CN101409044B - Backlight assembly and driving method thereof - Google Patents
Backlight assembly and driving method thereof Download PDFInfo
- Publication number
- CN101409044B CN101409044B CN2007101811244A CN200710181124A CN101409044B CN 101409044 B CN101409044 B CN 101409044B CN 2007101811244 A CN2007101811244 A CN 2007101811244A CN 200710181124 A CN200710181124 A CN 200710181124A CN 101409044 B CN101409044 B CN 101409044B
- Authority
- CN
- China
- Prior art keywords
- light
- backlight assembly
- feedback
- feedback signal
- signal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000000034 method Methods 0.000 title claims abstract description 31
- 230000017525 heat dissipation Effects 0.000 claims abstract description 14
- 238000001816 cooling Methods 0.000 claims description 12
- 230000008878 coupling Effects 0.000 claims description 11
- 238000010168 coupling process Methods 0.000 claims description 11
- 238000005859 coupling reaction Methods 0.000 claims description 11
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 3
- 238000012545 processing Methods 0.000 abstract description 5
- 238000010586 diagram Methods 0.000 description 22
- 230000007246 mechanism Effects 0.000 description 22
- 238000005516 engineering process Methods 0.000 description 5
- 239000004973 liquid crystal related substance Substances 0.000 description 5
- 238000013461 design Methods 0.000 description 3
- 238000004088 simulation Methods 0.000 description 3
- 230000007423 decrease Effects 0.000 description 2
- 238000010792 warming Methods 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000003912 environmental pollution Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
Images
Landscapes
- Circuit Arrangement For Electric Light Sources In General (AREA)
- Led Devices (AREA)
Abstract
Description
技术领域technical field
本发明是关于一种背光组件及其驱动方法,且特别是关于一种发光二极管(Light emitting diode,LED)的背光组件及其驱动方法。The present invention relates to a backlight assembly and its driving method, and in particular to a light emitting diode (Light emitting diode, LED) backlight assembly and its driving method.
背景技术Background technique
近年来,液晶显示器的背光组件多采用具有寿命长、效率高以及对环境污染较低等特性的发光二极管(Light Emitting Diode,LED)作为背光源。当液晶显示器的液晶面板越来越大,其背光组件也跟着使用更多的发光二极管来提供足够的背光源。因此,驱动发光二极管的电路将产生更多的功率消耗。请参考图1,图1为LED背光机构背板10在热平衡时的温度分布关系图。由于一般使用中的液晶显示器,其LED背光机构背板与桌面(或水平面)大致成垂直,因此在热平衡的状态下,背光组件所产生的热使得此机构背板由下至上的温度分布为:由温度低往温度高。In recent years, the backlight components of liquid crystal displays mostly use light emitting diodes (Light Emitting Diode, LED) which have the characteristics of long life, high efficiency and low environmental pollution as the backlight. As the liquid crystal panel of the liquid crystal display becomes larger and larger, its backlight assembly also uses more light-emitting diodes to provide sufficient backlight. Therefore, the circuits driving the LEDs will generate more power consumption. Please refer to FIG. 1 . FIG. 1 is a temperature distribution diagram of the
请参考图2,图2为LED的顺向导通电流、顺向导通电压与环境温度的相对关系图。图2绘有3条顺向导通电流的曲线,任取其中一条曲线:相同LED的顺向导通电流IFP在温度上升情况,LED的顺向导通电压会随着温度上升而下降。Please refer to FIG. 2 . FIG. 2 is a graph showing the relative relationship between forward conduction current, forward conduction voltage and ambient temperature of an LED. Figure 2 draws 3 forward conduction current curves, one of which is chosen randomly: when the forward conduction current IFP of the same LED increases in temperature, the forward conduction voltage of the LED will decrease as the temperature rises.
请参考图3,图3为传统背光组件的电路图。背光组件300包括N组的发光二极管驱动电路:发光元件301至30N分别耦接对应的调光电路331至33N。由于背光组件所产生的热在热平衡的状态下,LED背光机构背板的温度会呈现不同的变化,使得每一发光元件所处的环境温度不太一样,其亮度亦有所差别,容易造成显示不良。因此,传统设计背光组件300是从N组的发光二极管驱动电路中,取出N个反馈信号Vm1至VmN来做闭回路驱动控制,接着调整直流电源转换器310的输出。然而,设计反馈补偿电路320来处理N个反馈信号Vm1至VmN的复杂度相当高,并且设计N个反馈信号会增加电路布线的困难度,故背光组件300的电路成本也跟着相对提高。Please refer to FIG. 3 , which is a circuit diagram of a conventional backlight assembly. The backlight assembly 300 includes N sets of LED driving circuits: the light emitting elements 301 to 30N are respectively coupled to the corresponding dimming circuits 331 to 33N. Since the heat generated by the backlight assembly is in a thermal equilibrium state, the temperature of the backplane of the LED backlight mechanism will show different changes, so that the ambient temperature of each light-emitting element is not the same, and its brightness is also different, which is easy to cause display problems. bad. Therefore, in the traditional design of the backlight assembly 300 , N feedback signals Vm1 to VmN are obtained from N sets of LED driving circuits for closed-loop driving control, and then the output of the DC power converter 310 is adjusted. However, the complexity of designing the feedback compensation circuit 320 to process the N feedback signals Vm1 to VmN is quite high, and designing N feedback signals will increase the difficulty of circuit wiring, so the circuit cost of the backlight assembly 300 will also increase relatively.
