CN101411607A - Device for photographing conjunctiva and sclera of eyeball - Google Patents
Device for photographing conjunctiva and sclera of eyeball Download PDFInfo
- Publication number
- CN101411607A CN101411607A CNA2007100470492A CN200710047049A CN101411607A CN 101411607 A CN101411607 A CN 101411607A CN A2007100470492 A CNA2007100470492 A CN A2007100470492A CN 200710047049 A CN200710047049 A CN 200710047049A CN 101411607 A CN101411607 A CN 101411607A
- Authority
- CN
- China
- Prior art keywords
- eyeball
- sclera
- conjunctiva
- image
- imaging
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
- Eye Examination Apparatus (AREA)
Abstract
本发明提供了一种眼球结膜巩膜摄像装置,可以补偿眼球的无意识微动等的运动,使拍摄结膜巩膜的血管、血流及其血球成为可能。其包括:由被测定者所注视的视标、摄像装置、光源、调节结构、图像处理部分、无意识微振补偿部分和显示器。摄像装置要有能够解析眼球的结膜巩膜的血管、血流和血球的分辨率、能够补偿眼球的无意识微振、至少在边长100μm至2000μm的正方或长方型摄像区域内能分辨1μm以下的图形,每秒能拍摄200幅图像以上的功能。图像处理部分能辨认眼球的结膜及巩膜的血管形状,并跟踪处理摄像工具拍摄到的图像。眼球的无意识微振补偿部分将图像处理工具处理过的图像,进行消除微振的处理。
The present invention provides an eyeball conjunctiva sclera imaging device, which can compensate the unconscious fretting movement of the eyeball and make it possible to photograph the conjunctival sclera blood vessels, blood flow and blood cells. It includes: an optotype watched by the subject, a camera, a light source, an adjustment structure, an image processing part, an unconscious microvibration compensation part and a display. The imaging device must be able to analyze the conjunctival sclera blood vessels, blood flow and blood cell resolution of the eyeball, be able to compensate for the unconscious microvibration of the eyeball, and be able to distinguish at least 1 μm in a square or rectangular imaging area with a side length of 100 μm to 2000 μm. Graphics, capable of shooting more than 200 images per second. The image processing part can identify the conjunctiva of the eyeball and the blood vessel shape of the sclera, and track and process the images captured by the camera tool. The unconscious fretting compensation part of the eyeball removes fretting from the image processed by the image processing tool.
Description
技术领域 technical field
本发明涉及对结膜及巩膜摄像的眼球结膜巩膜摄像装置。特别是,涉及可以补偿眼球无意识微振,使对结膜及巩膜的血管、血流及血球的摄像成为可能的结膜巩膜摄像装置。The present invention relates to an eyeball conjunctiva-sclera imaging device for imaging conjunctiva and sclera. In particular, it relates to a conjunctiva-sclera imaging device capable of compensating for involuntary eyeball vibrations and enabling imaging of blood vessels, blood flow, and blood cells in the conjunctiva and sclera.
背景技术 Background technique
作为生物的毛细血管、血流、血球的测定方法,已知的方法有,观察手指指甲下方的血管来测定血流的方法,还有观察眼球的网膜,通过多普勒法测定血流的速度等。如日本已公开的专利文献1——特开平10-276986;专利文献2——特开2000-83916。Known methods for measuring capillaries, blood flow, and blood cells in living things include measuring blood flow by observing blood vessels under fingernails, and measuring blood flow by observing the omentum of the eyeball. speed etc. Such as the published patent document 1 of Japan—JP-A 10-276986; patent document 2-JP-A 2000-83916.
发明内容 Contents of the invention
所要解决的问题problem to be solved
使用指甲下方的血管和血流的测量装置,或者使用观察眼底网膜的方法,都因为没有足够的分辨率,无法观察到血球。这些方法,为了测量血流的流动速度,使用了多普勒法,所以无法从被拍摄的图像上求得血流的流动速度。在多普勒法中,因为被测定部位的血管直径很细,所以无法对每一根血管进行测量,而且很难使血管的血流速度和位置一一对应。因此,已知的方法并不是高精度的方法。Using a device that measures blood vessels and blood flow under the nail, or using the method of observing the retina of the fundus, blood cells cannot be observed because there is not enough resolution. These methods use the Doppler method to measure the flow velocity of the blood flow, so the flow velocity of the blood flow cannot be obtained from the captured image. In the Doppler method, because the diameter of the blood vessels at the site to be measured is very small, it is impossible to measure each blood vessel, and it is difficult to make a one-to-one correspondence between the blood flow velocity and the position of the blood vessel. Therefore, the known methods are not high-precision methods.
结膜及巩膜里的血管,最接近体表,而且在表皮上的结膜透明度高,是无阻碍地测量生物体血液和血管形状的最理想的地方。但是,在眼球固定地注视着视标的时候,常常有高频微小振动发生(最高可达90HZ),拍摄毛细血管、血球时,要是有这种无意识微振存在,就不可能拍摄到清析的图像。The blood vessels in the conjunctiva and sclera are closest to the body surface, and the conjunctiva on the epidermis has high transparency, which is the most ideal place to measure the shape of blood and blood vessels in living organisms without hindrance. However, when the eyeball is fixedly looking at the target, there are often high-frequency micro-vibrations (up to 90HZ). When shooting capillaries and blood cells, if there are such unconscious micro-vibrations, it is impossible to capture clear images. image.
鉴于上述实际情况,本发明提供了能够补偿眼球的无意识微振,能够清晰地拍摄到结膜及巩膜的血管、血流和血球的结膜巩膜摄像装置。In view of the above actual situation, the present invention provides a conjunctival-scleral imaging device capable of compensating for unconscious microvibration of the eyeball and clearly photographing blood vessels, blood flow and blood cells of the conjunctiva and sclera.
