CN101394699A - Light emitting diode driving device - Google Patents
Light emitting diode driving device Download PDFInfo
- Publication number
- CN101394699A CN101394699A CNA2007101530185A CN200710153018A CN101394699A CN 101394699 A CN101394699 A CN 101394699A CN A2007101530185 A CNA2007101530185 A CN A2007101530185A CN 200710153018 A CN200710153018 A CN 200710153018A CN 101394699 A CN101394699 A CN 101394699A
- Authority
- CN
- China
- Prior art keywords
- emitting diode
- transformer
- circuit
- signal
- light
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000000295 complement effect Effects 0.000 claims description 9
- 238000001914 filtration Methods 0.000 claims 2
- 239000003990 capacitor Substances 0.000 description 5
- 230000007423 decrease Effects 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 238000000034 method Methods 0.000 description 3
- 206010014357 Electric shock Diseases 0.000 description 2
- 230000033228 biological regulation Effects 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
Images
Landscapes
- Led Devices (AREA)
Abstract
Description
技术领域 technical field
本发明涉及一种发光二极管驱动装置,尤其涉及一种发光二极管驱动装置,适用于高功率输出,以驱动至少一发光二极管模块。The invention relates to a light emitting diode driving device, in particular to a light emitting diode driving device, which is suitable for high power output to drive at least one light emitting diode module.
背景技术 Background technique
发光二极管(LED)由半导体材料所制成的发光元件,不同于传统照明,其属冷发光,具有高亮度、高发光效率、驱动电路简单、耗电量低、反应速度快等多项优点,目前已逐渐取代传统照明。Light emitting diode (LED) is a light-emitting element made of semiconductor materials. At present, it has gradually replaced traditional lighting.
于发光二极管驱动电路的设计上,一般为了安全考虑会采取一、二次侧隔离设计。参照图1,输入电压Vin经由桥式整流电路110整流后产生一次侧电压V1。于此,一次侧电压V1约为输入电压Vin的倍;举例来说,当输入电压Vin约为110V(伏特)的交流电压,经桥式整流电路110整流后,产生的一次侧电压V1约为156V的直流电压,脉宽调变(PWM)控制器120通过输出脉宽调变信号Vg控制功率开关Q1的切换,致使变压器130的一次侧电压V1转换至变压器130的二次侧,而产生输出电压Vo,以点亮串接于输出端上的发光二极管LED。以返驰式架构(Flyback Topology)为例,当功率开关Q1导通(on)时,能量储存于变压器130一次侧的激磁电感LP,此时二次侧不导通;而当功率开关Q1截止(off)时,储存于变压器130一次侧的激磁电感LP内的能量释放至二次侧,进而产生输出电压Vo。于此,输出电压Vo为直流(DC)电压。In the design of the LED drive circuit, the primary and secondary side isolation design is generally adopted for safety considerations. Referring to FIG. 1 , the input voltage Vin is rectified by the
流经发光二极管LED的电流信号ILED,可通过线性稳压器TL和光耦合器(photo coupler)140,决定脉宽调变控制器120的补偿接脚COMP的电压准位。脉宽调变控制器120根据补偿接脚COMP的电压准位来调整脉宽调变信号Vg,即调整功率开关Q1的责任周期(duty cycle)大小。换句话说,将依据线性稳压器TL的准位电压(Vref)及电阻(RLED)稳定电流信号ILED,即ILED=Vref/RLED。因此,当输出端上的发光二极管LED越多颗时,输出功率越大,则控制功率开关Q1的脉宽调变信号Vg的责任周期会越大;反之亦然。The current signal I LED flowing through the light emitting diode LED can pass through the linear voltage regulator TL and the photo coupler (photo coupler) 140 to determine the voltage level of the compensation pin COMP of the
当应用于高功率输出(即,输出端连接非常多个发光二极管LED)时,为了满足电流谐波规范,一般会于前级加入功率因子修正电路(power factorWhen applied to high-power output (that is, the output terminal is connected to a large number of light-emitting diodes), in order to meet the current harmonic specifications, a power factor correction circuit (power factor correction circuit) is generally added to the front stage.
correction(PEC)circuit)150,如图2所示。correction (PEC) circuit) 150, as shown in Figure 2.
