[go: up one dir, main page]

CN101399273B - Image display system and manufacturing method thereof - Google Patents

Image display system and manufacturing method thereof Download PDF

Info

Publication number
CN101399273B
CN101399273B CN2008100845869A CN200810084586A CN101399273B CN 101399273 B CN101399273 B CN 101399273B CN 2008100845869 A CN2008100845869 A CN 2008100845869A CN 200810084586 A CN200810084586 A CN 200810084586A CN 101399273 B CN101399273 B CN 101399273B
Authority
CN
China
Prior art keywords
layer
substrate
electrode
active layer
image display
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN2008100845869A
Other languages
Chinese (zh)
Other versions
CN101399273A (en
Inventor
钟明佑
蔡善宏
陈素芬
翁光祥
张晓波
简荣皇
陈秀琇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chi Mei Optoelectronics Corp
Original Assignee
Chi Mei Optoelectronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chi Mei Optoelectronics Corp filed Critical Chi Mei Optoelectronics Corp
Publication of CN101399273A publication Critical patent/CN101399273A/en
Application granted granted Critical
Publication of CN101399273B publication Critical patent/CN101399273B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Thin Film Transistor (AREA)
  • Liquid Crystal (AREA)

Abstract

The invention discloses a method for manufacturing a low-temperature polycrystalline silicon driving circuit and a thin film transistor. The extension parts of the grid electrode and the dielectric layer can be formed at the same time and used as a mask, so that a lightly doped source/drain region and a source/drain region can be formed at the same time by one-time doping process, thereby reducing the number of process photomasks and further reducing the manufacturing cost.

Description

图像显示系统及其制作方法Image display system and manufacturing method thereof

技术领域technical field

本发明涉及一种显示装置,特别是涉及一种低温多晶硅薄膜晶体管液晶显示装置及其制作方法。The invention relates to a display device, in particular to a low-temperature polysilicon thin film transistor liquid crystal display device and a manufacturing method thereof.

背景技术Background technique

一般而言,薄膜晶体管(thin film transistor;TFT)可以分为非晶硅(amorphous)薄膜晶体管及多晶硅(polysilcion)薄膜晶体管。多晶硅薄膜晶体管使用低温多晶硅(low-temperature polysilicon;LTPS)技术制作,且与非晶硅(a-Si)技术所制作的非晶硅薄膜晶体管十分地不同。低温多晶硅(LTPS)晶体管具有较大的电子迁移率(electron mobility)(>20cm2/Vsec),因此,LTPS晶体管具有相对优选的尺寸、较大的开孔率(aperture ratio)及较低的功率消耗(power rating)。此外,低温多晶硅工艺可在同一基板同时制作驱动电路及薄膜晶体管,使得可以增加显示面板的可靠性(reliability),及降低显示面板的制作成本。Generally speaking, thin film transistors (thin film transistors; TFTs) can be classified into amorphous silicon (amorphous) thin film transistors and polycrystalline silicon (polysilcion) thin film transistors. Polysilicon thin film transistors are manufactured using low-temperature polysilicon (LTPS) technology, and are quite different from amorphous silicon thin film transistors made by amorphous silicon (a-Si) technology. Low-temperature polysilicon (LTPS) transistors have relatively large electron mobility (>20cm 2 /Vsec), therefore, LTPS transistors have relatively preferred size, large aperture ratio and low power Consumption (power rating). In addition, the low-temperature polysilicon process can manufacture the driving circuit and the thin film transistor on the same substrate at the same time, so that the reliability of the display panel can be increased and the manufacturing cost of the display panel can be reduced.

然而,传统的低温多晶硅驱动电路及薄膜晶体管的制作,需要8道或9道光掩模,使得需花费较高的制作成本。此外,较多的光掩模数也导致较长的制作时间及较低的制作良率。However, traditional fabrication of low temperature polysilicon driving circuits and thin film transistors requires 8 or 9 photomasks, resulting in higher fabrication costs. In addition, more photomasks also lead to longer production time and lower production yield.

因此,还需一种具有较少光掩模数的低温多晶硅工艺,以降低制作成本。Therefore, there is still a need for a low-temperature polysilicon process with fewer photomasks to reduce manufacturing costs.

发明内容Contents of the invention

有鉴于此,本发明一实施例提供一种图像显示系统,包括:低温多晶硅(low-temperature polysilicon;LTPS)驱动电路及薄膜晶体管(thin filmtransistor;TFT)。此驱动电路及薄膜晶体管,包括:基板;有源层,形成于该基板上;栅极绝缘层,覆盖该第一有源层;介电层,位于该栅极绝缘层上,且该介电层具有延伸部;以及栅极电极,形成于该介电层上,且暴露该延伸部;包括有上下电极的储存电容,形成于基板上;接触孔,形成于栅极绝缘层之中,且此接触孔暴露下电极与有源层邻接的区域。上述图像显示系统,还包括多个导线及像素电极,其中导线是电性连接驱动电路与薄膜晶体管,且此像素电极形成于基板上,以电性连接薄膜晶体管。上述介电层的延伸部可降低薄膜晶体管的关闭电流(Ioff)。In view of this, an embodiment of the present invention provides an image display system, including: a low-temperature polysilicon (LTPS) driving circuit and a thin film transistor (thin film transistor; TFT). The driving circuit and the thin film transistor include: a substrate; an active layer formed on the substrate; a gate insulating layer covering the first active layer; a dielectric layer located on the gate insulating layer, and the dielectric The layer has an extension; and a gate electrode is formed on the dielectric layer and exposes the extension; a storage capacitor including upper and lower electrodes is formed on the substrate; a contact hole is formed in the gate insulating layer, and The contact hole exposes the area where the lower electrode adjoins the active layer. The above image display system further includes a plurality of wires and pixel electrodes, wherein the wires are electrically connected to the driving circuit and the TFT, and the pixel electrodes are formed on the substrate to electrically connect the TFT. The extension of the dielectric layer can reduce the off current (Ioff) of the thin film transistor.

本发明另一实施例提供一种图像显示系统的制作方法,包括提供低温多晶硅驱动电路及薄膜晶体管。此低温多晶硅驱动电路及薄膜晶体管的制作方法,包括:提供基板;形成第一有源层及第二有源层于该基板上;进行P+掺杂工艺,以形成源/漏极区域于该第二有源层之中;形成具有延伸部的介电层于该第一有源层上方;分别形成第一栅极电极及第二栅极电极于该第一有源层与该第二有源层上方;以及进行N+掺杂工艺,以同时形成轻掺杂源/漏极区域及源/漏极区域于该第一有源层之中。上述图像显示系统的制作方法,还包括形成多个导线于该基板上,以电性连接该驱动电路与该薄膜晶体管;以及形成像素电极于该基板上,且电性连接该薄膜晶体管。上述形成具有延伸部的介电层与第一及第二栅极电极的方式,包括沉积介电层及金属层,接着,图案化金属层,以同时形成第一、第二栅极电极及具有延伸部的介电层。Another embodiment of the present invention provides a manufacturing method of an image display system, including providing a low temperature polysilicon driving circuit and a thin film transistor. The manufacturing method of the low-temperature polysilicon driving circuit and the thin film transistor includes: providing a substrate; forming a first active layer and a second active layer on the substrate; performing a P+ doping process to form a source/drain region on the first active layer Among the two active layers; forming a dielectric layer with an extension above the first active layer; forming a first gate electrode and a second gate electrode on the first active layer and the second active layer respectively layer; and performing N+ doping process to simultaneously form lightly doped source/drain regions and source/drain regions in the first active layer. The manufacturing method of the above-mentioned image display system further includes forming a plurality of wires on the substrate to electrically connect the driving circuit and the thin film transistor; and forming a pixel electrode on the substrate to electrically connect the thin film transistor. The method for forming the dielectric layer with the extension and the first and second gate electrodes includes depositing the dielectric layer and the metal layer, and then patterning the metal layer to simultaneously form the first and second gate electrodes and the first and second gate electrodes. The dielectric layer of the extension.