发明内容Contents of the invention
本发明的目的是提供一种背光组件,可以使用较少数量的反馈信号来做闭回路控制,可以降低设计反馈补偿电路的复杂度,也可以减少电路布线的困难度,并降低背光组件的电路成本。The purpose of the present invention is to provide a backlight assembly, which can use a small number of feedback signals for closed-loop control, can reduce the complexity of designing feedback compensation circuits, can also reduce the difficulty of circuit wiring, and reduce the circuit complexity of the backlight assembly. cost.
本发明另提供一种背光组件的驱动方法,调整直流电源转换器的工作电压时,可以使用较少的反馈信号来做闭回路控制,可以降低背光组件的温度来减少功率消耗,并且可以提升发光二极管的寿命,因此可以提升背光组件的电路效能。The present invention also provides a driving method for a backlight assembly. When adjusting the working voltage of a DC power converter, fewer feedback signals can be used for closed-loop control, the temperature of the backlight assembly can be lowered to reduce power consumption, and the light emission can be improved. The life of the diode can be improved, so the circuit performance of the backlight component can be improved.
本发明提出一种背光组件,其依据散热方向的相对关系而形成多个温度分布区域,此些温度分布区域其中之一为温度最低区域,此背光组件包括发光二极管驱动电路、直流电源转换器以及反馈补偿电路。发光二极管驱动电路用以提供背光源与产生第一反馈信号,发光二极管驱动电路包括多个发光元件以及多个调光电路。此些发光元件用以接收工作电压来产生背光源,并且此些发光元件的第一发光元件被配置在温度最低区域。此些调光电路用以提供此些发光元件的驱动电流,每一调光电路耦接至对应的此些发光元件之一,而第一反馈信号是从第一发光元件对应的此些调光电路的第一调光电路的耦接处来获得。直流电源转换器耦接至发光二极管驱动电路,并且根据电压补偿信号来调整并输出工作电压。反馈补偿电路耦接至直流电源转换器与发光二极管驱动电路之间,用以接收第一反馈信号来产生电压补偿信号。The present invention proposes a backlight assembly, which forms a plurality of temperature distribution regions according to the relative relationship of heat dissipation directions, and one of these temperature distribution regions is the lowest temperature region. The backlight assembly includes a light emitting diode driving circuit, a DC power converter and feedback compensation circuit. The LED driving circuit is used to provide the backlight source and generate the first feedback signal. The LED driving circuit includes a plurality of light emitting elements and a plurality of dimming circuits. The light-emitting elements are used to receive the working voltage to generate the backlight, and the first light-emitting element of the light-emitting elements is arranged in the lowest temperature area. The dimming circuits are used to provide the driving current of the light-emitting elements, each dimming circuit is coupled to one of the corresponding light-emitting elements, and the first feedback signal is from the dimming corresponding to the first light-emitting element The coupling of the first dimming circuit of the circuit is obtained. The DC power converter is coupled to the LED driving circuit, and adjusts and outputs the working voltage according to the voltage compensation signal. The feedback compensation circuit is coupled between the DC power converter and the LED driving circuit for receiving the first feedback signal to generate a voltage compensation signal.
上述背光组件,在一实施例中,反馈补偿电路包括第一误差放大器以及第一电压补偿器。第一误差放大器接收第一参考信号与第一反馈信号,并比较第一参考信号与第一反馈信号而得到输出。第一电压补偿器耦接至第一误差放大器的输出端与直流电源转换器之间,并且据以产生与输出电压补偿信号。In one embodiment of the above backlight assembly, the feedback compensation circuit includes a first error amplifier and a first voltage compensator. The first error amplifier receives the first reference signal and the first feedback signal, and compares the first reference signal with the first feedback signal to obtain an output. The first voltage compensator is coupled between the output terminal of the first error amplifier and the DC power converter, and generates and outputs a voltage compensation signal accordingly.
上述背光组件,在另一实施例中,此些发光元件的一第二发光元件被配置在温度最低区域,发光二极管驱动电路还产生一第二反馈信号,而第二反馈信号是从第二发光元件对应的此些调光电路的一第二调光电路的耦接处来获得。反馈补偿电路还接收第二反馈信号,并根据第一反馈信号与第二反馈信号的平均值来产生电压补偿信号。In another embodiment of the above-mentioned backlight assembly, a second light-emitting element of the light-emitting elements is arranged in the region with the lowest temperature, and the light-emitting diode drive circuit also generates a second feedback signal, and the second feedback signal is from the second light-emitting element A coupling of a second dimming circuit of the dimming circuits corresponding to the components is obtained. The feedback compensation circuit also receives the second feedback signal, and generates a voltage compensation signal according to the average value of the first feedback signal and the second feedback signal.
从另一观点来看,本发明另提出一种背光组件的驱动方法。背光组件包括发光二极管驱动电路、直流电源转换器以及反馈补偿电路。发光二极管驱动电路包括 多个发光元件以及多个调光电路。驱动方法包括下列步骤:背光组件依据散热方向的相对关系划分多个温度分布区域,并且此些温度分布区域其中之一为温度最低区域;发光二极管驱动电路产生第一反馈信号,而第一反馈信号是从此些发光元件的第一发光元件对应的此些调光电路的第一调光电路的耦接处来获得,并且第一发光元件被配置在温度最低区域;反馈补偿电路接收第一反馈信号,并且产生电压补偿信号;直流电源转换器接收电压补偿信号,并依据电压补偿信号来操作、提供及输出工作电压至发光二极管驱动电路。From another point of view, the present invention further proposes a driving method of a backlight assembly. The backlight assembly includes a light emitting diode drive circuit, a DC power converter and a feedback compensation circuit. The light emitting diode drive circuit includes a plurality of light emitting elements and a plurality of dimming circuits. The driving method includes the following steps: the backlight assembly divides a plurality of temperature distribution areas according to the relative relationship of heat dissipation directions, and one of the temperature distribution areas is the lowest temperature area; the LED driving circuit generates a first feedback signal, and the first feedback signal It is obtained from the coupling of the first dimming circuit corresponding to the first light-emitting element of these light-emitting elements, and the first light-emitting element is arranged in the lowest temperature region; the feedback compensation circuit receives the first feedback signal , and generate a voltage compensation signal; the DC power converter receives the voltage compensation signal, and operates, provides and outputs an operating voltage to the LED driving circuit according to the voltage compensation signal.