请参照图2,交流的输入电压Vin经由桥式整流电路110整流和功率因子修正电路150调整后,产生直流的一次侧电压V2。举例来说,若输入电压Vin约为110V(交流),产生的一次侧电压V2约为200V(直流);而若输入电压Vin约为220V(交流),产生的一次侧电压V2则约为400V(直流)。Referring to FIG. 2 , the AC input voltage Vin is rectified by the
于功率因子修正电路150内部会有两组回授路径。一为电流回授路径152,用以使输入电流Iin的波形能够追随输入电压Vin的波形且与输入电压Vin同相位,以提高功率因素进而满足电流谐波规范。另一为电压回授路径154,通过一次侧电压V2回授调整输入电流Iin大小,进而稳住一次侧电压V2。There are two sets of feedback paths inside the power factor correction circuit 150 . One is the current feedback path 152 , which is used to make the waveform of the input current Iin follow the waveform of the input voltage Vin and have the same phase as the input voltage Vin, so as to improve the power factor and meet the current harmonic regulation. The other is the voltage feedback path 154 , which adjusts the magnitude of the input current Iin through the feedback of the primary side voltage V2 , thereby stabilizing the primary side voltage V2 .
然而,此些驱动电路的设计必须使用线性稳压器及光耦合器做一、二次侧隔离。另外,于高功率输出(一般大于150W)的应用时,须搭配适用大尺寸的变压器,因而导致成本增加,且占空间,并且不易解决伴随而来的散热问题。此外,为配合高功率输出的应用,整个驱动电路必需使用到两颗独立的控制IC(集成电路),即PFC控制器和PWM控制器,不仅线路设计较为复杂,成本也较为昂贵。However, the design of these driving circuits must use linear voltage regulators and optocouplers to isolate the primary and secondary sides. In addition, in the application of high power output (generally greater than 150W), a large-sized transformer must be used, which increases the cost and occupies space, and it is not easy to solve the accompanying heat dissipation problem. In addition, in order to meet the application of high power output, the entire driving circuit must use two independent control ICs (integrated circuits), that is, the PFC controller and the PWM controller. Not only the circuit design is more complicated, but also the cost is relatively expensive.
发明内容 Contents of the invention
本发明所要解决的技术问题在于提供一种发光二极管驱动装置,借以解决现有技术所存在线路设计复杂且高成本的问题。The technical problem to be solved by the present invention is to provide a light-emitting diode driving device, so as to solve the problems of complicated circuit design and high cost in the prior art.
为实现上述目的,本发明所揭露的发光二极管驱动装置,包括:功率因子修正(PFC)电路、桥式开关电路、谐振电路、变压器和回授电路。功率因子修正电路会根据一回授信号调整其输出信号。桥式开关电路连接功率因子修正电路的输出端,其可将功率因子修正电路的输出信号切换成一脉波信号。谐振电路连接桥式开关电路的输出端,其可根据脉波信号进行振荡以输出一弦波信号。变压器一次侧的第一端连接谐振电路,以接收弦波信号。回授电路连接至变压器一次侧的第二端,其相应变压器的一次侧电流而输出回授信号至功率因子修正电路的回授端。To achieve the above object, the LED driving device disclosed in the present invention includes: a power factor correction (PFC) circuit, a bridge switch circuit, a resonant circuit, a transformer and a feedback circuit. The power factor correction circuit adjusts its output signal according to a feedback signal. The bridge switch circuit is connected to the output end of the power factor correction circuit, which can switch the output signal of the power factor correction circuit into a pulse wave signal. The resonant circuit is connected to the output end of the bridge switch circuit, which can oscillate according to the pulse wave signal to output a sine wave signal. The first end of the primary side of the transformer is connected to the resonant circuit to receive the sine wave signal. The feedback circuit is connected to the second terminal of the primary side of the transformer, and outputs a feedback signal to the feedback terminal of the power factor correction circuit corresponding to the primary side current of the transformer.