由于上述介电层的延伸部可与栅极电极同时形成,而不需额外使用光掩模,因此,可减少工艺的光掩模数。再者,上述栅极电极以及介电层的延伸部可作为掩模,使得可全面性地进行N+掺杂工艺,而不需要额外的光掩模,且可于一次掺杂步骤同时形成轻掺杂源/漏极区域及源/漏极区域。据此,本发明实施例的图像显示系统的制作方法,可减少光掩模数,进而降低制作成本。Since the extension part of the above-mentioned dielectric layer can be formed simultaneously with the gate electrode without using an additional photomask, the number of photomasks in the process can be reduced. Furthermore, the above-mentioned extension of the gate electrode and the dielectric layer can be used as a mask, so that the N+ doping process can be performed comprehensively without additional photomasks, and light doping can be formed simultaneously in one doping step. Impurity source/drain regions and source/drain regions. Accordingly, the manufacturing method of the image display system according to the embodiment of the present invention can reduce the number of photomasks, thereby reducing the manufacturing cost.

本发明又一实施例提供一种图像显示系统的制作方法,包括提供低温多晶硅驱动电路及薄膜晶体管。此低温多晶硅驱动电路及薄膜晶体管的制作方法,包括:提供基板;形成第一有源层及第二有源层于该基板上;形成具有延伸部的介电层于该第一有源层上方;分别形成第一栅极电极及第二栅极电极于该第一有源层与该第二有源层上方;以及进行N+掺杂工艺,以同时形成轻掺杂源/漏极区域及源/漏极区域于该第一有源层之中;进行P+掺杂工艺,以形成源/漏极区域于该第二有源层之中。另外,上述形成具有延伸部的介电层与第一及第二栅极电极的方式,包括沉积介电层及金属层,接着,图案化金属层,以同时形成第一、第二栅极电极及具有延伸部的介电层。上述图像显示系统的制作方法,还包括形成多个导线于该基板上,以电性连接该驱动电路与该薄膜晶体管;以及形成像素电极于该基板上,且电性连接该薄膜晶体管。Yet another embodiment of the present invention provides a method for manufacturing an image display system, including providing a low-temperature polysilicon driving circuit and a thin film transistor. The manufacturing method of the low-temperature polysilicon driving circuit and the thin film transistor includes: providing a substrate; forming a first active layer and a second active layer on the substrate; forming a dielectric layer with an extension on the first active layer ; respectively forming a first gate electrode and a second gate electrode above the first active layer and the second active layer; and performing an N+ doping process to simultaneously form a lightly doped source/drain region and a source The /drain region is in the first active layer; the P+ doping process is performed to form the source/drain region in the second active layer. In addition, the method of forming the dielectric layer with the extension and the first and second gate electrodes includes depositing the dielectric layer and the metal layer, and then patterning the metal layer to simultaneously form the first and second gate electrodes and a dielectric layer having an extension. The manufacturing method of the above-mentioned image display system further includes forming a plurality of wires on the substrate to electrically connect the driving circuit and the thin film transistor; and forming a pixel electrode on the substrate to electrically connect the thin film transistor.

附图说明Description of drawings

图1A-1H显示本发明第一实施例的制作低温多晶硅驱动电路及薄膜晶体管的剖面图;1A-1H show the cross-sectional views of the low-temperature polysilicon drive circuit and the thin film transistor of the first embodiment of the present invention;

图2A-2G显示本发明第二实施例的制作低温多晶硅驱动电路及薄膜晶体管的剖面图;2A-2G show cross-sectional views of manufacturing a low-temperature polysilicon drive circuit and a thin film transistor according to a second embodiment of the present invention;

图3显示本发明实施例的制作低温多晶硅驱动电路及薄膜晶体管的流程图;以及Fig. 3 shows the flow chart of making low-temperature polysilicon drive circuit and thin film transistor according to the embodiment of the present invention; And

图4显示一种图像显示系统的示意图,其中此图像显示系统是使用包括本发明实施例的低温多晶硅驱动电路及薄膜晶体管的显示面板。FIG. 4 shows a schematic diagram of an image display system, wherein the image display system uses a display panel including a low temperature polysilicon driving circuit and a thin film transistor according to an embodiment of the present invention.

主要元件符号说明Description of main component symbols

100~基板;102~缓冲层;104~驱动区域;106~像素区域;108~半导体层;110~掺杂工艺;112~有源层;112a~沟道区域;114~有源层;114a~沟道区域;114b~源/漏极区域;115~掺杂的半导体层;115a~沟道区域;116~下电极;118~图案化光致抗蚀剂层;120~图案化光致抗蚀剂层;122~掺杂工艺;124~栅极绝缘层;125~介电材料层;126~介电层;126a~延伸部;127~介电层;127a~延伸部;128~介电层;128a~延伸部;129~介电层;130~栅极电极;132~栅极电极;134~栅极电极;136~上电极;138~掺杂工艺;140~轻掺杂源/漏极区域;142~源/漏极区域;144~轻掺杂源/漏极区域;146~源/漏极区域;148~层间介电层;150~保护层;152a~接触孔;152b~接触孔;152c~接触孔;154a~导线;154b~导线;154c~导线;156~平坦层;158~开口;160~像素电极;162~N型金属氧化物半导体元件;164~P型金属氧化物半导体元件;166~薄膜晶体管;168~储存电容;100~substrate; 102~buffer layer; 104~drive region; 106~pixel region; 108~semiconductor layer; 110~doping process; 112~active layer; 112a~channel region; 114~active layer; 114a~ Channel region; 114b~source/drain region; 115~doped semiconductor layer; 115a~channel region; 116~bottom electrode; 118~patterned photoresist layer; 120~patterned photoresist 122~doping process; 124~gate insulating layer; 125~dielectric material layer; 126~dielectric layer; 126a~extended part; 127~dielectric layer; 127a~extended part; 128~dielectric layer ; 128a~extension part; 129~dielectric layer; 130~gate electrode; 132~gate electrode; 134~gate electrode; 136~upper electrode; 138~doping process; 140~lightly doped source/drain 142~source/drain region; 144~lightly doped source/drain region; 146~source/drain region; 148~interlayer dielectric layer; 150~protective layer; 152a~contact hole; 152b~contact Hole; 152c~contact hole; 154a~conducting wire; 154b~conducting wire; 154c~conducting wire; 156~planar layer; 158~opening; 160~pixel electrode; 162~N-type metal oxide semiconductor element; 164~P-type metal oxide Semiconductor element; 166~thin film transistor; 168~storage capacitor;

200~基板;202~缓冲层;204~驱动区域;206~像素区域;208~有源层;208a~沟道区域;210~有源层;210a~沟道区域;210b~掺杂区域;212~掺杂的半导体层;212a~沟道区域;212b~下电极;214~栅极绝缘层;216~介电材料;218~栅极电极;220~栅极电极;222~栅极电极;224~上电极;226~介电层;226a~延伸部;228~介电层;228a~延伸部;230~介电层;230a~延伸部;232~掺杂工艺;234~轻掺杂源/漏极区域;236~源/漏极区域;238~轻掺杂源/漏极区域;240~源/漏极区域;242~光致抗蚀剂材料;243~光致抗蚀剂材料;244~掺杂工艺;246~源/漏极区域;248~层间介电层;250~保护层;252a~接触孔;252b~接触孔;252c~接触孔;254a~导线;254b~导线;254c~导线;256~平坦层;258~开口;260~像素电极;262~N型金属氧化物半导体元件;264~P型金属氧化物半导体元件;266~薄膜晶体管;268~储存电容;300~图像显示系统;310~显示面板;320~控制单元。200~substrate; 202~buffer layer; 204~drive region; 206~pixel region; 208~active layer; 208a~channel region; 210~active layer; 210a~channel region; 210b~doped region; 212 ~doped semiconductor layer; 212a~channel region; 212b~bottom electrode; 214~gate insulating layer; 216~dielectric material; 218~gate electrode; 220~gate electrode; 222~gate electrode; 224 ~upper electrode; 226~dielectric layer; 226a~extended part; 228~dielectric layer; 228a~extended part; 230~dielectric layer; 230a~extended part; 232~doping process; 234~light doping source/ Drain region; 236~source/drain region; 238~lightly doped source/drain region; 240~source/drain region; 242~photoresist material; 243~photoresist material; 244 ~doping process; 246~source/drain region; 248~interlayer dielectric layer; 250~protective layer; 252a~contact hole; 252b~contact hole; 252c~contact hole; 254a~wire; 254b~wire; 254c ~wire; 256~flat layer; 258~opening; 260~pixel electrode; 262~N-type metal oxide semiconductor element; 264~P-type metal oxide semiconductor element; 266~thin film transistor; 268~storage capacitor; 300~image Display system; 310~display panel; 320~control unit.