上述背光组件的驱动方法,在一实施例中,反馈补偿电路耦接至直流电源转换器与发光二极管驱动电路之间,其用以接收第一反馈信号来产生电压补偿信号。In the driving method of the above-mentioned backlight assembly, in an embodiment, the feedback compensation circuit is coupled between the DC power converter and the LED driving circuit, and is used for receiving the first feedback signal to generate a voltage compensation signal.
上述背光组件的驱动方法,在另一实施例中还包括下列步骤。发光二极管驱动电路产生第二反馈信号,而第二反馈信号是从此些发光元件的第二发光元件对应的此些调光电路的第二调光电路的耦接处来获得,并且第二发光元件被配置在温度最低区域。反馈补偿电路接收第二反馈信号,并且根据第一反馈信号与第二反馈信号的平均值来产生电压补偿信号。In another embodiment, the method for driving the above-mentioned backlight assembly further includes the following steps. The light-emitting diode drive circuit generates a second feedback signal, and the second feedback signal is obtained from the coupling of the second light-emitting element of the light-emitting elements corresponding to the second light-adjusting circuit of the light-emitting element, and the second light-emitting element It is configured in the lowest temperature area. The feedback compensation circuit receives the second feedback signal, and generates a voltage compensation signal according to the average value of the first feedback signal and the second feedback signal.
本发明的背光组件依据散热划分多个温度分布区域,背光组件的反馈补偿电路是从温度最低区域撷取反馈信号来作处理,并且产生补偿电压给直流电源转换器来调整工作电压,因而简化反馈补偿电路接收反馈信号的数量,来取代相较原来要更多个反馈信号传送到反馈补偿电路。因此,本发明可以减少反馈补偿电路与发光二极管驱动电路之间的反馈信号数量。本发明的背光组件及其驱动方法可以降低设计反馈补偿电路的复杂度、减少电路布线的困难度、降低背光组件的电路成本、减少背光组件的功率消耗、降低发光二极管背光组件的温度、提升发光二极管的寿命,进而能提升整个背光组件的电路效能。The backlight assembly of the present invention is divided into multiple temperature distribution areas according to heat dissipation. The feedback compensation circuit of the backlight assembly extracts the feedback signal from the lowest temperature area for processing, and generates a compensation voltage for the DC power converter to adjust the operating voltage, thus simplifying feedback. The compensation circuit receives the number of feedback signals instead of sending more feedback signals to the feedback compensation circuit. Therefore, the present invention can reduce the number of feedback signals between the feedback compensation circuit and the LED driving circuit. The backlight assembly and its driving method of the present invention can reduce the complexity of designing the feedback compensation circuit, reduce the difficulty of circuit wiring, reduce the circuit cost of the backlight assembly, reduce the power consumption of the backlight assembly, reduce the temperature of the light-emitting diode backlight assembly, and improve the light emission. The lifetime of the diode can be improved, and the circuit performance of the entire backlight assembly can be improved.
为让本发明的上述和其他目的、特征和优点能更明显易懂,下文特举本发明的实施例,并配合附图作详细说明如下。In order to make the above and other objects, features and advantages of the present invention more comprehensible, the embodiments of the present invention are exemplified below and described in detail with accompanying drawings.
附图说明Description of drawings
图1为LED背光机构背板在热平衡时的温度分布关系图。FIG. 1 is a temperature distribution diagram of a backplane of an LED backlight mechanism at thermal equilibrium.
图2为LED的顺向导通电流、顺向导通电压与环境温度的相对关系图。Fig. 2 is a graph showing the relative relationship between forward conduction current, forward conduction voltage and ambient temperature of LED.
图3为传统背光组件的电路图。FIG. 3 is a circuit diagram of a conventional backlight assembly.
图4(a)为根据本发明一实施例的发光二极管背光机构背板划分多个温度分布区域图。FIG. 4( a ) is a diagram showing multiple temperature distribution regions divided by the backplane of the LED backlight mechanism according to an embodiment of the present invention.
图4(b)为根据图4(a)的多个温度分布区域的背光组件电路图。FIG. 4( b ) is a circuit diagram of a backlight assembly according to multiple temperature distribution regions in FIG. 4( a ).
图4(c)为图4(b)的背光组件的背光元件与LED背光机构背板的相对关系图。FIG. 4( c ) is a relative relationship diagram between the backlight element of the backlight assembly of FIG. 4( b ) and the backplane of the LED backlight mechanism.
图4(d)为分析图4(b)的开回路控制架构图。Figure 4(d) is an analysis of the open-loop control architecture diagram of Figure 4(b).
图4(e)为模拟开回路控制时的冷热机电气特性图。Figure 4(e) is the electrical characteristic diagram of the cooling and heating machine when simulating the open loop control.
图4(f)为模拟闭回路控制的架构图。Figure 4(f) is the architecture diagram of the simulated closed-loop control.
图4(g)为分别对温度高与对温度低的区域作反馈补偿的各个电压比较图。Fig. 4(g) is a comparative diagram of various voltages for feedback compensation for regions with high temperature and regions with low temperature respectively.