桥式开关电路可为一半桥式开关电路,其包括一对串联的开关元件。此对开关元件连接于功率因子修正电路的输出端和接地之间,且两开关元件之间的串联接点连接至谐振电路。The bridge switch circuit may be a half-bridge switch circuit, which includes a pair of switch elements connected in series. The pair of switching elements is connected between the output terminal of the power factor correction circuit and the ground, and the series connection between the two switching elements is connected to the resonant circuit.
于此,半桥式开关电路的两开关元件的驱动控制信号可为一对互补的脉波信号,分别输入至半桥式开关电路的两开关元件的控制端。其中,此对互补式控制信号可具有50%责任周期。Here, the driving control signals of the two switching elements of the half-bridge switching circuit may be a pair of complementary pulse signals, which are respectively input to the control terminals of the two switching elements of the half-bridge switching circuit. Wherein, the pair of complementary control signals may have a 50% duty cycle.
谐振电路可包括电容-电感所组成的谐振槽。The resonant circuit may include a capacitor-inductor resonant tank.
回授电路可包括电阻和整流元件。回授电路的电阻连接于变压器一次侧的第二端和接地之间。其中,变压器的一次侧电流流经电阻而形成一交流跨压于电阻上,且回授电路将此交流跨压进行整流以产生回授信号。The feedback circuit may include resistors and rectifying elements. The resistor of the feedback circuit is connected between the second end of the primary side of the transformer and the ground. Wherein, the primary side current of the transformer flows through the resistor to form an AC voltage across the resistor, and the feedback circuit rectifies the AC voltage to generate a feedback signal.
回授电路更可包括滤波元件,以将回授信号进行滤波,并将滤波后的回授信号提供给功率因子修正电路。The feedback circuit may further include a filter element to filter the feedback signal and provide the filtered feedback signal to the power factor correction circuit.
变压器的二次侧还耦接至少一发光二极管模块,且回授电路中的电阻的阻值相应于发光二极管模块的亮度。The secondary side of the transformer is also coupled to at least one LED module, and the resistance of the resistor in the feedback circuit corresponds to the brightness of the LED module.
于根据本案的发光二极管驱动装置中,利用变压器的一次侧电流来进行回授控制,因此,不需要通过线性稳压器及光耦合器来隔离变压器的一次侧和二次侧,以避免更换输出发光二极管时发生触电的危险,且可降低成本。另外,于根据本案的发光二极管驱动装置中,通过调整回授电路的阻值,例如:调整电阻Rcs的电阻值,来调整输出电流(即,变压器的二次侧电流),进而控制发光二极管模块的发光亮度,相较于现有技术,控制方式较为简单。此外,根据本案的发光二极管驱动装置适用于高功率输出(例如:>200W)。并且,于根据本案的发光二极管驱动装置中,仅使用到单一具有回授功能的控制器(即,功率因子修正电路),其控制线路较为简单且整体价格较为便宜。In the light-emitting diode driving device according to this case, the primary side current of the transformer is used for feedback control. Therefore, it is not necessary to isolate the primary side and the secondary side of the transformer through a linear voltage regulator and an optocoupler to avoid replacing the output There is no risk of electric shock when light-emitting diodes are used, and the cost can be reduced. In addition, in the LED driving device according to the present application, by adjusting the resistance value of the feedback circuit, for example: adjusting the resistance value of the resistor Rcs, the output current (that is, the secondary side current of the transformer) is adjusted to further control the LED module Compared with the prior art, the control method is relatively simple. Furthermore, the LED driver according to the present application is suitable for high power output (eg >200W). Moreover, in the light-emitting diode driving device according to the present application, only a single controller (ie, a power factor correction circuit) with a feedback function is used, and its control circuit is relatively simple and the overall price is relatively cheap.