具体实施方式Detailed ways

接下来,将详细说明本发明的具体实施例及其制作的方法。然而,可以了解的是,本发明提供许多可实施于广泛多样的应用领域的发明概念。用来说明的实施例,仅是利用本发明概念的具体实施方式的说明,并不限制本发明的范围。Next, specific embodiments of the present invention and methods for making them will be described in detail. It can be appreciated, however, that the present invention provides many inventive concepts that can be implemented in a wide variety of fields of application. The examples used for illustration are merely illustrations of specific implementations utilizing the concepts of the present invention, and do not limit the scope of the present invention.

本发明是以低温多晶硅(LTPS)驱动电路及薄膜晶体管(TFT)的实施例作为说明。然而,本发明的概念当然也可以用来制作其它集成电路。图1A-1H是显示根据本发明第一实施例的制作一种低温多晶硅驱动电路及薄膜晶体管的剖面图。图2A-2G是显示根据本发明第二实施例的制作一种低温多晶硅驱动电路的剖面图。The present invention is illustrated by an embodiment of a low temperature polysilicon (LTPS) driving circuit and a thin film transistor (TFT). However, the concept of the invention can of course also be used to fabricate other integrated circuits. 1A-1H are cross-sectional views showing fabrication of a low-temperature polysilicon driving circuit and a thin film transistor according to a first embodiment of the present invention. 2A-2G are cross-sectional views showing fabrication of a low temperature polysilicon driving circuit according to a second embodiment of the present invention.

如图1A所示,提供上方形成有缓冲层(buffer layer)102的基板100,且此基板100可以划分为驱动区域(driving area)104及像素区域(pixel area)106。在一实施例中,上述基板100可以是玻璃、塑胶或其它合适的透明基材。As shown in FIG. 1A , a substrate 100 with a buffer layer 102 formed thereon is provided, and the substrate 100 can be divided into a driving area 104 and a pixel area 106 . In an embodiment, the above-mentioned substrate 100 may be glass, plastic or other suitable transparent substrates.

接着,形成半导体层(semiconductor layer)108于基板100上方。在一实施例中,形成半导体层108的方式,可以是通过例如化学气相沉积(chemicalvapor deposition;CVD)法,沉积非晶硅层(amorphous silicon layer)于上述基板100上方,接着,进行准分子激光退火(excimer laser annealing;ELA)处理,使得此非晶硅层可结晶成为多晶硅层(polysilicon layer)。Next, a semiconductor layer 108 is formed on the substrate 100 . In one embodiment, the method of forming the semiconductor layer 108 may be, for example, depositing an amorphous silicon layer (amorphous silicon layer) on the above-mentioned substrate 100 by a chemical vapor deposition (chemical vapor deposition; CVD) method, and then performing an excimer laser Annealing (excimer laser annealing; ELA) treatment enables the amorphous silicon layer to be crystallized into a polysilicon layer (polysilicon layer).

如图1B所示,图案化上述半导体层108,接着,进行掺杂工艺,以形成有源层(active layer)112、有源层114及已掺杂的半导体层115(dopedsemiconductor layer)。此外,位于像素区域106的部分已掺杂半导体层115也可作为后续的薄膜晶体管(TFT)的有源层。在一实施例中,上述掺杂工艺也可以在图案化半导体层步骤之前进行。As shown in FIG. 1B , the semiconductor layer 108 is patterned, and then a doping process is performed to form an active layer 112 , an active layer 114 and a doped semiconductor layer 115 (doped semiconductor layer). In addition, a portion of the doped semiconductor layer 115 located in the pixel region 106 can also be used as an active layer of a subsequent thin film transistor (TFT). In an embodiment, the above-mentioned doping process may also be performed before the step of patterning the semiconductor layer.

另外,在一实施例中,也可以在进行沉积非晶硅层时,同时进行掺杂工艺,然后,再进行激光退火非晶硅层,使其转化为多晶硅后,再图案化此多晶硅层。上述掺杂工艺也可以称为沟道掺杂工艺(channel doping)。In addition, in one embodiment, the doping process can also be performed while depositing the amorphous silicon layer, and then laser annealing is performed on the amorphous silicon layer to convert it into polysilicon, and then the polysilicon layer is patterned. The above-mentioned doping process may also be referred to as a channel doping process (channel doping).

如图1C所示,进行例如是硼离子的P+掺杂工艺122,以形成源/漏极区域(source/drain region)114b于有源层114之中。在一实施例中,涂布光致抗蚀剂材料于上述基板100上,接着,图案化此光致抗蚀剂材料,以形成图案化光致抗蚀剂层118及120。在驱动区域104,图案化光致抗蚀剂层118遮蔽有源层112,而图案化光致抗蚀剂层120遮蔽部分的有源层114,以暴露欲掺杂的部分。在像素区域106,图案化光致抗蚀剂层118遮蔽部分已掺杂的半导体层115,以暴露欲掺杂的部分。接着,进行掺杂工艺122,以形成源/漏极区域114b及沟道区域114a,且在像素区域106,形成储存电容(storage capacitance)的下电极(low electrode)116。完成上述掺杂工艺112后,移除图案化光致抗蚀剂层118及120。As shown in FIG. 1C , a P+ doping process 122 such as boron ions is performed to form source/drain regions 114 b in the active layer 114 . In one embodiment, a photoresist material is coated on the substrate 100 , and then the photoresist material is patterned to form patterned photoresist layers 118 and 120 . In the driving region 104 , the patterned photoresist layer 118 shields the active layer 112 , and the patterned photoresist layer 120 shields a portion of the active layer 114 to expose the portion to be doped. In the pixel region 106 , the patterned photoresist layer 118 shields part of the doped semiconductor layer 115 to expose the part to be doped. Next, a doping process 122 is performed to form a source/drain region 114b and a channel region 114a, and in the pixel region 106, a lower electrode 116 of a storage capacitance is formed. After the doping process 112 is completed, the patterned photoresist layers 118 and 120 are removed.

如图1D所示,依序形成栅极绝缘层(gate insulation layer)124及介电材料层125于上述基板100上,且覆盖上述已制作于基板100上的元件。在一实施例中,上述介电材料层125的材料可以是氮化硅(silicon nitride)、氮氧化硅(silicon oxynitride)或其它合适的氮化材料。而栅极绝缘层124的材料可以是氧化硅(silicon oxide)。此外,上述介电材料层125的厚度是与后续的N+掺杂工艺的注入能量有关,且优选的厚度可以是约400埃

Figure S2008100845869D00051
但并不以此为限。As shown in FIG. 1D , a gate insulation layer 124 and a dielectric material layer 125 are sequentially formed on the substrate 100 to cover the components fabricated on the substrate 100 . In an embodiment, the material of the dielectric material layer 125 may be silicon nitride, silicon oxynitride or other suitable nitride materials. The material of the gate insulating layer 124 may be silicon oxide. In addition, the thickness of the dielectric material layer 125 is related to the implantation energy of the subsequent N+ doping process, and the preferred thickness may be about 400 Angstroms
Figure S2008100845869D00051
But not limited to this.

在另一实施例中,也可以先形成栅极绝缘层124、介电材料层125后,接着,再进行P+掺杂工艺,以形成源/漏极区域114b于有源层114之中。In another embodiment, the gate insulating layer 124 and the dielectric material layer 125 may also be formed first, and then a P+ doping process is performed to form the source/drain region 114 b in the active layer 114 .