图5(a)至图5(c)为依据本发明另一实施例的温度分布区域图。FIG. 5( a ) to FIG. 5( c ) are temperature distribution area diagrams according to another embodiment of the present invention.
图5(d)为依据本发明另一实施例的背光组件的电路图。FIG. 5( d ) is a circuit diagram of a backlight assembly according to another embodiment of the present invention.
具体实施方式Detailed ways
本案发明人有鉴于传统背光组件的电路设计,其复杂性相当高,经过分析、模拟各种情况而产生本发明。本发明主要特征之一是从温度最低区域撷取反馈信号作处理。以下开始说明本发明各实施例。The inventor of the present invention considers that the circuit design of the traditional backlight assembly is quite complex, and came up with the present invention after analyzing and simulating various situations. One of the main features of the present invention is to extract the feedback signal from the lowest temperature region for processing. The various embodiments of the present invention will be described below.
请参照图4(a),图4(a)为根据本发明一实施例的发光二极管(Lightemitting diode,LED)背光机构背板划分多个温度分布区域图。为了减轻复杂度,传统需要N个反馈信号Vm1至VmN,而在本发明实施例中减少传统技术所需的反馈信号。首先,背光组件依据散热方向的相对关系而形成多个温度分布区域。在图4(a)中,将背光组件配置在LED背光机构背板40上,并将LED背光机构背板40划分3个温度分布区域,分别为T1区、T2区与T3区。本项技术具有通常知识者应当可以了解,划分温度分布区域可以事先依热平衡模拟或实验结果来划分区域,所以不限制划分温度分布区域的数量。假设一般情形,LED背光机构背板40直立于桌面的情况,LED背光机构背板40的四周有散热小孔或是只有最上面有散热小孔。因此,使用中的液晶显示器在热平衡时,LED背光机构背板40在T1区会是最热,其次是T2区,而T3区的温度区域最低。设计背光组件时,其位在每一区的LED由于受到环境温度不同,因此每一区的LED的顺向导通电压会不一样。在T1区的LED的顺向导通电压最小,在T3区的LED的顺向导通电压最大,而T2区的LED的顺向导通电压居次大。Please refer to FIG. 4( a ). FIG. 4( a ) is a diagram showing a plurality of temperature distribution regions divided by the backplane of a light emitting diode (Lightemitting diode, LED) backlight mechanism according to an embodiment of the present invention. In order to reduce the complexity, N feedback signals Vm1 to VmN are traditionally required, but in the embodiment of the present invention, the feedback signals required by the conventional technology are reduced. Firstly, the backlight assembly forms a plurality of temperature distribution regions according to the relative relationship of heat dissipation directions. In FIG. 4( a ), the backlight assembly is arranged on the
承上述,划分好多个温度区域后,接着必须减少反馈信号的数量。此欲要减少反馈信号数量的作法是从某一区域撷取反馈信号,如此在处理反馈信号的复杂度将降低很多,为验证可行请参照图4(b),并进行下列各实验。图4(b)为根据图4(a)的多个温度分布区域的背光组件电路图。背光组件42包括了T1区发光元件、T2区发光元件及T3区发光元件。其中,T1区发光元件包括发光元件41a、41b…,T2区发光元件包括发光元件43a、43b…,T3区发光元件包括发光元件45a、45b…,而每一发光元件至少包括一发光二极管。Based on the above, after dividing a number of temperature regions, the number of feedback signals must be reduced. The way to reduce the number of feedback signals is to extract feedback signals from a certain area, so that the complexity of processing feedback signals will be greatly reduced. To verify that it is feasible, please refer to Figure 4(b) and perform the following experiments. FIG. 4( b ) is a circuit diagram of a backlight assembly according to multiple temperature distribution regions in FIG. 4( a ). The
为了分析背光组件42在T1区至T3区的各种情况:第一种情况为冷机时,模拟开回路控制;第二种情况为热机时,模拟T1区的的开回路控制;第三种情况为热机时,模拟T3区的的开回路控制。图4(b)的各个发光元件在图4(a)的LED背光机构背板40上的分布情形可以参考图4(c)。图4(c)为背光组件42的背光元件与LED背光机构背板的相对关系图。In order to analyze the various situations of the
在此,进行上述各种情况的分析,假设发光元件41a~41c、43a~43c、45a~45c,并且发光元件使用相同LED,并且数量相同,且将LED作串联。请参照图4(d)。图4(d)为分析图4(b)的开回路控制架构图。直流电源转换器48a产生工作电压VLED来驱动发光元件46,也就是点亮发光二极管LED1~LEDN的驱动电源。各个发光二极管的顺向导通电压(Vf1、Vf2、…、VfN)的总和为发光元件46的顺向导通电压Vf_total。调光电路47包括开关SW及定电流源I1。电压Vm是从发光元件46与调光电路47的耦接处产生,并且关系式为VLED=Vf_total+Vm。(假设发光元件46目前是使用4颗发光二极管,且每一颗发光二极管的顺向导通电压等于2V。)Here, for the analysis of the above-mentioned various situations, it is assumed that the light-emitting
在第一种情况为冷机时,模拟开回路控制,因此工作电压VLED固定。在此提供一数据资料,当定电流源I1为20mA,工作电压VLED为9V时,顺向导通电压Vf_total为8V,而电压Vm为1V,其Vm消耗功率为20mV。When the first case is a cold machine, the open-loop control is simulated, so the working voltage VLED is fixed. A data is provided here. When the constant current source I1 is 20mA and the working voltage VLED is 9V, the forward conduction voltage Vf_total is 8V, the voltage Vm is 1V, and the power consumed by Vm is 20mV.