附图说明 Description of drawings
图1为现有技术的发光二极管驱动装置的示意图;FIG. 1 is a schematic diagram of a light emitting diode driving device in the prior art;
图2为另一现有技术的发光二极管驱动装置的示意图;2 is a schematic diagram of another prior art LED driving device;
图3为根据本发明一实施例的发光二极管驱动装置的示意图;3 is a schematic diagram of a light emitting diode driving device according to an embodiment of the present invention;
图4为图3中各个信号的波形图;以及FIG. 4 is a waveform diagram of each signal in FIG. 3; and
图5为根据本发明另一实施例的发光二极管驱动装置的示意图。FIG. 5 is a schematic diagram of a light emitting diode driving device according to another embodiment of the present invention.
其中,附图标记:Among them, reference signs:
110:桥式整流电路 120:脉宽调变(PWM)控制器110: Bridge rectifier circuit 120: Pulse width modulation (PWM) controller
130:变压器 140:光耦合器130: Transformer 140: Optocoupler
150:功率因子修正电路 152:电流回授路径150: Power factor correction circuit 152: Current feedback path
154:电压回授路径 210:桥式整流电路154: Voltage feedback path 210: Bridge rectifier circuit
220:桥式开关电路 230:变压器220: Bridge switch circuit 230: Transformer
240:谐振电路 250:功率因子修正电路240: Resonant circuit 250: Power factor correction circuit
252:电流回授路径 254:电压回授路径252: Current feedback path 254: Voltage feedback path
260:回授电路 280:信号产生器260: Feedback circuit 280: Signal generator
290:发光二极管模块 292:第一发光二极管模块290: Light-emitting diode module 292: The first light-emitting diode module
294:第二发光二极管模块 V1:一次侧电压294: Second LED module V1: Primary side voltage
Vin:输入电压 Q1:功率开关Vin: input voltage Q1: power switch
Vg:脉宽调变信号 Vo:输出电压Vg: pulse width modulation signal Vo: output voltage
LP:变压器一次侧激磁电感 NP:变压器一次侧匝数LP: Transformer primary side excitation inductance NP: Transformer primary side turns
NS:变压器二次侧匝数 ILED:电流信号NS: Transformer secondary side turns I LED : Current signal
TL:线性稳压器 COMP:补偿接脚TL: Linear Regulator COMP: Compensation pin
Vref:准位电压 RLED:电阻Vref: Level voltage R LED : Resistor
V2:一次侧电压 Iin:输入电流V2: primary side voltage Iin: input current
CS:回授信号 V3:PFC电路的输出信号CS: feedback signal V3: output signal of PFC circuit
Sa:脉波信号 Sb:弦波信号Sa: pulse wave signal Sb: sine wave signal
Ipri:一次侧电流 Isec:二次侧电流Ipri: primary side current Isec: secondary side current
Q2:开关元件 Q3:开关元件Q2: Switching element Q3: Switching element
Sc:控制信号 Sc’:控制信号Sc: Control signal Sc’: Control signal
Cr:电容 Lr:电感Cr: Capacitance Lr: Inductance
Rcs:电阻 Dcs:整流元件Rcs: Resistance Dcs: Rectification element
Ccs:滤波元件 Vcs:回授信号的电压值Ccs: filter element Vcs: voltage value of the feedback signal
具体实施方式 Detailed ways
请参照图3,显示根据本发明一实施例的发光二极管驱动装置。根据本发明一实施例的发光二极管驱动装置,包括:桥式开关电路220、变压器230、谐振电路240、功率因子修正(PFC)电路250和回授电路260。Please refer to FIG. 3 , which shows a light emitting diode driving device according to an embodiment of the present invention. The LED driving device according to an embodiment of the present invention includes: a