如图1E所示,接着,分别形成栅极电极(gate electrode)130、132及134及上电极136于介电层126、127、128及129上。在一实施例中,形成例如是铝/钼合金(aluminum/molybdenum alloy)的金属层于基板100上,接着,形成图案化光致抗蚀剂层(未显示)于上述金属层上,且进行过度蚀刻(overetching)工艺,同时移除部分金属层及部分介电材料层。之后,移除图案化光致抗蚀剂层,以形成栅极电极130、132、234及上电极136,以及介电层126、127、128及129。As shown in FIG. 1E , then, gate electrodes 130 , 132 and 134 and an upper electrode 136 are formed on the dielectric layers 126 , 127 , 128 and 129 respectively. In one embodiment, a metal layer such as aluminum/molybdenum alloy is formed on the substrate 100, and then, a patterned photoresist layer (not shown) is formed on the metal layer, and The overetching process removes part of the metal layer and part of the dielectric material layer at the same time. After that, the patterned photoresist layer is removed to form the gate electrodes 130 , 132 , 234 and the upper electrode 136 , and the dielectric layers 126 , 127 , 128 and 129 .

此外,通过上述对金属层的过度蚀刻工艺,也可同时形成分别具有延伸部(extending portion)126a、127a及128a的介电层126、127及128,而不需要额外形成掩模的步骤。据此,也可以减少工艺步骤。在一实施例中,上述介电层126、127及128的延伸部126a、127a及128a的长度d优选可以是介于3000埃~5000埃

Figure S2008100845869D00062
之间。In addition, the dielectric layers 126 , 127 and 128 respectively having extending portions 126 a , 127 a and 128 a can also be formed simultaneously through the above-mentioned over-etching process on the metal layer without additional steps of forming a mask. Accordingly, process steps can also be reduced. In one embodiment, the length d of the extensions 126a, 127a and 128a of the dielectric layers 126, 127 and 128 is preferably between 3000 angstroms. ~5000 Angstroms
Figure S2008100845869D00062
between.

如图1F所示,进行磷离子的N+掺杂工艺138,以同时形成轻掺杂源/漏极(1ight doped drain/source;LDD)区域140、144及源/漏极区域142、146。值得注意的是,由于N+掺杂工艺是在形成栅极电极之后进行,使得上述栅极电极130、132及134可作为沟道区域112a、114a及115a的掩模。As shown in FIG. 1F , a phosphorous ion N+ doping process 138 is performed to simultaneously form lightly doped drain/source (LDD) regions 140 , 144 and source/drain regions 142 , 146 . It should be noted that since the N+ doping process is performed after forming the gate electrodes, the gate electrodes 130 , 132 and 134 can be used as masks for the channel regions 112 a , 114 a and 115 a.

此外,上述介电层126及128的延伸部126a及128a也可作为一掩模,在进行N+掺杂工艺时,可减少穿过延伸部126a及128a的磷离子。因此,在上方覆盖有延伸部126a及128a的有源层112及115中的磷离子浓度会小于未覆盖有延伸部126a及128a的有源层112及115中的磷离子浓度。据此,依据本发明第一实施例的方式,可通过栅极电极及介电层的延伸部作为掩模,全面性地进行N+掺杂工艺,而不需额外形成掩模的步骤,以同时完成轻掺杂源/漏极区域及源/漏极区域的制作。In addition, the extensions 126a and 128a of the above-mentioned dielectric layers 126 and 128 can also be used as a mask to reduce phosphorus ions passing through the extensions 126a and 128a during the N+ doping process. Therefore, the concentration of phosphorus ions in the active layers 112 and 115 covered with the extensions 126a and 128a is lower than the concentration of phosphorus ions in the active layers 112 and 115 not covered with the extensions 126a and 128a. Accordingly, according to the method of the first embodiment of the present invention, the N+ doping process can be performed comprehensively by using the extension of the gate electrode and the dielectric layer as a mask, without additional steps of forming a mask, so as to simultaneously The fabrication of lightly doped source/drain regions and source/drain regions is completed.

由于,延伸部126a及128a可作为掩模,因此,轻掺杂源/漏极区域140及144的侧边大体上会分别对齐上述延伸部126a及128a的侧边。再者,由于介电层的延伸部可与栅极电极同时形成,而不需要额外的光掩模,且通过已形成的延伸部及栅极电极,其可作为掩模,可同时形成轻掺杂源/漏极区域及源/漏极区域,亦不需光掩模。因此,依据本发明第一实施例所述的方式,可减少至少两道光掩模数。所以,可缩短制作流程及节省成本。Since the extensions 126a and 128a can be used as masks, the sides of the lightly doped source/drain regions 140 and 144 are substantially aligned with the sides of the extensions 126a and 128a respectively. Furthermore, since the extension of the dielectric layer can be formed simultaneously with the gate electrode, no additional photomask is required, and the formed extension and the gate electrode can be used as a mask to simultaneously form the lightly doped The impurity source/drain region and the source/drain region also do not need a photomask. Therefore, according to the method described in the first embodiment of the present invention, the number of photomasks can be reduced by at least two. Therefore, the production process can be shortened and the cost can be saved.

在完成上述步骤后,在驱动区域104会形成N型金属氧化物半导体fmetal-oxide semiconductor:MOS)元件162,其由沟道区域112a、轻掺杂源/漏极区域140、源/漏极区域142、栅极绝缘层124、介电层126及栅极电极130所构成,以及P型金属氧化物半导体元件164,其由沟道区域114a、源/漏极区域114b、栅极绝缘层124、介电层127及栅极电极132所构成。同时,在像素区域106也会形成薄膜晶体管166,其由沟道区域115a、轻掺杂源/漏极区域144、源/漏极区域146、栅极绝缘层124、介电层128及栅极电极134所构成,以及储存电容168。After the above steps are completed, an N-type metal-oxide semiconductor (MOS) element 162 will be formed in the drive region 104, which consists of a channel region 112a, a lightly doped source/drain region 140, a source/drain region 142, a gate insulating layer 124, a dielectric layer 126 and a gate electrode 130, and a P-type metal oxide semiconductor element 164, which is composed of a channel region 114a, a source/drain region 114b, a gate insulating layer 124, The dielectric layer 127 and the gate electrode 132 are formed. At the same time, a thin film transistor 166 will also be formed in the pixel region 106, which consists of a channel region 115a, a lightly doped source/drain region 144, a source/drain region 146, a gate insulating layer 124, a dielectric layer 128 and a gate electrode. electrode 134 and storage capacitor 168 .

值得一提的是,在上述N+掺杂工艺中,为了可以完全地遮蔽沟道区域114a,P型金属氧化物半导体元件164的栅极电极132的底部宽度L2优选是大于其沟道区域114a的长度L1,使得N+掺杂工艺中栅极电极132可完全地遮蔽沟道区域114a。为了上述目的,在沟道区域114a的长度L1’相似于沟道区域112a的长度L1的实施例中,可以将P型金属氧化物半导体元件164的栅极电极132的底部宽度L2设计为大于N型金属氧化物半导体元件162的栅极电极130的底部宽度L2’。或者,在栅极电极132的底部宽度L2相似于栅极电极130的底部宽度L2’的实施例中,也可以将P型金属氧化物半导体元件164的沟道区域114a的长度L1设计为小于N型金属氧化物半导体元件162的沟道区域112a的长度L1’。It is worth mentioning that, in the above-mentioned N+ doping process, in order to completely shield the channel region 114a, the bottom width L2 of the gate electrode 132 of the P-type metal oxide semiconductor element 164 is preferably larger than that of the channel region 114a. The length L1 is such that the gate electrode 132 can completely cover the channel region 114 a during the N+ doping process. For the above purpose, in an embodiment where the length L1' of the channel region 114a is similar to the length L1 of the channel region 112a, the bottom width L2 of the gate electrode 132 of the P-type metal oxide semiconductor element 164 can be designed to be greater than N The bottom width L2 ′ of the gate electrode 130 of the type MOS device 162 . Alternatively, in an embodiment where the bottom width L2 of the gate electrode 132 is similar to the bottom width L2' of the gate electrode 130, the length L1 of the channel region 114a of the P-type metal oxide semiconductor element 164 can also be designed to be smaller than N The length L1 ′ of the channel region 112 a of the type MOS device 162 .