解决问题的方法way of solving the problem
为了达到本发明的上述目的,本发明的眼球结膜巩膜摄像装置,需要具备:In order to achieve the above-mentioned purpose of the present invention, the conjunctiva-sclera imaging device of the present invention needs to possess:
1.被测定者所要注视的图标;1. The icon to be watched by the subject;
2.符合要求的摄像工具:分辨率要高到可以分辨1μm以下的物体,可以解析眼球结膜及巩膜的血管、血流、血球的形态;至少有边长为100μm至2000μm的正方或长方形摄像区域;可以补偿眼球无意识微小振动;每秒可以拍摄200幅图像以上;2. Imaging tools that meet the requirements: the resolution should be high enough to distinguish objects below 1 μm, and the shape of blood vessels, blood flow, and blood cells in the conjunctiva and sclera of the eye can be analyzed; there should be at least a square or rectangular imaging area with a side length of 100 μm to 2000 μm ;It can compensate the unconscious small vibration of the eyeball; it can shoot more than 200 images per second;
3.摄像工具和其摄像区域内有照明的光源;3. The camera tool and the light source with illumination in its camera area;
4.可以调节摄像工具在摄像区域内移动的调节工具;4. An adjustment tool that can adjust the camera tool to move within the camera area;
5.可以认识眼球的结膜及巩膜的血管形状并跟踪处理摄像工具拍摄到的图像的图像处理工具;5. An image processing tool that can recognize the conjunctiva of the eyeball and the blood vessel shape of the sclera and track and process the images captured by the camera tool;
6.可以消除图像处理工具处理过的图像的微振的眼球无意识微振补偿工具;6. An eyeball unconscious fretting compensation tool that can eliminate the fretting of the image processed by the image processing tool;
7.要有图像显示工具,既能显示摄像工具拍到的图像,又能显示图像处理工具处理过的图像,还能显示无意识微振补偿工具补偿过的图像。7. There must be an image display tool, which can not only display the image captured by the camera tool, but also the image processed by the image processing tool, and the image compensated by the unconscious fretting compensation tool.
8.图标和眼球之间可以放置透镜片工具。8. A lens sheet tool can be placed between the icon and the eyeball.
为了可以对眼球的结膜巩膜的各部位顺次摄像,可以让图标顺次移动,由图像处理工具把图像顺次连接起来。In order to take pictures of the various parts of the conjunctiva and sclera of the eyeball in sequence, the icons can be moved in sequence, and the images can be connected in sequence by the image processing tool.
无意识微振补偿工具的工作是,从拍摄到的图像中选1幅图像,取出血管形状的图案,再在相连的各图像中搜索对应的图案,检测出血管形状图案的移动量,然后把各图像中的血管形状图案放置在同一位置上。The work of the unconscious microvibration compensation tool is to select one image from the captured images, extract the pattern of the blood vessel shape, and then search for the corresponding pattern in the connected images, detect the movement amount of the blood vessel shape pattern, and then convert each image The vessel shape pattern in is placed in the same position.
为了区别是结膜血管或者是巩膜血管,可以在摄像工具上采用焦点深度的方法。In order to distinguish conjunctival blood vessels or scleral blood vessels, the depth of focus method can be used on imaging tools.
为了可以跟踪血管内部的血球,可以由图像处理工具对摄像工具拍摄到的图像做图像处理。In order to track the blood cells inside the blood vessel, the image processing tool can perform image processing on the image captured by the imaging tool.
这里的光源,也可以用特定波长的光来照明,用血管或者血液的反射率或者透过率,来辨别血管或者血液的成分。The light source here can also be illuminated with light of a specific wavelength, and the reflectance or transmittance of the blood vessel or blood can be used to identify the components of the blood vessel or blood.
这里的光源,还可以用激光光源来照明。The light source here can also be illuminated with a laser light source.
进而还可以装上激光分析传感器,用以检测从眼球反射出来的光的波长、位相、强度。Furthermore, a laser analysis sensor can also be installed to detect the wavelength, phase and intensity of the light reflected from the eyeball.
激光光源放置的位置,要使射向眼球的激光的入射角相对称的反射角的反射线和摄像工具的视轴重合。The position of the laser light source is to make the reflection line of the incident angle of the laser beam incident on the eyeball symmetrical and the reflection angle coincide with the visual axis of the imaging tool.
激光光源可以由点光源或线光源来构成,可以扫描摄像区域,从摄像工具得到的顺次图像中,由图像处理工具取出巩膜的反射光进行合成,生成巩膜反射光图像。The laser light source can be composed of a point light source or a line light source, which can scan the imaging area. From the sequential images obtained by the imaging tool, the reflected light of the sclera is extracted by the image processing tool and synthesized to generate a reflected light image of the sclera.
为了向眼球添加药品可以使用喷嘴。In order to add medicine to the eyeball a nozzle can be used.
发明效果Invention effect
使用本发明眼球结膜巩膜摄像装置,可以在对眼部无侵害的状态下,对结膜及巩膜的血管、血流、血球进行摄像,这是本发明的一个优点。因此,可以在无侵害的状态下,对血液进行检查。Using the conjunctiva-sclera imaging device of the present invention, the blood vessels, blood flow and blood cells of the conjunctiva and sclera can be photographed without damaging the eyes, which is an advantage of the present invention. Therefore, blood can be examined in a non-invasive state.
附图说明 Description of drawings
图1为本发明结膜巩膜摄像装置第1实施例的侧面概略图。Fig. 1 is a schematic side view of the first embodiment of the conjunctiva-sclera imaging device of the present invention.
图2为本发明结膜巩膜摄像装置第2实施例的侧面概略图。Fig. 2 is a schematic side view of the second embodiment of the conjunctiva-sclera imaging device of the present invention.
图3为本发明结膜巩膜摄像装置第2实施例的俯视概略图。Fig. 3 is a schematic plan view of the second embodiment of the conjunctiva-sclera imaging device of the present invention.
图4为眼球、光源和摄像装置的关系的图示。Fig. 4 is an illustration of the relationship among the eyeball, the light source and the camera.
图5为结膜、巩膜和血管的关系及得到图像的图示。Fig. 5 is a diagram showing the relationship of the conjunctiva, sclera and blood vessels and the obtained images.
图6为使用激光光线扫描摄像区域的同时,高速摄像合成补偿了无意识微振的图像的原理图示。Fig. 6 is a schematic illustration of the principle of high-speed imaging and synthesizing images with compensation for unintentional micro-vibration while scanning the imaging area with laser light.
图中符号说明:1摄像机;2镜头;3摄像装置;4光源;5调节机构;6图像处理部分;7无意识微振补偿部分;8显示器;10图标;11眼球;12固定工具;13眼球法线;14结膜血管;15拍摄到的图像。Explanation of symbols in the figure: 1 camera; 2 lens; 3 camera device; 4 light source; 5 adjustment mechanism; 6 image processing part; 7 unconscious microvibration compensation part; 8 display; lines; 14 conjunctival vessels; 15 captured images.