接着,第二种情况为热机时,模拟T1区的的开回路控制。在此提供一数据资料,当定电流源I1为20mA,工作电压VLED为9V时,顺向导通电压Vf_total为6.8V,而电压Vm为2.2V,其Vm消耗功率为44mV。因此,每颗发光二极管的顺向导通电压下降为0.3V。Next, when the second case is a hot engine, the open-loop control in the T1 area is simulated. A data is provided here. When the constant current source I1 is 20mA and the working voltage VLED is 9V, the forward conduction voltage Vf_total is 6.8V, the voltage Vm is 2.2V, and the Vm consumption power is 44mV. Therefore, the forward conduction voltage of each LED drops to 0.3V.
在第三种情况为热机时,模拟T3区的的开回路控制。在此提供一数据资 料,当定电流源I1为20mA,工作电压VLED为9V时,顺向导通电压Vf_total为7.6V,而电压Vm为1.4V,其Vm消耗功率为28mV。因此,每颗发光二极管的顺向导通电压下降为0.1V。When the third case is a hot engine, the open-loop control of T3 zone is simulated. A data is provided here. When the constant current source I1 is 20mA and the working voltage VLED is 9V, the forward conduction voltage Vf_total is 7.6V, the voltage Vm is 1.4V, and the Vm power consumption is 28mV. Therefore, the forward conduction voltage of each LED drops to 0.1V.
上述三种模拟情况,兹整理数据后请参照图4(e)。因此得知,发光元件46除了因系统温度上升使得顺向导通电压Vf_total下降,并且使得电压Vm上升,此造成开关SW的功率消耗变大,使得功率损失增加,并使得元件效率变差。For the above three simulation situations, please refer to Figure 4(e) after sorting out the data. Therefore, it is known that the forward conduction voltage Vf_total of the light-emitting
接下来进行第四种状况与第五种状况模拟。第四种情况为热机时,模拟撷取T1区的反馈信号做闭回路控制;第五种情况为热机时,模拟撷取T3区的反馈信号做闭回路控制。其中,第四与第五种情况为只对一温度分布区作反馈控制,而另两区不作反馈控制。在第四种情况撷取反馈信号Vm1a或Vm1b或取反馈信号Vm1a与Vm1b的平均值,在上述第五种情况撷取反馈信号Vm3a或Vm3b或取反馈信号Vm3a与Vm3b的平均值。Next, simulate the fourth and fifth situations. The fourth case is when the engine is warming up, and the feedback signal from the T1 area is simulated for closed-loop control; the fifth case is when the engine is warming up, the feedback signal from the T3 area is simulated for closed-loop control. Among them, in the fourth and fifth cases, feedback control is only performed on one temperature distribution area, and no feedback control is performed on the other two areas. In the fourth case, the feedback signal Vm1a or Vm1b or the average value of the feedback signals Vm1a and Vm1b is obtained. In the fifth case, the feedback signal Vm3a or Vm3b is obtained or the average value of the feedback signals Vm3a and Vm3b is obtained.
请参照图4(f),图4(f)为分析图4(b),模拟热机时的闭回路控制的架构图。原本在图4(d)的电压Vm现成为图4(f)的一反馈信号。发光元件46使用了4颗相同的发光二极管。反馈补偿电路49包括误差放大器49b与电压补偿器49a,电压补偿器49a耦接在误差放大器49b与直流电源转换器48b之间。误差放大器49b接收反馈信号Vm与一参考信号Vref,电压补偿器49a则产生一电压补偿信号49c至直流电源转换器48b。直流电源转换器48b根据电压补偿信号49c来调整与输出工作电压VLED。在第四种情况为热机时,模拟撷取T1区的反馈信号做闭回路控制,在此提供一数据资料,当定电流源I1为20mA,原本的工作电压VLED为9V时,补偿后的工作电压VLED为7.8V。T1区的顺向导通电压Vf_total为6.8V,因此T1区的电压Vm为1V,但是T3区的顺向导通电压Vf_total为7.6V,故造成温度较低区域(T3区域)的发光元件的工作电压不足,使得发光二极管不稳定。Please refer to FIG. 4(f). FIG. 4(f) is an analysis of FIG. 4(b), a structure diagram of a closed-loop control when simulating a heat engine. The voltage Vm originally in FIG. 4(d) now becomes a feedback signal in FIG. 4(f). The
接着,在第五种情况为热机时,模拟撷取T3区的反馈信号做闭回路控制,在此提供一数据资料,当定电流源I1为20mA,原本的工作电压VLED为9V时,补偿后的工作电压VLED为8.6V。T3区的顺向导通电压Vf_total为7.6V,因此T3区的电压Vm为1.0V;而T1区顺向导通电压Vf_total为6.8V,T1区的 电压Vm为1.8V。故将工作电压VLED往下调整至8.6V时,可以涵盖图4(b)背光组件42的驱动电路。上述第四种和第五种情况的模拟情况,兹整理数据后请参照图4(g),其中以温度较高的区域作反馈补偿,此调整后的工作电压VLED与温度较低区域的顺向导通电压Vf_total之间的电压差太小,易造成发光元件的工作效能不稳定。证明了本发明的背光组件与其驱动方法采用温度最低区域(在此实施例为T3区)的反馈信号,所做的调整结果确实达到了预期效果。因此,从“温度最低区域”(T3区域)撷取反馈信号的作法是可行的。在本实施例中,反馈补偿电路处理反馈信号的复杂度可以减低至三分之一以下。Next, when the fifth case is a hot engine, simulate and capture the feedback signal in the T3 area for closed-loop control, and provide a data file here. When the constant current source I1 is 20mA and the original operating voltage VLED is 9V, after compensation The operating voltage VLED is 8.6V. The forward conduction voltage Vf_total of the T3 area is 7.6V, so the voltage Vm of the T3 area is 1.0V; while the forward conduction voltage Vf_total of the T1 area is 6.8V, and the voltage Vm of the T1 area is 1.8V. Therefore, when the working voltage VLED is adjusted down to 8.6V, the driving circuit of the