如图1G所示,依序沉积层间介电层(interlayer dielectric)148及保护层(passivation layer)150于上述基板100上,接着,图案化层间介电层148及保护层150,以形成接触孔152a、152b及152c于层间介电层148及保护层150之中,且暴露源极/漏极区域142、114b及146。As shown in FIG. 1G, an interlayer dielectric layer (interlayer dielectric) 148 and a passivation layer (passivation layer) 150 are sequentially deposited on the above-mentioned substrate 100, and then, the interlayer dielectric layer 148 and the passivation layer 150 are patterned to form The contact holes 152 a , 152 b and 152 c are in the interlayer dielectric layer 148 and the passivation layer 150 and expose the source/drain regions 142 , 114 b and 146 .

在图1G中,在图案化层间介电层148及保护层150后,形成导线154a、154b及154c于各接触孔152a、152b及152c之中,以电性连接源/漏极区域142、114b及146。在一实施例中,覆盖例如是钼/铝/钼的金属堆叠层于基板100上,接着图案化此金属堆叠层,以形成导线154a、154b及154c,且电性连接像素区域106的薄膜晶体管166与驱动区域104的驱动电路。In FIG. 1G, after patterning the interlayer dielectric layer 148 and the passivation layer 150, wires 154a, 154b, and 154c are formed in the respective contact holes 152a, 152b, and 152c to electrically connect the source/drain regions 142, 114b and 146. In one embodiment, a metal stack layer such as molybdenum/aluminum/molybdenum is covered on the substrate 100, and then the metal stack layer is patterned to form wires 154a, 154b, and 154c, which are electrically connected to the thin film transistors in the pixel region 106. 166 and the driver circuit of the driver region 104 .

值得一提的是,在像素区域106中,储存电容168的下电极116是掺杂P型掺杂物,而薄膜晶体管166的源/漏极区域146是掺杂N型掺杂物,因此,会衍生PN结(PN junction)的现象。在一优选实施例中,可将接触孔152c设置于下电极116及源/漏极区域146的相邻或邻接的位置,且将导线154c填充于接触孔152c之中,以导出在此所衍生出的电子与空穴。由此,可避免PN结现象的发生。It is worth mentioning that in the pixel region 106, the lower electrode 116 of the storage capacitor 168 is doped with a P-type dopant, and the source/drain region 146 of the thin film transistor 166 is doped with an N-type dopant. Therefore, The phenomenon of PN junction (PN junction) will be derived. In a preferred embodiment, the contact hole 152c can be disposed adjacent to or adjacent to the lower electrode 116 and the source/drain region 146, and the wire 154c is filled in the contact hole 152c, so as to derive the emitted electrons and holes. Thus, the occurrence of PN junction phenomenon can be avoided.

如图1H所示,形成平坦层156于基板100上,接着,图案化此平坦层156,以形成开口158。之后,形成像素电极(pixel electrode)160于上述平坦层上,且经由开口158,电性连接薄膜晶体管166。在一实施例中,形成例如是铟锡氧化物(ITO)的透明导电层于基板100,接着,图案化此透明导电层,以形成像素电极160。As shown in FIG. 1H , a flat layer 156 is formed on the substrate 100 , and then, the flat layer 156 is patterned to form an opening 158 . Afterwards, a pixel electrode 160 is formed on the planar layer, and is electrically connected to the thin film transistor 166 through the opening 158 . In one embodiment, a transparent conductive layer such as indium tin oxide (ITO) is formed on the substrate 100 , and then the transparent conductive layer is patterned to form the pixel electrode 160 .

图1H显示根据本发明的第一实施例的低温多晶硅驱动电路及薄膜晶体管的剖面图。请参阅图1H,在驱动区域104,显示具有N型及P型的金属氧化物半导体元件162及164的互补式金属氧化物半导体(complementarymetal-oxide semiconductor;CMOS)元件驱动电路。上述N型金属氧化物半导体元件162包括有源层112、栅极绝缘层124、具有延伸部126a的介电层126、栅极电极130,其中栅极电极130位于介电层126上,且暴露延伸部126a。而上述P型金属氧化物半导体元件164包括具有沟道区域114、源/漏极区域114a的有源层114、栅极绝缘层124及栅极电极132,其中栅极电极132的底部宽度大于沟道区域114的长度。FIG. 1H shows a cross-sectional view of a low temperature polysilicon driving circuit and a thin film transistor according to a first embodiment of the present invention. Please refer to FIG. 1H , in the driving region 104 , a complementary metal-oxide semiconductor (CMOS) device driving circuit having N-type and P-type metal-oxide semiconductor devices 162 and 164 is shown. The above-mentioned N-type metal oxide semiconductor device 162 includes an active layer 112, a gate insulating layer 124, a dielectric layer 126 having an extension 126a, and a gate electrode 130, wherein the gate electrode 130 is located on the dielectric layer 126 and exposed extension 126a. The P-type metal oxide semiconductor element 164 includes an active layer 114 having a channel region 114, a source/drain region 114a, a gate insulating layer 124, and a gate electrode 132, wherein the width of the bottom of the gate electrode 132 is larger than that of the trench. The length of the track area 114.

请再参阅图1H,在像素区域106,显示一薄膜晶体管166及一储存电容168。上述薄膜晶体管166包括有源层、栅极绝缘层124、具有延伸部128a的介电层128、栅极电极134,其中栅极电极134位于介电层126上,且暴露延伸部128a。上述有源层包括有沟道区域115a、轻掺杂源/漏极区域144及源/漏极区域146,其中轻掺杂源/漏极区域114的侧边大体上分别对齐上述延伸部128a的侧边。在图1H中,导线154a、154b及154c形成于基板100上,且电性连接薄膜晶体管166及驱动电路。上述导线154c经由接触孔同时接触储存电容168的下电极116与源/漏极区域。再者,像素电极160电性连接薄膜晶体管166,且对应于储存电容168。Please refer to FIG. 1H again, in the pixel area 106, a thin film transistor 166 and a storage capacitor 168 are displayed. The thin film transistor 166 includes an active layer, a gate insulating layer 124 , a dielectric layer 128 having an extension 128 a , and a gate electrode 134 , wherein the gate electrode 134 is located on the dielectric layer 126 and exposes the extension 128 a. The active layer includes a channel region 115a, a lightly doped source/drain region 144 and a source/drain region 146, wherein the sides of the lightly doped source/drain region 114 are substantially aligned with the sides of the extension portion 128a respectively. side. In FIG. 1H , wires 154 a , 154 b and 154 c are formed on the substrate 100 and are electrically connected to the thin film transistor 166 and the driving circuit. The wire 154c is in contact with the lower electrode 116 and the source/drain region of the storage capacitor 168 through the contact hole. Furthermore, the pixel electrode 160 is electrically connected to the thin film transistor 166 and corresponds to the storage capacitor 168 .

值得注意的是,由于介电层的延伸部在掺杂工艺中可作为掩模,且介电层的延伸部可与栅极电极同时形成。因此,根据本发明第一实施例的方式,可减少工艺的光掩模数,进而降低制作成本。此外,上述介电层的延伸部同时也可以降低薄膜晶体管的关闭电流(Ioff)。It should be noted that since the extension of the dielectric layer can be used as a mask during the doping process, the extension of the dielectric layer can be formed simultaneously with the gate electrode. Therefore, according to the method of the first embodiment of the present invention, the number of photomasks in the process can be reduced, thereby reducing the manufacturing cost. In addition, the extension of the above-mentioned dielectric layer can also reduce the off current (Ioff) of the thin film transistor.

图2A-2G显示根据本发明第二实施例的制作一种低温多晶硅驱动电路及薄膜晶体管的剖面图。相较于第一实施例,在第二实施例中,P+掺杂工艺是在形成栅极电极及N+掺杂工艺之后进行。因此,相似元件的材料及形成方式可以参阅上述第一实施例的说明,在此并不再赘述。2A-2G show cross-sectional views of manufacturing a low-temperature polysilicon driving circuit and a thin film transistor according to a second embodiment of the present invention. Compared with the first embodiment, in the second embodiment, the P+ doping process is performed after forming the gate electrode and the N+ doping process. Therefore, the materials and formation methods of similar components can refer to the description of the above-mentioned first embodiment, and will not be repeated here.

