis reaction, indicating that such catalysts have similar hydrazinolysis activity to noble metal iridium catalysts. Chen Xiaowei et al. [CN 01101118.1] reported the hydrazinolysis activity of supported Mo 2 C catalysts supported by γ-Al 2 O 3 . The experimental results of the engine show that this catalyst has good catalytic activity in the hydrazine decomposition reaction.
各种炭材料作为载体被广泛的应用于各类液相反应和涉氢反应中,但是将其作为载体在肼分解反应中的应用还没有专利和文献报道。Various carbon materials are widely used as carriers in various liquid phase reactions and hydrogen-related reactions, but there are no patents or literature reports on their use as carriers in hydrazine decomposition reactions.
发明内容 Contents of the invention
本发明的目的在于提供一种低成本、高性能的负载型肼分解催化剂,其载体为炭材料,活性组分为单组元或多组元过渡金属碳化物。The object of the present invention is to provide a low-cost, high-performance supported hydrazine decomposition catalyst, the carrier of which is a carbon material, and the active component is a single-element or multi-element transition metal carbide.
为实现上述目的,本发明的技术方案为:To achieve the above object, the technical solution of the present invention is:
一种炭载过渡金属碳化物催化剂在肼分解反应中的应用,所述催化剂可用式AxByC/Z表示,其为负载型催化剂,A为W或Mo,B为Ni、Co、Cr、Fe、V、Nb、Ti或Zr,C为碳元素,Z为炭载体,其中0≤x≤4,0≤y≤4。Application of a carbon-supported transition metal carbide catalyst in hydrazine decomposition reaction, the catalyst can be represented by the formula A x By C/Z, which is a supported catalyst, A is W or Mo, and B is Ni, Co, Cr , Fe, V, Nb, Ti or Zr, C is carbon element, Z is carbon carrier, where 0≤x≤4, 0≤y≤4.
所述催化剂的炭载体为活性炭、碳黑、纳米碳管、活性碳纤维、纳米碳纤维/碳毡复合材料或中孔炭材料等各种炭材料。活性组分为AxByC单组元或双组元过渡金属碳化物,其担载量为10-60wt%。The carbon carrier of the catalyst is various carbon materials such as activated carbon, carbon black, carbon nanotubes, activated carbon fibers, nanocarbon fiber/carbon felt composite materials or mesoporous carbon materials. The active component is AxByC single-unit or double-unit transition metal carbide, and its loading is 10-60wt%.
该催化剂制备过程如下:The catalyst preparation process is as follows:
将过渡金属A或/和B的可溶性盐溶于水和乙醇的混合溶液中(乙醇的质量含量为0-100%),采用浸渍的方法担载到炭载体上,浸渍1-24小时,在100-150℃烘干6-24小时,在350-500℃惰性气氛中焙烧2-6小时,制得前驱体。The soluble salt of transition metal A or/and B is dissolved in the mixed solution of water and ethanol (the mass content of ethanol is 0-100%), adopts impregnation method to load on the carbon carrier, impregnates 1-24 hours, in Dry at 100-150°C for 6-24 hours, and bake in an inert atmosphere at 350-500°C for 2-6 hours to prepare the precursor.
将前驱体按文献[Journal of Solid State Chemistry 59(1985)348]和[CN116921C]报道的方法,分别在甲烷和氢气混合气中或纯氢气中进行程序升温反应,升温速率为0.5-20℃/分,反应空速为500-20000/小时,最终的反应温度为600-1000℃,反应时间为0.5-5小时,可制备出不同的炭载过渡金属碳化物催化剂。According to the method reported in the literature [Journal of Solid State Chemistry 59 (1985) 348] and [CN116921C], the precursor was subjected to a temperature-programmed reaction in a mixture of methane and hydrogen or in pure hydrogen, with a heating rate of 0.5-20 °C/ The reaction space velocity is 500-20000/hour, the final reaction temperature is 600-1000°C, and the reaction time is 0.5-5 hours. Different carbon-supported transition metal carbide catalysts can be prepared.