具体实施方式 Detailed ways
以下是实施本发明的最佳形态的图示和说明。图1是本发明结膜巩膜摄像装置的第1实施例的侧面概略图。The following are illustrations and descriptions of the best modes for carrying out the invention. Fig. 1 is a schematic side view of the first embodiment of the conjunctiva-sclera imaging device of the present invention.
如图1所示,本发明的结膜巩膜摄像装置由被测定者所注视的图标10、由摄像部分1和镜头2组成的摄像装置3、光源4、调节机构5、图像处理部分6、眼球无意识微振补偿部分7和显示器8构成。As shown in Figure 1, the conjunctival sclera imaging device of the present invention is made up of the
摄像部分1是能高速摄影的摄像机,最好是高速数码摄像机。镜头2是高倍率镜头。摄像装置3要具有:可以解析眼球11的结膜巩膜的血管、血流、血球的足够的分辨率,可以补偿眼球11无意识微振,可以调节摄像的范围、分辨率和每幅图像的拍摄速度的功能。具体来说:达到在边长100μm至2000μm的正方形或长方形摄影区域内,能分辨1μm以下的图形,每秒200帧以上摄影速度。例如可以采用Photron有限公司的FASTCAM(注册商标)摄像机。可以调节到每秒1000帧摄像,100万像素,这样每个像素大小为7μm(如果镜头倍率为7倍,就可以观察1μm)。镜头2可以使用单独的高倍率镜头,如有必要,可以再另行放置一个能够对眼部全体摄像的广角镜头,也可以用变焦镜头。另外,作为摄影的前提,摄像装置3最好对准眼球的中心。就是说摄像机的视轴最好与摄像区域中心点的法线重合,因为随着偏离法线方向,无法对焦的范围会增大。因为高倍率镜头的景深非常浅,如果摄像机的光轴与摄像区域中心的法线偏离太大的话,眼球表面到摄像机的成像面的距离就会发生变化,无法纳入景深内,图像变得模糊。因此,为了避免这类情况,上述摄像工具的视线入射角和摄像区域中心点法线的夹角,最好在3°以内。The camera section 1 is a video camera capable of high-speed photography, preferably a high-speed digital video camera.
光源4是可以对摄像区域内部进行照明的光源。可以由卤素灯,光纤,透镜等来构成,要可以照到全摄像区域,例如半径为3mm程度的光束。光源也可以使用特定波长的光束,根据血管或血液的反射率或者透过率,可以辨别或者测量血管或血液的成分。The light source 4 is a light source capable of illuminating the inside of the imaging area. It can be composed of halogen lamps, optical fibers, lenses, etc., and it must be able to illuminate the entire imaging area, such as a beam with a radius of about 3mm. The light source can also use a beam of specific wavelength, and according to the reflectance or transmittance of the blood vessel or blood, the components of the blood vessel or blood can be identified or measured.
调节机构5是摄像位置的调节机构,是调节摄像装置3的视线和光源4的光轴相交于眼球结膜及巩膜的摄像区域内。可以使用有前后左右2自由度的调节台。不仅可以使用硬件来进行调节,也可以使用软件进行调节。就是在整个的摄像区域内由软件来选择所需要的摄像框的位置。The adjustment mechanism 5 is an adjustment mechanism for the imaging position, and it is used to adjust the intersection of the line of sight of the
为了补偿眼球无意识微振,必须防止头部的运动,可以使用把被测定者头部固定住的头部固定工具。具体的固定工具,可以使用牙齿咬住棒状器材和把额部压住的板状器材的组合工具。把头部固定住无法转动,以尽可能减小眼球运动的补偿范围(移动量)。In order to compensate for the involuntary microvibration of the eyeball, it is necessary to prevent the movement of the head, and a head fixation tool that fixes the subject's head can be used. As a specific fixation tool, you can use a combination tool that bites the stick-shaped equipment with the teeth and the plate-shaped equipment that presses the forehead. The head is fixed against rotation to minimize the range of compensation (movement) for eye movements.
调节机构也可以用能自动设定摄像装置位置的传动器来构成。另外,也可以对眼角等处同时摄像,以此位置为基准,来补偿头部的运动。The adjustment mechanism can also be constituted by a driver capable of automatically setting the position of the camera. In addition, it is also possible to take pictures of the corners of the eyes at the same time, and use this position as a reference to compensate for the movement of the head.
图像处理部分6,由个人电子计算机来构成,进行各种的图像处理。也就是说,图像处理部分6,为了跟踪眼球的结膜巩膜的血管形状,对摄像装置3拍摄到的图像进行图像处理。具体来说,图像处理部分6,首先对得到的图像做去除噪音的预处理。通常,高速摄像机摄影时,曝光时间非常短,为了达到适当的曝光需要足够明亮的光源,如果使用强光照射眼球,摄像就会变得很困难,所以使用较弱的光源,在图像上就会随机产生高敏感度的噪音。因此要进行噪音除去处理,例如,用噪音滤波器来处理。另外由于镜头特性等原因,时常会发生拍摄到图像的四周曝光量下降的情况,照射眼球的光源的照射斑也会引起亮度偏差。因此,为了修正这些偏差,可以使用虚光修正或者照射斑修正。这种补正,可以事先对白纸摄像,然后再对比眼球的图像进行修正。The image processing section 6 is constituted by a personal computer, and performs various image processing. That is, the image processing unit 6 performs image processing on the image captured by the
图像处理部分6,可以不使用瞬间的图像。具体来说,顺次得到的图像前后如有很大的差异,可以忽略这期间的图像。也可以从图像中除去眼睑,睫毛,阴影等的影响。The image processing section 6 does not need to use the instantaneous image. Specifically, if there is a big difference between the images obtained sequentially, the images during this period can be ignored. It is also possible to remove the effects of eyelids, eyelashes, shadows, etc. from the image.
可以移动图标10故意使眼球发生转动,对结膜及巩膜的各部位顺次进行摄像,将这些图像通过图像处理部分6连接在一起得到更大范围内的图像。The
由图像处理部分6做指定处理后的图像,接着要通过眼球无意识微振补偿部分7补偿眼球的无意识微振,生成没有无意识微振的图像。使结膜及巩膜的血管处于静止状态进行观察。无意识微振补偿部分7,可以由个人电子计算机构成,可以与图像处理部分共用一台电子计算机。The image after the specified processing by the image processing part 6 is then compensated by the eyeball unconscious fretting compensation part 7 to generate an image without unconscious fretting. The blood vessels of the conjunctiva and sclera were observed in a static state. The unconscious fretting compensation part 7 can be composed of a personal computer, and can share a computer with the image processing part.