请参照图5(a)。图5(a)为依据本发明另一实施例的温度分布区域图。我们将LED背光机构背板50划分成九个区域,如图的A1区~A3区、B1区~B3区与C1区~C3区。假设一般情形,LED背光机构背板50直立于桌面的情况,LED背光机构背板50的四周有散热小孔或是只有最上面有散热小孔。因此,A1区至A3区的温度最高,B1区至B3区的温度次高,而C1区至C3区的温度会最低。背光组件可以根据LED背光机构背板50的温度分布情形,从位于C1区~C3区其中之一区,取被配置在其区域的发光元件的一撷取点作反馈控制,根据撷取点的反馈信号来调整所有发光元件的共同工作电压。当然,本项技术具有通常知识者应当可以了解,从位于C1区~C3区中亦可以取多个撷取点的平均值来做反馈控制,在不偏离本发明的精神与范围下,本发明的保护范围应不限于实施例所揭示。Please refer to Figure 5(a). FIG. 5( a ) is a diagram of the temperature distribution area according to another embodiment of the present invention. We divide the
请参照图5(b)。图5(b)为依据本发明另一实施例的温度分布区域图。我们将LED背光机构背板50划分成九个区域,如图5(a)的A1区~A3区、B1区~B3区与C1区~C3区,不过在此C1区与C3区的背板上另加装散热片。因此,在热平衡时,C1区与C3区的温度为最低。背光组件可以从位于C1区与C3区中,各取被配置在其区域的发光元件的一撷取点作反馈控制,根据两撷取点的反馈信号平均值,再来调整所有发光元件的共同工作电压;或者是只撷取C1区或C3区的发光元件的一撷取点作反馈控制,再来调整所有发光元件的共同工作电压。Please refer to Figure 5(b). FIG. 5( b ) is a diagram of the temperature distribution area according to another embodiment of the present invention. We divide the
请参照图5(c)。图5(c)为依据本发明另一实施例的温度分布区域图。这是与图5(b)的作法类似,同理可推,在LED背光机构背板50的C1区与C3区加装风扇,在热平衡时,使得C1区与C3区的温度为最低。因此,背光组件可以从位于C1区与C3区中,各取被配置在其区域的发光元件的一撷取点作反馈控制,根据两撷取点的反馈信号平均值,再来调整所有发光元件的共同工作电压;或者是只撷取C1区或C3区的发光元件的一撷取点作反馈控制,再来调整所有发光元件的共同工作电压。Please refer to Figure 5(c). FIG. 5( c ) is a diagram of the temperature distribution area according to another embodiment of the present invention. This is similar to the method shown in FIG. 5( b ). In the same way, fans are installed in the C1 and C3 regions of the
通过图5(b)与图5(c)的说明,本项技术具有通常知识者应当可以了解散热片或风扇是来确保C1区与C3为温度最低区域,当然也可以使用水冷装置或其他散热方法来达成。温度最低的区域是相对与背板的散热设计。当考虑平均散热的对称性,则温度最低的区域可以在背板的两侧边各有一区。另外,针对划分温度区域数量与使用散热装置数量亦不限制,划分温度区域数量与使用散热装置数量有许多种组合。因此在不偏离本发明的精神与范围下,本发明的保护范围应不限于实施例所揭示。Through the description of Figure 5(b) and Figure 5(c), those with ordinary knowledge of this technology should be able to understand that heat sinks or fans are used to ensure that C1 and C3 are the lowest temperature areas. Of course, water cooling devices or other heat dissipation devices can also be used method to achieve. The lowest temperature area is relative to the thermal design of the backplane. When considering the symmetry of the average heat dissipation, the area with the lowest temperature can be located on each side of the backplane. In addition, there is no limit to the number of divided temperature regions and the number of cooling devices used, and there are many combinations of the number of divided temperature regions and the number of used cooling devices. Therefore, without departing from the spirit and scope of the present invention, the protection scope of the present invention should not be limited to the disclosed embodiments.
请参照图5(d)。图5(d)为依据本发明另一实施例的背光组件的电路图。背光组件500被配置在如图5(b)或图5(c)的具有散热装置的LED背光机构背板50上。背光组件500依据散热方向的相对关系而形成多个温度分布区域,如图5(a)。本发明的重点从“温度最低区域”撷取反馈信号,如图5(a)与图5(d)所示:C1区与C3区为温度最低区域,以及从C1区与C3撷取第一反馈信号Vmc1、第二反馈信号Vmc3来作闭回路控制。Please refer to Figure 5(d). FIG. 5( d ) is a circuit diagram of a backlight assembly according to another embodiment of the present invention. The
背光组件500包括发光二极管驱动电路52、直流电源转换器51以及反馈补偿电路55。发光二极管驱动电路52耦接至直流电源转换器51与反馈补偿电路55之间。发光二极管驱动电路52包括多个发光元件以及多个调光电路。每一发光元件至少包括一发光二极管,而发光二极管的顺向导通电压特性会受环境温度影响。每一调光电路包括开关SW与定电流源I,其中开关SW的一端耦接至对应的此些发光元件之一,开关SW的另一端耦接至对应的定电流源I,并且此对应的定电流源I的另一端接地。The
每个调光电路可以提供其对应的发光元件的驱动电流,发光元件接收工作电压VLED后可以产生背光源,并且此些发光元件的第一发光元件510、第二发光元件511被配置在温度最低区域,其中温度最低区域还配置有散热装置。第一反馈信号Vmc1是从第一发光元件510对应的此些调光电路的第一调光电路 512的耦接处来获得。第二反馈信号是从第二发光元件511对应的此些调光电路的一第二调光电路514的耦接处来获得。因此,发光二极管驱动电路52还产生第一反馈信号Vmc1与第二反馈信号Vmc3。Each dimming circuit can provide the driving current of its corresponding light-emitting element, and the light-emitting element can generate a backlight after receiving the working voltage VLED, and the first light-emitting element 510 and the second light-emitting element 511 of these light-emitting elements are configured at the lowest temperature area, and the area with the lowest temperature is also equipped with a cooling device. The first feedback signal Vmc1 is obtained from the coupling of the first dimming circuit 512 of the dimming circuits corresponding to the first light emitting element 510. The second feedback signal is obtained from a coupling of a second dimming circuit 514 of the dimming circuits corresponding to the second light emitting element 511 . Therefore, the LED driving circuit 52 also generates the first feedback signal Vmc1 and the second feedback signal Vmc3 .