本发明的催化剂可用于各类肼分解反应,从而可进一步用于航天飞行器的姿态控制系统、飞机的应急动力系统、以及探空气球、沉船或潜艇的浮力装置的肼分解发动机中。The catalyst of the present invention can be used in various hydrazine decomposition reactions, and thus can be further used in the attitude control system of aerospace vehicles, the emergency power system of aircraft, and the hydrazine decomposition engines of buoyancy devices of sounding balloons, sunken ships or submarines.
本发明的优点为:The advantages of the present invention are:
1.该催化剂制备工艺简单,可批量生产。由于催化剂的活性组分和载体分别是廉价的过渡金属碳化合物为和廉价的炭材料,因此大大降低了制备成本。1. The preparation process of the catalyst is simple and can be produced in batches. Since the active component and the carrier of the catalyst are respectively cheap transition metal carbon compounds and cheap carbon materials, the preparation cost is greatly reduced.
2.由于炭载体具有比表面积大、强度高、易于成型等优点,有利于制备出的炭载碳化合物催化剂在肼分解反应中的实际应用。2. Because the carbon carrier has the advantages of large specific surface area, high strength, and easy molding, it is beneficial to the practical application of the prepared carbon-supported carbon compound catalyst in the hydrazine decomposition reaction.
3.与传统的Ir/γ-Al2O3催化剂相比,本催化剂具有相当的肼分解初活性和较高的肼分解效率,因此在肼分解反应中可部分或完全替代Ir/γ-Al2O3催化剂。3. Compared with the traditional Ir/γ-Al 2 O 3 catalyst, this catalyst has considerable initial activity and higher hydrazine decomposition efficiency, so it can partially or completely replace Ir/γ-Al in the hydrazine decomposition reaction 2 O 3 catalyst.
具体实施方式 Detailed ways
实施例1Example 1
WCx/AC-c催化剂的制备Preparation of WC x /AC-c Catalyst
称取0.31g、1.38g、2.44g偏钨酸铵分别溶于3.0ml去离子水中,将得到的澄清溶液分别等体积浸渍到2.0g活性炭(AC)载体上,室温下干燥12小时,然后在120℃烘箱中干燥12小时,500℃氮气气氛下焙烧4小时,制得WO3/AC前驱体。将WO3/AC前驱体,在甲烷和氢气混合气(甲烷含量为25%)中程序升温反应,以10℃/min的速率从室温升到450℃,再以1℃/min的速率升到850℃,在该温度下保持2个小时后,冷却至室温,该催化剂标记为WCx/AC-c,制得催化剂的活性组分质量担载量分别为:10wt%、33.3wt%、55wt%。Weigh 0.31g, 1.38g, and 2.44g of ammonium metatungstate and dissolve them in 3.0ml of deionized water, impregnate equal volumes of the resulting clear solutions onto 2.0g of activated carbon (AC) carriers, dry at room temperature for 12 hours, and then Dry in an oven at 120°C for 12 hours, and bake at 500°C for 4 hours in a nitrogen atmosphere to prepare a WO 3 /AC precursor. The WO 3 /AC precursor was reacted in a mixed gas of methane and hydrogen (with a methane content of 25%). The temperature was raised from room temperature to 450°C at a rate of 10°C/min, and then increased at a rate of 1°C/min. to 850° C., kept at this temperature for 2 hours, and then cooled to room temperature. The catalyst is marked as WC x /AC-c, and the mass loadings of the active components of the prepared catalyst are respectively: 10wt%, 33.3wt%, 55% by weight.
实施例2Example 2
W2C/AC-h催化剂的制备Preparation of W 2 C/AC-h Catalyst
催化剂制备方法同实施例1,与实施例1不同之处在于,将程序升温反应过程中的甲烷和氢气的混和气换作纯氢气。该催化剂标记为W2C/AC-h,活性组分质量担载量为10wt%、33.3wt%、55wt%。The catalyst preparation method is the same as in Example 1, except that the mixed gas of methane and hydrogen in the temperature-programmed reaction process is replaced with pure hydrogen. The catalyst is marked as W 2 C/AC-h, and the mass loading of active components is 10wt%, 33.3wt%, 55wt%.