无意识微振补偿的方法是,由无意识微振补偿部分7,对顺次拍得的图像的连续两幅图像,使用区域匹配法做比较。也就是在前一幅图像中选择指定的区域,在后一幅图像中找到相同的区域。眼球的结膜及巩膜的血管形状可以作为指定区域。本发明的结膜巩膜摄像装置,以补偿眼球的无意识微振为条件进行摄像,所以能够拍摄到结膜及巩膜的血管形状。因此,可以把血管稠密分布的部位作为区域匹配法的指定区域。把这个指定区域取出,在接着的图像上用区域匹配法搜索匹配的区域。The method of unconscious micro-vibration compensation is that the unconscious micro-vibration compensation part 7 compares two consecutive images of sequentially captured images using the area matching method. That is, select the specified area in the previous image and find the same area in the next image. The conjunctiva of the eyeball and the blood vessel shape of the sclera can be used as the designated area. The conjunctiva-sclera imaging device of the present invention performs imaging under the condition of compensating for the involuntary microvibration of the eyeball, so the shape of blood vessels of the conjunctiva and sclera can be captured. Therefore, the part where the blood vessels are densely distributed can be used as the designated area of the area matching method. Take out the specified area, and use the area matching method to search for the matching area on the next image.
区域匹配法作为识别图案的方法已经被广泛应用,通过对比理想图案和被观测图案的重合情况,来判断被观测的图案。本发明中,对连续两幅图像使用区域匹配法,对相同图案的移动量以像素为单位进行补偿。区域匹配法,一般有样板匹配法和构造匹配法两种。样板匹配法是,把基准图案和被观测图案重合,比较各像素来决定相似度。构造匹配法是,从基准图案和被观测图案中抽出特征点,通过比较特征点的位置关系来决定相似度。本发明的结膜巩膜摄像装置,使用哪种匹配法都可以,但是因为图像中的边缘部分很少,取出明确的特征很难,所以一般采用样板匹配法。在样板匹配法中,有顺序相似检测法和最小二乘法等的匹配法被广泛应用。因为眼球本身只有平行运动和回转运动,通过实际的试验得出,顺序相似检测法较好。The area matching method has been widely used as a pattern recognition method, and the observed pattern can be judged by comparing the coincidence of the ideal pattern and the observed pattern. In the present invention, the area matching method is used for two consecutive images, and the movement amount of the same pattern is compensated in units of pixels. There are generally two types of region matching methods: template matching method and construction matching method. The template matching method is to overlap the reference pattern and the observed pattern, and compare each pixel to determine the similarity. The construction matching method is to extract feature points from the reference pattern and the observed pattern, and determine the similarity by comparing the positional relationship of the feature points. The conjunctiva-sclera imaging device of the present invention can use any matching method, but because there are few edge parts in the image, it is difficult to extract clear features, so the template matching method is generally used. Among the template matching methods, matching methods such as sequential similarity detection method and least square method are widely used. Because the eyeball itself only has parallel motion and rotary motion, it is concluded through actual experiments that the sequence similarity detection method is better.
接下来说明顺序相似检测匹配法。我们在作为基准图像的区域内,选择一部分区域的图像(MT×NT像素)作为参照图像T(i,j),再在要探索图像的区域内取出相同大小(MI×NI像素)的探索窗I(i,j)。也就是说,参照图像为基准图像内被选择的一部分区域,探索窗内的图像为被观测图像。这样,探索窗和基准图像内的参照图像的比较值为D(u,v),通过下式求得。Next, the sequential similarity detection matching method will be described. In the area of the reference image, we select a part of the image (M T × N T pixels) as the reference image T(i, j), and then take the same size (M I × N I pixels) in the area of the image to be explored ) of the exploration window I(i, j). That is to say, the reference image is a selected part of the reference image, and the image in the search window is the observed image. In this way, the comparison value between the search window and the reference image in the reference image is D(u, v), which is obtained by the following equation.
被观测图像的探索区域内,得到最小的D(u,v)时的(u,v)为(umin,vmin),通过以下的式子来表示。In the search area of the observed image, (u, v) when the minimum D(u, v) is obtained is (u min , v min ), which is represented by the following formula.
上式给出的探索窗的位置与参照图像最为相似。也就是说,基准图像与被观测图像之间相对于眼球的移动量为(umin,vmin)。The position of the exploration window given by the above formula is most similar to the reference image. That is to say, the amount of movement between the reference image and the observed image relative to the eyeball is (u min , v min ).
但是,通过顺序相似检测匹配法,只可以检测参照图像在被检测图像内的平行移动,无法发现被检测图像区域内发生的立体变形,只能检测出眼球在回转运动中的两个自由度。虽然这样也没有问题,但是如果用最小二乘法的匹配法来代替顺序相似检测法,就可以检测出眼球的3自由度回转,就可以发现立体变形。However, the sequential similarity detection and matching method can only detect the parallel movement of the reference image in the detected image, and cannot detect the three-dimensional deformation in the detected image area, and can only detect the two degrees of freedom of the eyeball in the rotational movement. Although there is no problem in this way, if the matching method of the least square method is used instead of the sequential similarity detection method, the 3-degree-of-freedom rotation of the eyeball can be detected, and the three-dimensional deformation can be found.
如上所述,检测出连续各图像中的探索窗的位置,也就检测出了血管形状图形的移动量,然后移动各图像的位置使探索窗重合。通过这种方法补偿眼球的无意识微振,这样血管形状就好象静止了一样。使用这种补偿了无意识微振的连续图像,就可以对眼球的结膜及巩膜的血管等做各种各样的解析了。As described above, detecting the position of the search window in each successive image means detecting the movement amount of the blood vessel shape figure, and then moving the position of each image so that the search window overlaps. In this way, the involuntary vibrations of the eyeball are compensated, so that the shape of the blood vessels seems to be at rest. Using this continuous image that compensates for unconscious fretting, it is possible to perform various analyzes on the conjunctiva of the eyeball and the blood vessels of the sclera.
显示器8用来显示这些被补偿过的图像。另外,如有必要显示器8也可以与摄像部分1或者图像处理部分6连接,通过肉眼来核对得到的图像或者被处理过的图像。The display 8 is used to display these compensated images. In addition, if necessary, the display 8 can also be connected with the imaging part 1 or the image processing part 6, and the obtained image or the processed image can be checked by naked eyes.