反馈补偿电路55包括误差放大器59及电压补偿器57。误差放大器59接收参考信号Vref、第一反馈信号Vmc1与第二反馈信号Vmc3,并且比较参考信号Vref、第一反馈信号Vmc1与第二反馈信号Vmc3的平均值而得到输出。其中,为了避免反馈信号不准可以采用两反馈信号平均值与参考信号Vref作比较,当然也可以只采用第一或第二反馈信号来比较参考信号Vref。电压补偿器57耦接至误差放大器59的输出与直流电源转换器51之间,并且据以产生与输出一电压补偿信号53。The feedback compensation circuit 55 includes an error amplifier 59 and a voltage compensator 57 . The error amplifier 59 receives the reference signal Vref, the first feedback signal Vmc1 and the second feedback signal Vmc3 , and compares the average value of the reference signal Vref, the first feedback signal Vmc1 and the second feedback signal Vmc3 to obtain an output. Wherein, in order to avoid inaccurate feedback signals, the average value of the two feedback signals can be used for comparison with the reference signal Vref, of course, only the first or second feedback signal can be used to compare the reference signal Vref. The voltage compensator 57 is coupled between the output of the error amplifier 59 and the DC power converter 51 , and generates and outputs a voltage compensation signal 53 accordingly.
直流电源转换器51可以根据电压补偿信号53,以脉宽调制方式来调整输入与输出为不同直流电位的电源,并且输出一工作电压VLED。此直流电源转换器51的型式可以为传统的升压直流电源转换器、降压直流电源转换器或升降压直流电源转换器,在此便不再赘述。The DC power converter 51 can adjust the input and output of the power with different DC levels according to the voltage compensation signal 53 in a pulse width modulation manner, and output a working voltage VLED. The type of the DC power converter 51 can be a traditional step-up DC power converter, a step-down DC power converter or a buck-boost DC power converter, which will not be repeated here.
我们来比较图3与图5(d)的差异,传统技术中,图3的背光组件300是采用相当多数量的反馈信号,繁重的反馈信号数量的背光组件300中,使得传统的反馈补偿电路320会因此负荷过大。图5(d)的背光组件500,其反馈补偿电路55的构造相对下就显得简单,并且反馈补偿电路55所处理的反馈信号数量相较于反馈补偿电路320显得非常少。因此,本发明实施例的反馈信号数量减少,可以减低设计反馈补偿电路55的复杂度,也减少电路布线的困难度,并且背光组件500的电路成本相较于背光组件300也跟着减少。Let's compare the difference between Fig. 3 and Fig. 5(d). In the conventional technology, the backlight assembly 300 of Fig. 3 uses a relatively large number of feedback signals. In the backlight assembly 300 with a heavy number of feedback signals, the traditional feedback compensation circuit The 320 will be overloaded accordingly. In the
除了上述实施例的背光组件以外,本发明也包含一种对应的背光组件的驱动方法。对于在本发明相关技术领域具有通常知识者而言,通过前面的背光组件实施例,应当能实施本发明的背光组件的驱动方法,因此不予赘述。In addition to the backlight assembly of the above embodiments, the present invention also includes a corresponding driving method of the backlight assembly. Those who have ordinary knowledge in the related technical fields of the present invention should be able to implement the driving method of the backlight assembly of the present invention through the foregoing embodiments of the backlight assembly, so details will not be repeated.
综合上述,本发明因简化反馈补偿电路所接收反馈信号的数量,背光组件采用从“温度最低区域”撷取反馈信号作闭回路控制,来取代原来要传送相当多个反馈信号到反馈补偿电路。因此,本发明可以减少反馈补偿电路与发光二极管驱动电路之间的反馈信号数量与线路。本发明的背光组件及其驱动方法至少具有以下优点:To sum up the above, the present invention simplifies the number of feedback signals received by the feedback compensation circuit, and the backlight assembly adopts the closed-loop control by extracting feedback signals from the "lowest temperature area" instead of sending a considerable number of feedback signals to the feedback compensation circuit. Therefore, the present invention can reduce the number and lines of feedback signals between the feedback compensation circuit and the LED driving circuit. The backlight assembly and its driving method of the present invention have at least the following advantages:
1.使用较少的反馈信号来作闭回路控制;1. Use fewer feedback signals for closed-loop control;
2.降低设计反馈补偿电路的复杂度;2. Reduce the complexity of designing feedback compensation circuits;
3.减少电路布线的困难度;3. Reduce the difficulty of circuit wiring;
4.降低背光组件的电路成本;4. Reduce the circuit cost of backlight components;
5.减少背光组件的功率消耗;5. Reduce the power consumption of backlight components;
6.降低发光二极管背光组件的温度;6. Reduce the temperature of LED backlight components;
7提升发光二极管的寿命;7 Improve the life of light-emitting diodes;
8.大幅提升背光组件的电路效能。8. Significantly improve the circuit performance of the backlight component.