实施例3Example 3
WNiCx/AC-h催化剂的制备Preparation of WNiC x /AC-h Catalyst
称取1.04g偏钨酸铵和1.19g硝酸镍溶于3.0ml去离子水中配成混合溶液(钨和镍的摩尔比为1:1),将得到的澄清溶液等体积浸渍到2.0g活性炭(AC)载体上,室温下干燥12小时,然后在120℃烘箱中干燥12小时,500℃氮气气氛下焙烧4小时,制得WNiO4/AC前驱体。将WNiO4/AC前驱体,在氢气中程序升温反应,以10℃/min的速率从室温升到450℃,再以1℃/min的速率升到850℃,在该温度下保持2个小时后,冷却至室温。该催化剂标记为WNiCx/AC-h(活性组分33.3wt%)。Weigh 1.04g ammonium metatungstate and 1.19g nickel nitrate dissolved in 3.0ml deionized water to form a mixed solution (the molar ratio of tungsten and nickel is 1:1), impregnate the obtained clear solution into 2.0g activated carbon ( AC) carrier, dried at room temperature for 12 hours, then dried in an oven at 120°C for 12 hours, and calcined at 500°C for 4 hours in a nitrogen atmosphere to prepare a WNiO 4 /AC precursor. The WNiO 4 /AC precursor was subjected to a temperature-programmed reaction in hydrogen, from room temperature to 450°C at a rate of 10°C/min, then to 850°C at a rate of 1°C/min, and kept at this temperature for 2 After hours, cool to room temperature. The catalyst is labeled WNiCx /AC-h (33.3 wt% active component).
实施例4Example 4
WCoCx/AC-h催化剂的制备Preparation of WCoC x /AC-h Catalyst
催化剂制备方法同实施例3,与实施例3不同之处在于,将1.04g偏钨酸铵和1.19g硝酸镍的混合溶液换成1.04g偏钨酸铵和1.19g硝酸钴的混合溶液。制得的催化剂标记为WCoCx/AC-h(活性组分33.3wt%)。The catalyst preparation method is the same as in Example 3, and the difference from Example 3 is that the mixed solution of 1.04g ammonium metatungstate and 1.19g nickel nitrate is replaced by the mixed solution of 1.04g ammonium metatungstate and 1.19g cobalt nitrate. The prepared catalyst is marked as WCoC x /AC-h (active component 33.3 wt%).
实施例5Example 5
Ir/γ-Al2O3催化剂的制备Preparation of Ir/γ-Al 2 O 3 Catalyst
将2.56g氯铱酸溶液(Ir的质量浓度为24.2%)浸渍到10gγ-Al2O3载体上,放入100℃烘箱中烘干6小时,在300℃氢气下还原2小时,制得Ir/γ-Al2O3(24.8wt%)催化剂。Impregnate 2.56g of chloroiridic acid solution (the mass concentration of Ir is 24.2%) onto 10g of γ-Al 2 O 3 carrier, put it in an oven at 100°C for 6 hours, and reduce it under hydrogen at 300°C for 2 hours to obtain Ir /γ-Al 2 O 3 (24.8 wt%) catalyst.
实施例6Example 6
催化剂的制备Catalyst preparation
Ir/AC催化剂制备方法同实施例3,与之不同之处在于,将γ-Al2O3载体换成活性炭载体,制得Ir/AC(33.3wt%)催化剂。The preparation method of the Ir/AC catalyst is the same as that of Example 3, except that the gamma-Al 2 O 3 carrier is replaced by an activated carbon carrier to prepare an Ir/AC (33.3 wt%) catalyst.
实施例7Example 7
催化剂的评价Catalyst evaluation
本发明的催化剂评价是在1N发动机上进行的。实验采用气体挤推方式供应肼燃料,将催化剂床层预热至实验温度后,通过电磁阀控制肼分解反应进程。燃压Pc和催化剂床层温度Tc使用相应传感器测定。The catalyst evaluations of the present invention were carried out on a 1N engine. In the experiment, hydrazine fuel was supplied by means of gas extrusion, and after the catalyst bed was preheated to the experimental temperature, the hydrazine decomposition reaction process was controlled by a solenoid valve. The fuel pressure P c and the catalyst bed temperature T c are measured using corresponding sensors.
(一)不同催化剂肼分解活性比较,肼分解活性评价结果见表1。(1) Comparison of hydrazine decomposition activity of different catalysts, the evaluation results of hydrazine decomposition activity are shown in Table 1.