下面具体说明用上述的结膜巩膜摄像装置,对眼球进行摄像的方法。作为摄像的前提,最好把摄像装置3对准眼球的中心,通过调节机构5调节摄像区域来对准眼球中心。为了调节摄像装置3的位置,可以在显示器8上实时显示从摄像装置3得到的图像。当然,实时显示不需要高速摄像,使用通常摄像(一秒钟30帧图像)就可以。The method for imaging the eyeball by using the above-mentioned conjunctival-sclera imaging device will be described in detail below. As a prerequisite for taking pictures, it is better to align the
本发明的结膜巩膜摄像装置使用的摄像机1,可以高速摄像1000帧/秒,每个像素的大小为7μm。而且,镜头2的扩大率为5-60倍。通过摄像装置3得到的图像,随时保存到个人电子计算机上。如有必要也可以在摄像装置3上设置记忆装置,等摄像结束后再把图像保存到电子计算机上。The camera 1 used in the conjunctiva-sclera imaging device of the present invention can take pictures at a high speed of 1000 frames per second, and the size of each pixel is 7 μm. Moreover, the magnification ratio of the
为了固定被测定者的头部,用头部固定工具12按住额头,再让牙齿咬住棒状固定工具。而且,为了抑制眼球的回转,让被测定者注视图标10。然后把高倍率高速度摄像机的摄像装置3设定为通常帧率(比如,30帧/秒以下),降低光源4的亮度对眼球的结膜及巩膜照射。如有必要也可使用广角镜头对眼球摄像,在显示器8上显示图像,边确认图像边通过调节装置5调节摄像装置3的位置。然后,更换高倍率的镜头,边确认图像边调节焦点的位置。另外,使用焦点深度可以区别是结膜血管或是巩膜血管。也就是说,因为景深非常浅,可以选择调节焦点位置,使焦点对准结膜血管或者对准巩膜血管。接着,为了使高速摄像也可以得到良好的图像,提高光源的亮度。但是,光源的亮度要保持在不伤害到眼球的程度。要在这样的状态下,才开始高速摄像,再把图像顺次保存到电脑上。In order to fix the subject's head, press the forehead with the
接着,通过图像处理部分6,从保存图像中取出一幅图像指定为基准图像。对这帧图像做预处理,除去噪音,进行虚光修正,照射斑修正等。通过无意识微振补偿部分7,对预处理过的图像取出特征点。找出眼球的结膜及巩膜的血管稠密分布的部分,把包围这部分的一个窗口取出来作为参照图像。Next, by the image processing section 6, one image is taken out of the stored images and designated as a reference image. Preprocess this frame of image, remove noise, perform vignetting correction, spot correction, etc. Through the unconscious microvibration compensation part 7, feature points are extracted from the preprocessed image. Find out the conjunctiva of the eyeball and the part where the blood vessels of the sclera are densely distributed, and take out a window surrounding this part as a reference image.
接着,对于下一幅图像做相同的预处理,使用顺序相似检测匹配法对照,检测出各图像内与基准图像的参照图像对应的探索窗的位置。然后,移动各图像的位置使对应探索窗的位置重合,生成补偿了眼球移动的图像。Next, do the same preprocessing for the next image, and use sequential similarity detection and matching method to compare and detect the position of the search window corresponding to the reference image of the reference image in each image. Then, the positions of the respective images are shifted so that the positions of the corresponding search windows overlap, and an image in which eye movement is compensated is generated.
如上所述生成的结膜及巩膜的血管图像是补偿了眼球的无意识微振的非常清晰的图像,所以可以使用这些图像对血管、血流、血球做各种的解析。比如,可以从图像内指定血管,测定这个血管的直径,测定血管壁的厚度。因为可以分辨每一颗红血球,计算出每一幅图像之间的移动量,所以可以跟踪红血球并检测出移动速度。可以计算毛细血管中红血球的个数,从毛细血管的流量来判断单位血液体积中红血球的数量。因为可以分辨每一个红血球,通过分光图像可以测量氧的饱和度。也可以检测出白血球,可以求出白血球和红血球的个数比。另外,也可以分辨血小板。可以拍摄到血浆部分,分析血浆的成分。The blood vessel images of the conjunctiva and sclera generated as described above are very clear images that compensate for the involuntary fretting of the eyeball. Therefore, various analyzes of blood vessels, blood flow, and blood cells can be performed using these images. For example, it is possible to specify a blood vessel from an image, measure the diameter of the blood vessel, and measure the thickness of the blood vessel wall. Because each red blood cell can be distinguished and the amount of movement between each image can be calculated, the red blood cell can be tracked and the speed of movement can be detected. The number of red blood cells in capillaries can be calculated, and the number of red blood cells per unit blood volume can be judged from the flow rate of capillaries. Because individual red blood cells can be resolved, oxygen saturation can be measured through the spectroscopic image. White blood cells can also be detected, and the number ratio of white blood cells to red blood cells can be calculated. In addition, platelets can also be distinguished. The plasma part can be photographed and the components of the plasma can be analyzed.
然后,如有必要对眼球添加药品要使用喷嘴,可以观察眼球表面药品喷射前后的血液变化。如有必要通过注射把荧光物质或者染色物质导入血管内,可以更清晰地对血液和血管摄像。Then, if it is necessary to add medicine to the eyeball, use a nozzle, and you can observe the blood changes before and after the medicine is sprayed on the surface of the eyeball. If necessary, a fluorescent substance or dyeing substance can be injected into the blood vessel, so that blood and blood vessels can be photographed more clearly.
并且,使用焦点深度可以得到纵深方向上的信息,通过合成可以生成结膜及巩膜的3次元图像。In addition, information in the depth direction can be obtained by using the depth of focus, and a three-dimensional image of the conjunctiva and sclera can be generated through synthesis.