如图2A所示,提供上方形成有缓冲层202的基板200,且此基板200划分为驱动区域204及像素区域206。接着,形成有源层208及210,以及已掺杂的半导体层212于上述基板200上方。As shown in FIG. 2A , a substrate 200 on which a buffer layer 202 is formed is provided, and the substrate 200 is divided into a driving region 204 and a pixel region 206 . Next, the active layers 208 and 210 and the doped semiconductor layer 212 are formed on the substrate 200 .

如图2B所示,依序形成栅极绝缘层214、介电材料层216于上述基板200上方,且覆盖上述已制作于基板200上的元件。接着,如图2C所示,形成栅极电极218、220及222,以及分别具有延伸部226a、228a及230a的介电层226、228及230于基板200上。相似于第一实施例,首先,沉积金属层于介电材料层215上,接着,形成图案化光致抗蚀剂材料(未显示),且进行过度蚀刻工艺,以同时形成栅极电极218、220及222,以及分别具有延伸部226a、228a及230a的介电层226、228及230,而不需额外的掩模步骤。在一实施例中,上述延伸部226a、228a及230a的长度d优选可以是介于3000埃~5000埃之间。此外,通过上述步骤,也会形成储存电容于基板200上,且此储存电容包括有上电极224及下电极212b(如图2D所示)。由于,介电层的延伸部可与栅极电极同时形成,而不需额外的光掩模,因此,也可以减少工艺光掩模数,进而节省制作成本。As shown in FIG. 2B , a gate insulating layer 214 and a dielectric material layer 216 are sequentially formed on the substrate 200 to cover the components fabricated on the substrate 200 . Next, as shown in FIG. 2C , gate electrodes 218 , 220 and 222 , and dielectric layers 226 , 228 and 230 respectively having extensions 226 a , 228 a and 230 a are formed on the substrate 200 . Similar to the first embodiment, first, a metal layer is deposited on the dielectric material layer 215, then, a patterned photoresist material (not shown) is formed, and an overetching process is performed to simultaneously form the gate electrode 218, 220 and 222, and dielectric layers 226, 228, and 230 with extensions 226a, 228a, and 230a, respectively, without additional masking steps. In one embodiment, the length d of the extension portions 226 a , 228 a and 230 a is preferably between 3000 angstroms and 5000 angstroms. In addition, through the above steps, a storage capacitor is also formed on the substrate 200, and the storage capacitor includes an upper electrode 224 and a lower electrode 212b (as shown in FIG. 2D ). Since the extension part of the dielectric layer can be formed simultaneously with the gate electrode without an additional photomask, the number of photomasks in the process can also be reduced, thereby saving manufacturing cost.

在图2D中,接着,通过上述栅极电极218、222及延伸部226a、230a所构成的掩模,进行N+掺杂工艺232,以同时形成轻掺杂源/漏极区域234及源/漏极区域236,以及轻掺杂源/漏极区域238及源/漏极区域240,而不需额外的掩模步骤。值得注意的是,由于延伸部226a及230a可作为掩模,因此,上述轻掺杂源/漏极区域234及238的侧边是大体上对齐延伸部226a及230a的侧边。In FIG. 2D , then, through the mask formed by the above-mentioned gate electrodes 218, 222 and extensions 226a, 230a, an N+ doping process 232 is performed to simultaneously form lightly doped source/drain regions 234 and source/drain regions. electrode region 236, and lightly doped source/drain region 238 and source/drain region 240 without additional masking steps. It should be noted that, since the extensions 226a and 230a can be used as masks, the sides of the lightly doped source/drain regions 234 and 238 are substantially aligned with the sides of the extensions 226a and 230a.

如图2E所示,进行P+掺杂工艺244,以形成源/漏极区域246。在一实施例中,覆盖光致抗蚀剂材料,且图案化此光致抗蚀剂材料,形成图案化光致抗蚀剂层242及243,以暴露欲掺杂的部分。接着,进行P+掺杂工艺244,以形成源/漏极区域246。值得注意的是,由于上述N+掺杂工艺是以全面性地掺杂,因此,在P+掺杂工艺时,其掺杂浓度优选是大于上述N+掺杂工艺时的掺杂浓度,以将原本为N+的掺杂区域210b转变为P+的源/漏极区域246。As shown in FIG. 2E , a P+ doping process 244 is performed to form source/drain regions 246 . In one embodiment, a photoresist material is covered and patterned to form patterned photoresist layers 242 and 243 to expose the portion to be doped. Next, a P+ doping process 244 is performed to form source/drain regions 246 . It is worth noting that since the above-mentioned N+ doping process is comprehensive doping, therefore, in the P+ doping process, its doping concentration is preferably greater than that of the above-mentioned N+ doping process, so as to convert the original The N+ doped region 210b is transformed into a P+ source/drain region 246 .

如图2F所示,接着,依序形成层间介电层248及保护层250于基板200上,接着,图案化上述层间介电层248及保护层250,以形成接触孔252a、252b及252c于层间介电层248及保护层250之中。形成导线254a、254b及254c于基板200上,且分别延伸于上述接触孔252a、252b及252c之中,以电性连接薄膜晶体管266与包括有N型金属氧化物半导体元件262及P型金属氧化物半导体元件264的互补式金属氧化物半导体元件驱动电路。值得一提的是,上述接触孔252c会暴露源/漏极区域240与下电极212b邻接的区域,使得后续形成的导线254c会同时接触源/漏极区域240及下电极212b。As shown in FIG. 2F, then, an interlayer dielectric layer 248 and a protective layer 250 are sequentially formed on the substrate 200, and then, the interlayer dielectric layer 248 and the protective layer 250 are patterned to form contact holes 252a, 252b and 252c is in the interlayer dielectric layer 248 and the passivation layer 250 . Lead wires 254a, 254b, and 254c are formed on the substrate 200, and respectively extend in the above-mentioned contact holes 252a, 252b, and 252c, so as to electrically connect the thin film transistor 266 with the N-type metal oxide semiconductor element 262 and the P-type metal oxide semiconductor device. A CMOS device driving circuit for the physical semiconductor device 264 . It is worth mentioning that the above-mentioned contact hole 252c will expose the area adjacent to the source/drain region 240 and the bottom electrode 212b, so that the subsequently formed wire 254c will contact the source/drain region 240 and the bottom electrode 212b at the same time.

如图2G所示,形成平坦层(overcoating layer)256于基板200上,接着,图案化此平坦层256,以形成开口(opening)258。之后,形成像素电极260对应于储存电容268,且电性连接薄膜晶体管266。As shown in FIG. 2G , an overcoating layer 256 is formed on the substrate 200 , and then, the overcoating layer 256 is patterned to form an opening 258 . Afterwards, the pixel electrode 260 is formed corresponding to the storage capacitor 268 and electrically connected to the thin film transistor 266 .

图2G显示根据本发明第二实施例的低温多晶硅驱动电路及薄膜晶体管的剖面图。请参阅图2G,在驱动区域204,显示具有N型金属氧化物半导体元件262及P型金属氧化物半导体元件264的互补式金属氧化物半导体元件驱动电路。上述N型金属氧化物半导体元件262包括有源层208、栅极绝缘层214、具有延伸部226a的介电层226、栅极电极218,其中栅极电极218位于介电层226上,且暴露延伸部226a。而P型金属氧化物半导体元件264包括有源层210、栅极绝缘层214及栅极电极220。FIG. 2G shows a cross-sectional view of a low temperature polysilicon driving circuit and a thin film transistor according to a second embodiment of the present invention. Please refer to FIG. 2G , in the driving area 204 , a CMOS device driving circuit having an N-type MOS device 262 and a P-type MOS device 264 is shown. The N-type metal oxide semiconductor device 262 includes an active layer 208, a gate insulating layer 214, a dielectric layer 226 with an extension 226a, and a gate electrode 218, wherein the gate electrode 218 is located on the dielectric layer 226 and exposed extension 226a. The PMOS device 264 includes an active layer 210 , a gate insulating layer 214 and a gate electrode 220 .