从表1中可以看出,以活性炭为载体制备的金属铱催化剂、单组元或双组元过渡金属碳化物催化剂,在催化肼分解过程中产生的床温和燃压均高于Ir/γ-Al2O3催化剂,说明以活性炭为载体的催化剂具有更高的肼分解效率。t90是体现发动机整体性能的一个重要指标,一般来说,t90小于1000ms,就基本达到实际应用的要求。表1中结果显示,Ir/γ-Al2O3催化剂的t90为410ms,单组元或双组元过渡金属碳化物催化剂的t90在400ms和600ms之间,与Ir/γ-Al2O3催化剂相当,说明其有很好的应用前景。WNiCx/AC-h和WCoCx/AC-h催化剂的t90分别为405ms和415ms,均小于W2C/AC-h催化剂的t90,说明第二组分的加入提高了催化剂的启动加速性。It can be seen from Table 1 that the bed temperature and combustion pressure generated in the catalytic hydrazine decomposition process of metal iridium catalysts, single-component or two-component transition metal carbide catalysts prepared with activated carbon as the carrier are higher than those of Ir/γ- Al 2 O 3 catalyst, indicating that the catalyst supported by activated carbon has higher hydrazine decomposition efficiency. The t 90 is an important index reflecting the overall performance of the engine. Generally speaking, if the t 90 is less than 1000ms, it basically meets the requirements of practical applications. The results in Table 1 show that the t 90 of the Ir/γ-Al 2 O 3 catalyst is 410ms, the t 90 of the single-component or dual-component transition metal carbide catalyst is between 400ms and 600ms, and the t 90 of the Ir/γ-Al 2 O 3 catalyst is equivalent, indicating that it has a good application prospect. The t 90 of the WNiC x /AC-h and WCoC x /AC-h catalysts are 405ms and 415ms, respectively, both of which are smaller than the t 90 of the W 2 C/AC-h catalyst, indicating that the addition of the second component improves the start-up acceleration of the catalyst sex.
表1 不同催化剂肼分解活性比较Table 1 Comparison of hydrazine decomposition activities of different catalysts
注:箱压0.8MPa,启动温度180℃,30秒稳态Note: The tank pressure is 0.8MPa, the starting temperature is 180°C, and the steady state is 30 seconds
(二)将使用不同方法制备的两种活性炭担载型碳化钨催化剂的最低启动温度进行了比较,比较结果见表2。从表2中可以看出,33.3wt%W2C/AC-h催化剂的最低启动温度明显低于33.3wt%WCx催化剂,说明采用氢气程序升温反应方法制备的W2C/AC-h催化剂具有更好的肼分解启动活性。(2) The minimum start-up temperatures of two activated carbon-supported tungsten carbide catalysts prepared by different methods were compared, and the comparison results are shown in Table 2. It can be seen from Table 2 that the minimum start-up temperature of the 33.3wt% W 2 C/AC-h catalyst is significantly lower than that of the 33.3wt% WC x catalyst, indicating that the W 2 C/AC-h catalyst prepared by the hydrogen temperature-programmed reaction method It has better hydrazinolysis initiation activity.
表2 催化剂的最低启动温度比较Table 2 Comparison of the minimum start-up temperature of catalysts
(三)将33.3wt%W2C/AC-h催化剂与33.3wt% Ir/AC催化剂的肼分解稳定性进行了比较,比较结果见表3。(3) The hydrazine decomposition stability of the 33.3wt% W 2 C/AC-h catalyst and the 33.3wt% Ir/AC catalyst were compared, and the comparison results are shown in Table 3.