在上述的图示中,摄像装置直接对准作为摄像对象的眼球,在本发明中并不限定此种方法,说明如下:摄像装置的位置可以设置在任意的场所,间接的对眼球摄像。就是在摄像装置和眼球之间放置镜子,通过镜子使摄像装置的视线曲折,可以把摄像装置安放在不遮挡眼球视线的位置上。直接把摄像装置对准眼球的时候,因为摄像装置本身大小的关系,有可能遮挡眼球的视线使视野变得狭窄。但是,与上述使用镜子来避免视野遮挡问题相比,也可以通过改变摄像装置自身来避免这类问题。In the above illustrations, the imaging device is directly aimed at the eyeball as the imaging object. This method is not limited in the present invention, and the description is as follows: the position of the imaging device can be set at any place, and the eyeball is indirectly photographed. Exactly, a mirror is placed between the camera device and the eyeball, the sight line of the camera device is bent by the mirror, and the camera device can be placed on a position that does not block the eyeball line of sight. When the camera is directly aimed at the eyeball, due to the size of the camera itself, it may block the sight of the eyeball and narrow the field of vision. However, compared with the above-mentioned use of mirrors to avoid the problem of blocking the field of view, such problems can also be avoided by changing the camera itself.
在眼球和摄像装置之间,也可以设置光纤来代替镜子,这样,摄像装置可以从任意位置拍摄眼球。使用镜子的时,摄像装置的位置由眼球的位置和镜头的焦点距离来决定,眼球到摄像装置的总距离也是不能改变的。但是,如果使用光纤,总距离可以任意设定,可以调整摄像装置和眼睛的距离,所以摄像装置可以设置在任意的位置。Between the eyeball and the camera, an optical fiber can also be set to replace the mirror, so that the camera can take pictures of the eye from any position. When using a mirror, the position of the camera is determined by the position of the eyeball and the focal length of the lens, and the total distance from the eyeball to the camera cannot be changed. However, if an optical fiber is used, the total distance can be set arbitrarily, and the distance between the camera and the eye can be adjusted, so the camera can be installed at any position.
为了让图标放置位置的距离和眼球感觉的距离发生变化,可以在图标和眼球之间放置透镜片。并且,为了让两只眼睛好像看到不同的图标,也可以在图标和眼睛之间放置透镜片。如果想让结膜巩膜摄像装置小型化时,无法把图标放到很远的位置。图标被放到离眼镜几厘米远的地方的时候,因为图标很近会让被测定者非常的疲劳。这时,可以在图标和眼球之间设置透镜片,即使是近距离的图标也可以轻松的注视。为了让图标看起来很远,可以给两眼以不同的图标,为了消除视觉和眼球的晶状体焦点距离的矛盾可以使用透镜片。In order to change the distance between the icon placement position and the eyeball perception, a lens sheet can be placed between the icon and the eyeball. Also, in order to make the two eyes seem to see different icons, a lens sheet may be placed between the icon and the eyes. When trying to miniaturize the conjunctival sclera imaging device, it is impossible to put the icon at a far position. When the icon is placed a few centimeters away from the glasses, the testee will be very tired because the icon is very close. In this case, a lens can be placed between the icon and the eyeball, so that even a close-up icon can be easily gazed at. In order to make the icon look far away, different icons can be given to the two eyes, and lens sheets can be used to eliminate the contradiction between vision and the focal distance of the lens of the eyeball.
接着,说明本发明的结膜巩膜摄像装置的第2实施例。图2是为了说明本发明的结膜巩膜摄像装置的第2实施例的侧面概略图。图3是第2实施例的俯视概略图。图中,与图1同一符号的部分为相同装置,所以不再加以说明。如图2所示,本发明的结膜巩膜摄像装置与第1实施例相同,由被测定者所注视的图标10,由摄像机1,镜头2组成的摄像装置3,光源4’,调节机构5,图像处理部分6,眼球无意识微振补偿部分7和显示器8构成。Next, a second embodiment of the conjunctival-scleral imaging device of the present invention will be described. Fig. 2 is a schematic side view for explaining a second embodiment of the conjunctival-scleral imaging device of the present invention. Fig. 3 is a schematic plan view of the second embodiment. In the figure, parts with the same symbols as those in FIG. 1 are the same devices, so no further description will be given. As shown in Figure 2, the conjunctival sclera imaging device of the present invention is the same as the first embodiment, the
第2实施例与第1实施例不同的部分是,光源4’是由激光光源构成。激光光源为点光源或者线光源,照射到摄像部位的照射形状是一个点或者一条线,可以对摄像区域进行扫描。若是线光源,照射形状是一条线,其长度希望要超过摄像区域的长度。无论是点光源或线光源,其照射形状的宽度要窄一些。但是摄像装置上受光的摄像元件的宽度,在2像素以上为好。并且,光源4’如图4所示,光源射向眼球的入射角和摄像装置3的视线角度,要放在眼球的法线对称的位置上。就是说对于眼球的法线,应用镜面反射原理,摄像装置要放在与光源的入射角相同的反射角的位置上来摄像。The difference between the second embodiment and the first embodiment is that the light source 4' is composed of a laser light source. The laser light source is a point light source or a line light source, and the shape of the irradiation to the imaging part is a point or a line, which can scan the imaging area. If it is a line light source, the illumination shape is a line, and its length is expected to exceed the length of the imaging area. Whether it is a point light source or a line light source, the width of the illuminated shape is narrower. However, the width of the imaging element receiving light in the imaging device is preferably 2 pixels or more. And, as shown in Figure 4, the light source 4', the incident angle of the light source to the eyeball and the line-of-sight angle of the