请再参阅图2G,在像素区域206,显示一薄膜晶体管266及一储存电容268。上述薄膜晶体管266包括具有沟道区域212a、轻掺杂源/漏极区域238及源/漏极区域240的有源层、栅极绝缘层214、具有延伸部230a的介电层230及栅极电极222,其中栅极电极222设置于介电层230上,暴露延伸部230a,且轻掺杂源/漏极区域238的侧边大体上对齐上述延伸部230a的侧边。而储存电容268是位于基板200上,且包括上电极224及下电极212b。又如图2G所示,导线254a、254b及254c形成于基板100上方,且电性连接薄膜晶体管266及驱动电路。像素电极260对应上述储存电容268,且电性连接薄膜晶体管266。值得一提的是,在像素区域206,导线254c经由接触孔同时接触储存电容268的下电极212b及薄膜晶体管266的源/漏极区域240。Please refer to FIG. 2G again, in the pixel area 206, a thin film transistor 266 and a storage capacitor 268 are displayed. The thin film transistor 266 includes an active layer with a channel region 212a, a lightly doped source/drain region 238 and a source/drain region 240, a gate insulating layer 214, a dielectric layer 230 with an extension 230a, and a gate electrode. The electrode 222, wherein the gate electrode 222 is disposed on the dielectric layer 230, exposes the extension 230a, and the side of the lightly doped source/drain region 238 is substantially aligned with the side of the extension 230a. The storage capacitor 268 is located on the substrate 200 and includes an upper electrode 224 and a lower electrode 212b. Also as shown in FIG. 2G , wires 254 a , 254 b and 254 c are formed above the substrate 100 and are electrically connected to the thin film transistor 266 and the driving circuit. The pixel electrode 260 corresponds to the storage capacitor 268 and is electrically connected to the thin film transistor 266 . It is worth mentioning that, in the pixel region 206 , the wire 254 c simultaneously contacts the lower electrode 212 b of the storage capacitor 268 and the source/drain region 240 of the thin film transistor 266 through the contact hole.

图3显示根据本发明实施例的制作低温多晶硅驱动电路及薄膜晶体管的流程图。在图3中,提供基板,且形成有源层于基板上(光掩模1),如步骤S5及S10所示。接着,进行局部性地P+掺杂工艺(光掩模2),以形成P型金属氧化物半导体元件的源/漏极区域,如步骤S15所示。形成栅极电极于基板上(光掩模3),如步骤S20所示。全面性地进行N+掺杂工艺(不需光掩模),以同时形成N型金属氧化物半导体元件及薄膜晶体管的轻掺杂源/漏极区域及源/漏极区域,如步骤S25所示。沉积保护层于基板上,且图案化此保护层,以形成多个接触孔(光掩模4),如步骤S30所示。形成多个导线于基板上(光掩模5),以电性连接驱动电路及薄膜晶体管,如步骤S35所示。覆盖平坦层于基板上,且图案化此平坦层(光掩模6),以形成开口,如步骤S40所示。之后,形成像素电极(光掩模7),电性连接薄膜晶体管,如步骤S45所示。FIG. 3 shows a flow chart of fabricating a low temperature polysilicon driving circuit and a thin film transistor according to an embodiment of the present invention. In FIG. 3 , a substrate is provided, and an active layer (photomask 1 ) is formed on the substrate, as shown in steps S5 and S10 . Next, a local P+ doping process (photomask 2) is performed to form source/drain regions of the P-type metal oxide semiconductor device, as shown in step S15. A gate electrode is formed on the substrate (photomask 3), as shown in step S20. Carry out the N+ doping process comprehensively (without photomask), so as to form lightly doped source/drain regions and source/drain regions of N-type metal oxide semiconductor elements and thin film transistors at the same time, as shown in step S25 . A protection layer is deposited on the substrate, and the protection layer is patterned to form a plurality of contact holes (photomask 4), as shown in step S30. A plurality of wires are formed on the substrate (photomask 5 ) to electrically connect the driving circuit and the TFT, as shown in step S35 . A flat layer is covered on the substrate, and the flat layer (photomask 6 ) is patterned to form openings, as shown in step S40. Afterwards, a pixel electrode (photomask 7 ) is formed and electrically connected to the thin film transistor, as shown in step S45 .

由于,在N+掺杂工艺时,可同时制作轻掺杂源/漏极区域及源/漏极区域,而不需要额外形成掩模。因此,可减少工艺所需的光掩模数,进而降低工艺成本。此外,在图3中,步骤S15也可以在步骤S20及S25之后进行,如第二实施例所揭示。由此可知,根据本发明实施例揭示的方式,仅需7道光掩模,即可制作低温多晶硅的驱动电路及薄膜晶体管。Because, during the N+ doping process, the lightly doped source/drain region and the source/drain region can be fabricated at the same time, without additionally forming a mask. Therefore, the number of photomasks required for the process can be reduced, thereby reducing the cost of the process. In addition, in FIG. 3, step S15 can also be performed after steps S20 and S25, as disclosed in the second embodiment. It can be seen that, according to the methods disclosed in the embodiments of the present invention, only seven photomasks are needed to fabricate low temperature polysilicon driving circuits and thin film transistors.

第4图显示一种图像显示系统300的示意图,其中此图像显示系统300是使用包括本发明的低温多晶硅驱动电路及薄膜晶体管的显示面板310,且此显示面板310可以是电子装置的一部分构件。如图4所示,上述图像显示系统300包括显示面板310及一与之耦接的控制单元320,以传输信号至显示面板310,使得控制显示面板显示图像。上述图像显示系统300可以是移动电话(mobile phone)、数字相机(digtal camera)、个人数码助理(personaldigital assistant;PDA)、笔记本电脑(notebook computer)、桌上型电脑(desktopcomputer)、电视、车用显示器、全球定位系统(GPS)、航空用显示器或便携式数字多功能光碟播放机等的电子装置。4 shows a schematic diagram of an image display system 300, wherein the image display system 300 uses a display panel 310 including the low-temperature polysilicon driving circuit and thin film transistors of the present invention, and the display panel 310 may be a part of an electronic device. As shown in FIG. 4 , the image display system 300 includes a display panel 310 and a control unit 320 coupled thereto for transmitting signals to the display panel 310 to control the display panel to display images. The above-mentioned image display system 300 can be a mobile phone (mobile phone), a digital camera (digital camera), a personal digital assistant (personal digital assistant; PDA), a notebook computer (notebook computer), a desktop computer (desktopcomputer), a television, a vehicle Electronic devices such as monitors, global positioning systems (GPS), aviation monitors or portable digital versatile disc players.

虽然本发明已以优选实施例揭露如上,但并非用以限定本发明,任何本领域的技术人员,在不脱离本发明的精神和范围内,可以进行更改和修饰,因此本发明的保护范围应以权利要求所界定为准。Although the present invention has been disclosed above with preferred embodiments, it is not intended to limit the present invention. Any skilled person in the art can make changes and modifications without departing from the spirit and scope of the present invention. Therefore, the protection scope of the present invention should be as defined in the claims.