虽然本发明已以实施例揭示如上,然其并非用以限定本发明,任何所属技术领域中具有通常知识者,在不脱离本发明的精神和范围内,当可作些许更动与润饰,因此本发明的保护范围当以权利要求所界定的为准。Although the present invention has been disclosed above with the embodiments, it is not intended to limit the present invention. Anyone with ordinary knowledge in the technical field can make some changes and modifications without departing from the spirit and scope of the present invention. Therefore The scope of protection of the present invention should be defined by the claims.
Claims (22)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2007101811244A CN101409044B (en) | 2007-10-08 | 2007-10-08 | Backlight assembly and driving method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2007101811244A CN101409044B (en) | 2007-10-08 | 2007-10-08 | Backlight assembly and driving method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101409044A CN101409044A (en) | 2009-04-15 |
CN101409044B true CN101409044B (en) | 2011-07-13 |
Family
ID=40572037
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2007101811244A Expired - Fee Related CN101409044B (en) | 2007-10-08 | 2007-10-08 | Backlight assembly and driving method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101409044B (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101990337B (en) * | 2009-08-03 | 2014-03-26 | 联咏科技股份有限公司 | Light source drive device capable of dynamically maintaining constant current drive and related method |
CN101998725A (en) * | 2009-08-24 | 2011-03-30 | 华映视讯(吴江)有限公司 | Drive circuit of light-emitting diode |
CN101763838B (en) * | 2010-01-15 | 2013-11-06 | 友达光电股份有限公司 | Backlight module and method for setting its driving current |
CN101950541B (en) * | 2010-07-12 | 2013-03-27 | 深圳市华星光电技术有限公司 | Backlight module and liquid crystal display |
CN102705753B (en) * | 2012-04-28 | 2014-09-17 | 深圳市兆驰股份有限公司 | Display device and backlight module thereof |
CN109699107B (en) * | 2019-02-15 | 2021-02-19 | 上海艾为电子技术股份有限公司 | Charging circuit and LED drive circuit |
CN110299113B (en) * | 2019-05-09 | 2020-12-11 | 京东方科技集团股份有限公司 | Backlight driving system, backlight driving method and display device |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1619606A (en) * | 2003-11-21 | 2005-05-25 | 株式会社日立显示器 | image display device |
CN1648976A (en) * | 2004-01-30 | 2005-08-03 | Lg电子株式会社 | Contrast compensating apparatus for PDP module and method thereof |
CN1721943A (en) * | 2004-07-12 | 2006-01-18 | 索尼株式会社 | Display unit and backlight unit |
-
2007
- 2007-10-08 CN CN2007101811244A patent/CN101409044B/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1619606A (en) * | 2003-11-21 | 2005-05-25 | 株式会社日立显示器 | image display device |
CN1648976A (en) * | 2004-01-30 | 2005-08-03 | Lg电子株式会社 | Contrast compensating apparatus for PDP module and method thereof |
CN1721943A (en) * | 2004-07-12 | 2006-01-18 | 索尼株式会社 | Display unit and backlight unit |
Non-Patent Citations (1)
Title |
---|
参见同上. |
Also Published As
Publication number | Publication date |
---|---|
CN101409044A (en) | 2009-04-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101409044B (en) | Backlight assembly and driving method thereof | |
US9439259B2 (en) | LED backlight driving circuit for LCD panels | |
CN102467885B (en) | LED-backlit driver | |
CN101763838B (en) | Backlight module and method for setting its driving current | |
US20130027905A1 (en) | Led light engine | |
Hu et al. | A novel LED driver with adaptive drive voltage | |
US9058776B2 (en) | LED backlight source and liquid crystal device | |
US7999486B2 (en) | Driving circuit and method for light emitting diode | |
CN104505030B (en) | A kind of backlight drive circuit and its driving method and liquid crystal display device | |
KR20130050828A (en) | Backlight unit and display device including the same | |
US20190335552A1 (en) | Linear regulated dimmable led driver for dc distributed lighting system | |
KR20130130526A (en) | Method of driving a light source, light source apparatus performing the method and display apparatus having the light source apparatus | |
CN104349541A (en) | Over-temperature protection device and over-temperature protection method thereof | |
CN107347222A (en) | Dimming driving circuit and its control method | |
CN104900190A (en) | Power supply circuit and organic light-emitting diode display device | |
CN110881231A (en) | Dimming circuit and control method thereof | |
CN102262862A (en) | Light source system and light emitting diode driving method for improving electrostatic discharge capacity | |
US8760068B1 (en) | Driving LEDs in LCD backlight | |
TWI377535B (en) | Backlight module and driving method thereof | |
CN1972541A (en) | The driving circuit of LED array | |
Dong et al. | Identification and robust control of the nonlinear photoelectrothermal dynamics of LED systems | |
CN114501699B (en) | Dimming circuit, dimmer and LED lighting equipment | |
JP5685015B2 (en) | LIGHT EMITTING DIODE DRIVING CIRCUIT AND LIGHT EMITTING DEVICE AND ELECTRONIC DEVICE USING THE SAME | |
Gacio et al. | Study on passive self-equalization of parallel-connected LED strings | |
CN204785777U (en) | Novel luminous LED lamp strip of high -power side |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20110713 Termination date: 20191008 |
|
CF01 | Termination of patent right due to non-payment of annual fee |