表3 催化剂的稳定性比较Table 3 Stability Comparison of Catalysts
从表3可以看出,33.3wt% W2C/AC-h催化剂经历了10次30秒稳态实验后,催化剂质量损失很少,而33.3wt% Ir/AC催化剂仅经历2次30秒稳态实验后,催化剂质量损失达到60%以上,说明活性炭担载的碳化钨催化剂具有更好的肼分解稳定性。It can be seen from Table 3 that the 33.3wt% W 2 C/AC-h catalyst underwent 10 times of 30-second steady-state experiments, and the mass loss of the catalyst was very little, while the 33.3wt% Ir/AC catalyst only experienced 2 times of 30-second steady-state experiments. After the state test, the mass loss of the catalyst reached more than 60%, indicating that the activated carbon-supported tungsten carbide catalyst has better hydrazine decomposition stability.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNA2007101575627A CN101411975A (en) | 2007-10-19 | 2007-10-19 | Use of carbon-supported transitional metal carbides catalyst in hydrazine decomposition reaction |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNA2007101575627A CN101411975A (en) | 2007-10-19 | 2007-10-19 | Use of carbon-supported transitional metal carbides catalyst in hydrazine decomposition reaction |
Publications (1)
Publication Number | Publication Date |
---|---|
CN101411975A true CN101411975A (en) | 2009-04-22 |
Family
ID=40592840
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNA2007101575627A Pending CN101411975A (en) | 2007-10-19 | 2007-10-19 | Use of carbon-supported transitional metal carbides catalyst in hydrazine decomposition reaction |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101411975A (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011050691A1 (en) * | 2009-10-27 | 2011-05-05 | 中国科学院大连化学物理研究所 | Tungsten carbide catalyst supported on mesoporous carbon, preparation and application thereof |
CN102161003A (en) * | 2011-02-14 | 2011-08-24 | 东南大学 | Preparation and application method of hydrazine-degrading catalyst |
US20120065052A1 (en) * | 2010-09-14 | 2012-03-15 | Basf Se | Process for producing a carbon-comprising support |
WO2012035501A1 (en) * | 2010-09-14 | 2012-03-22 | Basf Se | Process for producing carbon-comprising support |
CN102631932A (en) * | 2011-02-14 | 2012-08-15 | 中国科学院大连化学物理研究所 | Nickel-base metal catalyst for preparing hydrogen by hydrazine decomposition at room temperature, as well as preparation and application thereof |
US20150083585A1 (en) * | 2012-04-20 | 2015-03-26 | Brookhaven Science Associates, Llc | Molybdenum and Tungsten Nanostructures and Methods for Making and Using Same |
US9352304B2 (en) | 2010-03-17 | 2016-05-31 | Dalian Institute Of Chemical Physics, Chinese Academy Of Sciences | Methods for preparing ethylene glycol from polyhydroxy compounds |
CN111646870A (en) * | 2020-05-06 | 2020-09-11 | 北京航天试验技术研究所 | Catalyst applied to low-temperature starting monopropellant and preparation method thereof |
-
2007
- 2007-10-19 CN CNA2007101575627A patent/CN101411975A/en active Pending
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013508148A (en) * | 2009-10-27 | 2013-03-07 | 中国科学院大▲連▼化学物理研究所 | Tungsten carbide catalyst supported on mesoporous carbon, its preparation and application |
US8889585B2 (en) | 2009-10-27 | 2014-11-18 | Dalian Institute Of Chemical Physics, Chinese Academy Of Sciences | Mesoporous carbon supported tungsten carbide catalysts, preparation and applications thereof |
RU2528389C2 (en) * | 2009-10-27 | 2014-09-20 | Далянь Инститьют Оф Кемикал Физикс, Чайниз Академи Оф Сайенсез | Mesoporous carbon supported tunsten-carbide catalysts, production and use thereof |
US20120178974A1 (en) * | 2009-10-27 | 2012-07-12 | Dalian Institute Of Chemical Physics, Chinese Academy Of Sciences | Mesoporous carbon supported tungsten carbide catalysts, preparation and applications thereof |
WO2011050691A1 (en) * | 2009-10-27 | 2011-05-05 | 中国科学院大连化学物理研究所 | Tungsten carbide catalyst supported on mesoporous carbon, preparation and application thereof |
US9352304B2 (en) | 2010-03-17 | 2016-05-31 | Dalian Institute Of Chemical Physics, Chinese Academy Of Sciences | Methods for preparing ethylene glycol from polyhydroxy compounds |
CN103118779A (en) * | 2010-09-14 | 2013-05-22 | 巴斯夫欧洲公司 | Process for producing carbon-comprising support |
US8709964B2 (en) | 2010-09-14 | 2014-04-29 | Basf Se | Process for producing a carbon-comprising support |