Claims (11)

1. image display system comprises:
Low temperature spathic silicon driving circuit and thin-film transistor comprise:
Substrate;
First active layer is formed on this substrate;
Gate insulator covers this first active layer;
First dielectric layer is positioned on this gate insulator, and this dielectric layer has extension; And
The first grid electrode is formed on this dielectric layer, and exposes this extension;
Storage capacitors is formed on this substrate, and this storage capacitors comprises top electrode and bottom electrode;
Contact hole is formed among this gate insulator, and this bottom electrode of this contact holes exposing is in abutting connection with the zone of this first active layer;
A plurality of leads are formed at this substrate top, and electrically connect drive circuit and this thin-film transistor; And
Pixel electrode electrically connects this thin-film transistor,
Wherein, this first active layer comprises: first channel region, corresponding to the first grid electrode; First lightly-doped source/drain region is in abutting connection with this first channel region; And first source/drain region, in abutting connection with this first lightly-doped source/drain region.
2. image display system as claimed in claim 1, this drive circuit wherein also comprises:
Second active layer is formed on this substrate, and this second active layer has second channel region and in abutting connection with the source/drain region of this second channel region;
Second dielectric layer is formed on this gate insulator; And
The second grid electrode is formed on this second dielectric layer, and to should second channel region.
3. image display system as claimed in claim 2, wherein the bottom width of this second grid electrode is greater than the length of this second channel region, and the length of this second channel region is less than the length of this first channel region.
4. image display system as claimed in claim 2, wherein the bottom width of this second grid electrode is greater than the length of this second channel region, and the bottom width of this second grid electrode is greater than the bottom width of this first grid electrode.
5. image display system as claimed in claim 1 also comprises:
Display floater comprises this low temperature spathic silicon driving circuit and thin-film transistor; And
Control unit couples this display floater, to control this display floater.
6. image display system as claimed in claim 5; Wherein this image display system comprises the electronic installation that uses this display floater, and this electronic installation comprises that mobile phone, digital camera, personal digital assistant, notebook computer, desktop computer, TV, automobile-used display, global positioning system, aviation are with display or the multi-functional laser disc player of portable digital.
7. the manufacture method of an image display system comprises:
Make the drive circuit and the thin-film transistor of low temperature polycrystalline silicon, comprising:
Substrate is provided;
Form first active layer and second active layer on this substrate;
The deposition of dielectric materials layer is in this substrate top;
Depositing metal layers is on this dielectric materials layer;
This metal level of patterning, forming first grid electrode and second grid electrode respectively in this first active layer and this second active layer top, and form simultaneously have extension dielectric layer between this first grid and this first active layer; And
Carry out first doping process, to form the lightly-doped source/drain region and first source/drain region simultaneously among this first active layer;
Form a plurality of leads on this substrate, to electrically connect this drive circuit and this thin-film transistor; And
Form pixel electrode on this substrate, and electrically connect this thin-film transistor.
8. the manufacture method of image display system as claimed in claim 7, this metal level of patterning wherein comprises:
Form patterning photoresist layer on this metal level of part; And
Carry out the over etching step, remove this metal level of part and this dielectric materials layer of part, to form this first, second gate electrode and to have this dielectric layer of this extension; And
Remove this patterning photoresist layer.
9. the manufacture method of image display system as claimed in claim 7 before forming this metal level, also comprises:
Form photo anti-corrosion agent material on this substrate;
This photo anti-corrosion agent material of patterning is with this second active layer of expose portion;
Carry out second doping process, to form channel region and second source/drain region, wherein the length of this channel region is less than the bottom width of this second grid electrode; And
Remove this photo anti-corrosion agent material.
10. the manufacture method of image display system as claimed in claim 7 also comprises forming storage capacitors on this substrate, and wherein this storage capacitors comprises top electrode and bottom electrode.
11. the manufacture method of image display system as claimed in claim 10 before forming these a plurality of leads, also comprises:
Form protective layer on this substrate, and cover this drive circuit, this thin-film transistor and this storage appearance electric capacity; And
This protective layer of patterning, forming contact hole among this protective layer, and the zone of this bottom electrode of this contact holes exposing and this first source/drain electrode adjacency.
CN2008100845869A 2007-09-28 2008-04-09 Image display system and manufacturing method thereof Active CN101399273B (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US97582107P 2007-09-28 2007-09-28
US60/975,821 2007-09-28
US98242107P 2007-10-25 2007-10-25
US60/982,421 2007-10-25

Publications (2)

Publication Number Publication Date
CN101399273A CN101399273A (en) 2009-04-01
CN101399273B true CN101399273B (en) 2012-07-18

Family

ID=44725772

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2008100845869A Active CN101399273B (en) 2007-09-28 2008-04-09 Image display system and manufacturing method thereof

Country Status (2)

Country Link
CN (1) CN101399273B (en)
TW (1) TWI372465B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI467771B (en) * 2011-01-20 2015-01-01 Innolux Corp Thin film transistor substrate, display using the same, and manufacturing method thereof
CN105336742A (en) * 2014-07-03 2016-02-17 上海和辉光电有限公司 Polycrystalline silicon display substrate and manufacturing method thereof
CN104600028B (en) * 2014-12-24 2017-09-01 深圳市华星光电技术有限公司 Manufacturing method and structure of low-temperature polysilicon TFT substrate

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1318868A (en) * 2000-04-19 2001-10-24 精工爱普生株式会社 Electrooptical device, and its mfg. and electronic device
CN1643417A (en) * 2002-03-28 2005-07-20 日立化成工业株式会社 Optical waveguide and optical multiplexer/demultiplexer
US7038283B2 (en) * 2001-08-02 2006-05-02 Fujitsu Display Technologies Corporation Thin film transistor device, method of manufacturing the same and liquid crystal panel

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1318868A (en) * 2000-04-19 2001-10-24 精工爱普生株式会社 Electrooptical device, and its mfg. and electronic device
US7038283B2 (en) * 2001-08-02 2006-05-02 Fujitsu Display Technologies Corporation Thin film transistor device, method of manufacturing the same and liquid crystal panel
CN1643417A (en) * 2002-03-28 2005-07-20 日立化成工业株式会社 Optical waveguide and optical multiplexer/demultiplexer

Also Published As

Publication number Publication date
CN101399273A (en) 2009-04-01
TWI372465B (en) 2012-09-11
TW200915574A (en) 2009-04-01

Similar Documents

Publication Publication Date Title
US10325938B2 (en) TFT array substrate, method for manufacturing the same, and display device
US8759832B2 (en) Semiconductor device and electroluminescent device and method of making the same
US6617203B2 (en) Flat panel display device and method of manufacturing the same
US7649583B2 (en) Semiconductor structure and fabricating method thereof for liquid crystal display device
US7800177B2 (en) Thin film transistor plate and method of fabricating the same
JP5650879B2 (en) Display having thin film transistor device having different electrical characteristics of pixel and driving region, and manufacturing method thereof
US7638371B2 (en) Method for manufacturing thin film transistor display array with dual-layer metal line
WO2015096355A1 (en) Array substrate, manufacturing method therefor, and display device
US7674658B2 (en) Semiconductor device and manufacturing method thereof
KR20180098621A (en) Method for manufacturing low-temperature polysilicon array substrate
TW200407960A (en) Method of forming a liquid crystal display
JP5328015B2 (en) Image display system and manufacturing method thereof
CN101982884B (en) Semiconductor device and method of manufacturing the same
CN108565247B (en) Manufacturing method of LTPS TFT substrate and LTPS TFT substrate
KR101749265B1 (en) Array substrate and fabricating method for the same
CN1312525C (en) Manufacturing method of liquid crystal display
CN101399273B (en) Image display system and manufacturing method thereof
US6703266B1 (en) Method for fabricating thin film transistor array and driving circuit
CN108257975B (en) Array substrate and preparation method thereof, display device and preparation method of thin film transistor
US6887745B2 (en) Polysilicon thin film transistor and method of forming the same
CN109920805B (en) Electronic device and method of manufacturing the same
CN114388559B (en) Display panel, method for manufacturing display panel, and electronic device
US7064017B2 (en) Method of forming a CMOS transistor
US20130056766A1 (en) Semiconductor device, and method for producing same
WO2022083430A1 (en) Display panel, manufacturing method for display panel, and electronic device

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
ASS Succession or assignment of patent right

Owner name: QIMEI ELECTRONIC CO LTD

Free format text: FORMER OWNER: TONGBAO OPTOELECTRONICS CO., LTD.

Effective date: 20120615

C41 Transfer of patent application or patent right or utility model
TA01 Transfer of patent application right

Effective date of registration: 20120615

Address after: Miaoli County, Taiwan, China

Applicant after: Chimei Optoelectronics Co., Ltd.

Address before: Hsinchu science industry zone, Taiwan, China

Applicant before: Tongbao Optoelectronics Co., Ltd.

C14 Grant of patent or utility model
GR01 Patent grant