图4是说明应用镜面反射的摄像原理,是为了说明眼球、光源和摄像装置的关系的图示。摄像装置3放置在眼球法线13的和光源相反一侧,摄像装置3的摄像角度与光源4’的入射角度相同。这样可以拍摄到最强的反射光。作为一例,把摄像装置3的视线和激光光源4’的光轴(是线光源时,为照射形状的中心)设置在同一水平面上,根据镜面反射,光源和摄像装置对称放置。然后,把摄像装置3的视野调整到对准眼球的中心。如果光源4’使用线光源,照射眼球的结膜及巩膜表面时,就会出现线型的光的像。FIG. 4 is a diagram illustrating the imaging principle using specular reflection, and is a diagram for explaining the relationship among the eyeball, the light source, and the imaging device. The
图5是说明结膜、巩膜、血管的关系及拍摄到的图像15。如图所示,激光光线被结膜表面和巩膜表面反射,摄像得到2条线。如果有结膜血管14存在,血管也会反射激光光线。也就是说,激光光线的一部分被血管表面反射,另一部分被血管吸收后透过,被巩膜表面反射。因为血管为圆柱形,血管反射光极少的一部分作为镜面反射光被拍摄到,大部分作为漫反射光被拍摄,所以非镜面反射光很弱。然后,对于巩膜反射光,没有血管的部分形成镜面反射光,但是透过血管的光一部分被血管吸收,反射光会变弱。如图5所示图像,图像内两根直线左侧的线为结膜表面的反射光,右侧的直线为巩膜表面的反射光,这之间的线为血管表面的反射光。拍摄到的结膜表面的反射光均匀明亮,巩膜表面的反射光其透过血管后的反射光较弱,光线一部分比较暗。血管表面的反射光因为血管为圆柱形所以变弱。这样,因为血管的有无会改变巩膜表面的反射光,所以用激光光线扫描摄像区域的同时,高速摄像合成补偿了无意识微振的图像,表示血管或者血球的状态。另外,只要激光光线对摄像区域全体扫描的速度在10ms以下,就足以补偿无意识微振了。如果同时使用复数的激光光线扫描,就可以使扫描速度更快。另外,除激光光线外同时使用第1实施例的卤素灯等光源,这样得到的图像15,也能够像第1实施例一样进行无意识微振的补偿。FIG. 5 illustrates the relationship among conjunctiva, sclera, and blood vessels, and a captured
图6说明使用激光光源扫描摄像区域的同时,高速摄像合成补偿了无意识微振的图像的原理。图6(a)-图6(d)为摄像部位的图像从左到右扫描的过程。得到的图像如图6(a’)-图6(d’)所示,各反射图像合成的结果如图6(e)所示。通过图6(e)知道,结膜的反射光基本是一致的,合成后生成均匀明亮的图像。再说,因为血管的反射光大部分为漫反射光,所以合成图像昏暗且不安定。而关于巩膜的反射光,对于同一条血管,既存在透过血管后被反射的光,也存在反射后透过血管的光。因此,可以从巩膜的反射图像得到血管的反射图像和透过图像两个图像。也就是说,用线光源扫描摄像区域,从摄像装置得到的各图像中提取出巩膜反射光,合成巩膜反射光图像,就得到了反射光和透过光的血管图像。另外,通过图像处理也可以只提取反射光或透射光的血管图像中的一幅图像。根据血管与巩膜的距离及激光的入射角的位置的不同,存在同一血管的反射图像和透过图像重合的情况。这种场合,通过图像处理可以区别两者的关系,也可以选择其他的血管进行观测。Fig. 6 illustrates the principle of high-speed imaging and synthesizing an image compensating for unintentional micro-vibration while scanning the imaging area with a laser light source. Fig. 6(a)-Fig. 6(d) are the process of scanning the image of the imaging part from left to right. The obtained images are shown in Fig. 6(a')-Fig. 6(d'), and the result of combining the reflected images is shown in Fig. 6(e). From Figure 6(e), we know that the reflected light of the conjunctiva is basically consistent, and a uniform and bright image is generated after synthesis. Furthermore, since most of the reflected light of blood vessels is diffuse reflected light, the composite image is dark and unstable. As for the reflected light of the sclera, for the same blood vessel, there are both light reflected after passing through the blood vessel and light transmitted through the blood vessel after reflection. Therefore, two images of the reflected image of the blood vessel and the transmitted image can be obtained from the reflected image of the sclera. That is to say, scan the imaging area with a line light source, extract the reflected light of the sclera from each image obtained by the imaging device, synthesize the reflected light image of the sclera, and obtain the blood vessel image of the reflected light and the transmitted light. In addition, only one of blood vessel images of reflected light or transmitted light may be extracted by image processing. Depending on the distance between the blood vessel and the sclera and the position of the incident angle of the laser light, the reflected image and the transmitted image of the same blood vessel may overlap. In this case, the relationship between the two can be distinguished by image processing, and another blood vessel can be selected for observation.
用上述方法得到的血管图像,也可以使用与第1实施例相同的方法,对血管、血流和血球做各种解析。上述的例子只说明了使用线光源的情况。再者,使用线光源时,还可以用复数的线光源来扫描,例如用2条激光线光源来扫描,一幅需要拍摄的图像,2条线各扫描一半区域,速度就可以提高一倍,所以只要在超出结膜反射光和巩膜反射光的两条放射线的距离之外使用多条线光源来扫描的话,就可以更有效率地来摄像。如果使用点光源,也可以同样来扫描摄像区域的全体,这里不再说明。The blood vessel image obtained by the above method can also be analyzed in various ways for blood vessels, blood flow and blood cells by using the same method as that of the first embodiment. The above examples only illustrate the use of line light sources. Furthermore, when using a line light source, multiple line light sources can also be used to scan, for example, two laser line light sources are used to scan, one image needs to be captured, each of the two lines scans half of the area, and the speed can be doubled. Therefore, as long as multiple line light sources are used to scan beyond the distance of the two radiations of conjunctival reflected light and sclera reflected light, imaging can be performed more efficiently. If a point light source is used, the entire imaging area can also be scanned in the same way, which will not be described here.
另外,使用激光光源照射眼球,可以设置检测眼球反射光的波长、位相、和强度的激光分析传感器,对各组织进行分析。并且,对于反射光的分析还可以使用分光计。In addition, the eyeball is irradiated with a laser light source, and a laser analysis sensor that detects the wavelength, phase, and intensity of the reflected light from the eyeball can be installed to analyze each tissue. In addition, a spectrometer can also be used for the analysis of reflected light.
另外,本发明的眼球结膜巩膜摄像装置不局限于上述的示例,只要不脱离本发明的宗旨,各种变更都是被允许的。In addition, the conjunctiva-sclera imaging device of the present invention is not limited to the above examples, and various changes are allowed as long as they do not deviate from the gist of the present invention.