WO2012035501A1 (en) * | 2010-09-14 | 2012-03-22 | Basf Se | Process for producing carbon-comprising support |
US20120065052A1 (en) * | 2010-09-14 | 2012-03-15 | Basf Se | Process for producing a carbon-comprising support |
CN102161003B (en) * | 2011-02-14 | 2012-09-19 | 东南大学 | A kind of preparation and application method for hydrazine degradation catalyst |
CN102631932A (en) * | 2011-02-14 | 2012-08-15 | 中国科学院大连化学物理研究所 | Nickel-base metal catalyst for preparing hydrogen by hydrazine decomposition at room temperature, as well as preparation and application thereof |
CN102631932B (en) * | 2011-02-14 | 2015-02-25 | 中国科学院大连化学物理研究所 | Nickel-base metal catalyst for preparing hydrogen by hydrazine decomposition at room temperature, as well as preparation and application thereof |
CN102161003A (en) * | 2011-02-14 | 2011-08-24 | 东南大学 | Preparation and application method of hydrazine-degrading catalyst |
US20150083585A1 (en) * | 2012-04-20 | 2015-03-26 | Brookhaven Science Associates, Llc | Molybdenum and Tungsten Nanostructures and Methods for Making and Using Same |
CN111646870A (en) * | 2020-05-06 | 2020-09-11 | 北京航天试验技术研究所 | Catalyst applied to low-temperature starting monopropellant and preparation method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101411975A (en) | Use of carbon-supported transitional metal carbides catalyst in hydrazine decomposition reaction | |
CN101411986B (en) | A carbon-supported transition metal carbonitride and its preparation and application | |
JP5709954B2 (en) | Method for producing metal-carbon composite supported catalyst | |
CN102335609B (en) | A kind of nickel-based catalyst and its preparation method and application | |
CN101352685B (en) | Supported type nickel catalyst for producing hydrogen from decomposition of ammonia and preparation method | |
CN103752318B (en) | For the mesoporous Co/CeO of hydrogen production by ethanol steam reforming reaction 2catalysts and its preparation method | |
CN104261347B (en) | Method for producing hydrogen by hydrolyzing ammonia borane | |
Liu et al. | Recent progress on Ni-based catalysts in partial oxidation of methane to syngas | |
CN112452315B (en) | Application of a high temperature anti-sintering catalyst | |
CN101185904B (en) | Selectivity liquid phase hydrogenation catalyst and preparation method and use thereof | |
CN107790134A (en) | A kind of preparing hydrogen by sodium borohydride hydrolysis catalyst and its preparation method and application | |
CN113648995B (en) | Methane combustion catalyst and preparation method and application thereof | |
CN111604045A (en) | A kind of nickel-based oxygen vacancy support catalyst and its preparation method and application | |
CN111992213B (en) | Preparation method of core-shell catalyst for preparing cyclohexanol by catalytic hydrogenation and deoxidation of guaiacol | |
CN114917929A (en) | Catalyst for hydrogenation and dehydrogenation of organic liquid hydrogen storage material and preparation method and application thereof | |
CN114870853B (en) | Core-shell catalyst for preparing cyclohexanol by catalyzing guaiacol to be subjected to selective hydrodeoxygenation | |
KR102628990B1 (en) | Pt-W catalyst for synthesis of hydrogen, and Method of preaparing hydrogen using the Pt-W catalyst | |
CN118371260B (en) | Cobalt-based catalyst and preparation method and application thereof | |
CN110368953A (en) | A kind of composite oxide supported platinum catalyst and its preparation and application | |
CN1258477C (en) | Catalyst for preparing zero-COx hydrogen by ammonia decomposition reaction and its preparation method | |
CN109926046B (en) | A kind of catalyst for hydrogen production by decomposition of hydriodic acid and preparation method thereof | |
CN102600853B (en) | Integral catalyst as well as preparation method and application thereof | |
CN106378159A (en) | Low temperature sulfur resistant methanation catalyst prepared by ethylene glycol combustion and method thereof | |
CN110329992A (en) | Low-temperature methanol steam reforming catalyst for preparing hydrogen and preparation method thereof | |
CN116768147A (en) | Method for dehydrogenating organic hydrogen carrier |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
WD01 | Invention patent application deemed withdrawn after publication |
Open date: 20090422 |