Claims (12)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN200710047049A CN101411607B (en) | 2007-10-16 | 2007-10-16 | Eye conjunctiva and sclera camera device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN200710047049A CN101411607B (en) | 2007-10-16 | 2007-10-16 | Eye conjunctiva and sclera camera device |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101411607A true CN101411607A (en) | 2009-04-22 |
CN101411607B CN101411607B (en) | 2010-05-19 |
Family
ID=40592501
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN200710047049A Expired - Fee Related CN101411607B (en) | 2007-10-16 | 2007-10-16 | Eye conjunctiva and sclera camera device |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101411607B (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103431836A (en) * | 2013-09-02 | 2013-12-11 | 王涛 | Watching sighting mark and method for using same |
CN105184805A (en) * | 2015-10-14 | 2015-12-23 | 中国科学院合肥物质科学研究院 | Detection method of glue coating position on cigarette tipping paper |
CN105310646A (en) * | 2015-12-09 | 2016-02-10 | 博奥颐和健康科学技术(北京)有限公司 | Human health condition in-vivo analysis system and method based on white eye shadowless imaging |
CN105466864A (en) * | 2015-12-30 | 2016-04-06 | 中国科学院苏州生物医学工程技术研究所 | Icteric sclera detector based on colorimetric analysis |
US11382794B2 (en) | 2018-07-02 | 2022-07-12 | Belkin Laser Ltd. | Direct selective laser trabeculoplasty |
US11564836B2 (en) | 2010-05-10 | 2023-01-31 | Ramot At Tel Aviv University Ltd. | System and method for treating an eye |
US11771596B2 (en) | 2010-05-10 | 2023-10-03 | Ramot At Tel-Aviv University Ltd. | System and method for treating an eye |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102785574B (en) * | 2012-07-17 | 2015-04-15 | 泰斗微电子科技有限公司 | Fatigue or drunk-driving detection and control method and corresponding system |
USD1064287S1 (en) | 2022-03-14 | 2025-02-25 | O/D Vision Inc. | Consumer electronics device |
US12257025B2 (en) | 2022-03-14 | 2025-03-25 | O/D Vision Inc. | AI enabled multisensor connected telehealth system |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1095354C (en) * | 1996-06-04 | 2002-12-04 | 浙江大学 | Harmless quantitative diagnosis system for cardiovascular disease and its use |
CN1147815C (en) * | 2002-04-29 | 2004-04-28 | 华南理工大学 | Computer-aided feature matching recognition method for ipsilateral fundus medical images |
-
2007
- 2007-10-16 CN CN200710047049A patent/CN101411607B/en not_active Expired - Fee Related
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11564836B2 (en) | 2010-05-10 | 2023-01-31 | Ramot At Tel Aviv University Ltd. | System and method for treating an eye |
US11771596B2 (en) | 2010-05-10 | 2023-10-03 | Ramot At Tel-Aviv University Ltd. | System and method for treating an eye |
CN103431836A (en) * | 2013-09-02 | 2013-12-11 | 王涛 | Watching sighting mark and method for using same |
CN103431836B (en) * | 2013-09-02 | 2015-08-05 | 王涛 | Watch sighting target attentively and watch the using method of sighting target attentively |
CN105184805A (en) * | 2015-10-14 | 2015-12-23 | 中国科学院合肥物质科学研究院 | Detection method of glue coating position on cigarette tipping paper |
CN105310646A (en) * | 2015-12-09 | 2016-02-10 | 博奥颐和健康科学技术(北京)有限公司 | Human health condition in-vivo analysis system and method based on white eye shadowless imaging |
CN105310646B (en) * | 2015-12-09 | 2017-09-22 | 博奥颐和健康科学技术(北京)有限公司 | The human health status being imaged based on white of the eye without shadow is in body analysis system |
CN105466864A (en) * | 2015-12-30 | 2016-04-06 | 中国科学院苏州生物医学工程技术研究所 | Icteric sclera detector based on colorimetric analysis |
US11382794B2 (en) | 2018-07-02 | 2022-07-12 | Belkin Laser Ltd. | Direct selective laser trabeculoplasty |
US12109149B2 (en) | 2018-07-02 | 2024-10-08 | Belkin Vision Ltd. | Avoiding blood vessels during direct selective laser trabeculoplasty |
Also Published As
Publication number | Publication date |
---|---|
CN101411607B (en) | 2010-05-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101411607A (en) | Device for photographing conjunctiva and sclera of eyeball | |
US6394602B1 (en) | Eye tracking system | |
US8014571B2 (en) | Multimodal ocular biometric system | |
US4715703A (en) | Ocular-fundus analyzer | |
JP2008104628A (en) | Conjunctival sclera imaging device for the eyeball | |
US7025459B2 (en) | Ocular fundus auto imager | |
US8888284B2 (en) | Field of light based device | |
US6520640B1 (en) | Acquiring, analyzing and imaging three-dimensional retinal data | |
JP2003521950A6 (en) | Target tracking system | |
JP2001512994A (en) | Ophthalmoscope that laser scans a wide field of view | |
US6379006B1 (en) | Stereo scanning laser ophthalmoscope | |
CN109008942A (en) | A kind of full optics of the eye coherence tomography device and imaging method based on slit-lamp platform | |
JP2015066242A (en) | Ophthalmology imaging apparatus | |
US20040263784A1 (en) | Simplified ocular fundus auto imager | |
JP2008099716A (en) | Eye movement measurement device | |
JP2015091309A (en) | Ophthalmologic image processor and image processing program | |
JP6319616B2 (en) | Scanning laser ophthalmoscope | |
EP0122961A2 (en) | Ocular fundus analyzer | |
JP2018000620A (en) | Ophthalmological imaging apparatus | |
JP6912554B2 (en) | Ophthalmic equipment | |
JP6844949B2 (en) | Ophthalmic equipment | |
JP4909108B2 (en) | Corneal imaging device | |
JP2021062077A (en) | Ophthalmologic apparatus | |
JP6617790B2 (en) | Ophthalmic imaging equipment | |
JP2021069714A (en) | Fundus photography device and eye disease inspection device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
ASS | Succession or assignment of patent right |
Free format text: FORMER OWNER: ZHANG XIAOLIN Effective date: 20130703 Owner name: SHANGHAI INSTITUTE OF MICROSYSTEM AND INFORMATION Free format text: FORMER OWNER: ZHANG GUANGRONG Effective date: 20130703 |
|
C41 | Transfer of patent application or patent right or utility model | ||
COR | Change of bibliographic data |
Free format text: CORRECT: ADDRESS; FROM: 200001 HUANGPU, SHANGHAI TO: 200050 CHANGNING, SHANGHAI |
|
TR01 | Transfer of patent right |
Effective date of registration: 20130703 Address after: 200050 Changning Road, Shanghai, No. 865, No. Patentee after: SHANGHAI INSTITUTE OF MICROSYSTEM AND INFORMATION TECHNOLOGY, CHINESE ACADEMY OF SCIENCES Address before: 200001 room 10, No. 228, Lane 502, Guangxi North Road, Shanghai Patentee before: Zhang Guangrong Patentee before: Zhang Xiaolin |
|
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20100519 |
|
CF01 | Termination of patent right due to non-payment of annual fee |