功率因子修正电路250耦接于桥式整流电路210和桥式开关电路220之间。谐振电路240耦接于桥式开关电路220和变压器230一次侧的第一端之间。回授电路260耦接于变压器230一次侧的第二端和功率因子修正电路250的电压回授端之间。The power factor correction circuit 250 is coupled between the
输入电压Vin经桥式整流电路210整流后,输入至功率因子修正电路250。功率因子修正电路250具有两组回授路径。电流回授路径252连接至桥式开关电路220,以使输入电流Iin的波形能够追随输入电压Vin的波形且与输入电压Vin同相位。电压回授路径254接收来自回授电路260的回授信号CS,并根据回授信号CS调整输入电流Iin的大小,据以调整功率因子修正电路250的输出信号V3。换言之,功率因子修正电路250可根据回授信号CS调整其输出信号V3。The input voltage Vin is rectified by the
桥式开关电路220可将功率因子修正电路250的输出信号V3切换成脉波信号Sa。脉波信号Sa经由谐振电路240振荡后,于变压器230的一次侧产生一弦波信号Sb,且变压器230的一次侧电流Ipri也为一弦波信号。换言之,谐振电路240可根据脉波信号Sa进行振荡以输出一弦波信号Sb。回授电路260则相应于变压器230的一次侧电流Ipri,而输出回授信号CS。The
其中,桥式开关电路220可为全桥式开关电路或半桥式开关电路。以半桥式开关电路为例,桥式开关电路220包括一对串联的开关元件Q2、Q3。于此,开关元件Q2、Q3串接于功率因子修正电路250的输出端和接地之间,且两开关元件Q2、Q3之间的串联接点连接至谐振电路240的输入端。Wherein, the
于此,可通过一对控制信号Sc、Sc’来控制两开关元件Q2、Q3的运作。此对控制信号Sc、Sc’较佳可为一对互补的脉波信号。将此对互补式控制信号Sc、Sc’分别输入至开关元件Q2、Q3的控制端,致使两开关元件Q2、Q3根据此对互补式控制信号Sc、Sc’交错开关,以将功率因子修正电路250的输出信号V3切换成脉波信号Sa。于此,可采用责任周期为50%的互补式控制信号Sc、Sc’。Here, the operation of the two switching elements Q2, Q3 can be controlled by a pair of control signals Sc, Sc'. The pair of control signals Sc, Sc' is preferably a pair of complementary pulse signals. The pair of complementary control signals Sc, Sc' are respectively input to the control terminals of the switching elements Q2, Q3, so that the two switching elements Q2, Q3 are switched alternately according to the pair of complementary control signals Sc, Sc', so that the power factor correction circuit The output signal V3 of 250 is switched to pulse signal Sa. Here, complementary control signals Sc, Sc' with a duty cycle of 50% can be used.
此外,可于发光二极管驱动装置内设置一信号产生器280,以产生控制信号来驱动桥式开关电路220。In addition, a
谐振电路240可包括电容Cr和电感Lr。电容Cr的一端连接至桥式开关电路220,另一端则连接至电感Lr。而电感Lr相对电容Cr的一端则连接至变压器230一次侧的第一端。换言之,谐振电路240可包括电容-电感组成的谐振槽。The
于一实施例中,电容Cr连接于两开关元件Q2、Q3之间的串接接点和电感Lr之间,以接收经由开关元件Q2、Q3的切换而产成的脉波信号Sa。In one embodiment, the capacitor Cr is connected between the series connection point between the two switching elements Q2, Q3 and the inductor Lr to receive the pulse signal Sa generated by the switching of the switching elements Q2, Q3.
回授电路260可包括电阻Rcs和整流元件Dcs。电阻Rcs耦接于变压器230一次侧的第二端和接地之间。整流元件Dcs耦接于电阻Rcs相对接地的一端和功率因子修正电路250之间。The
变压器230的一次侧电流Ipri流经电阻Rcs,会形成一交流跨压于电阻Rcs上,并且此电阻Rcs的交流跨压经由整流元件Dcs的整流后,产生回授信号CS。The primary side current Ipri of the
于此,回授电路260还可包括一滤波元件Ccs,因此电阻Rcs的交流跨压经由整流元件Dcs整流及滤波元件Ccs的滤波后,产生回授信号CS给功率因子修正电路250。Here, the
于此,变压器230可为顺向式也或返驰式。另外,于变压器230的两侧的电路中可采用不同的接地。Here, the
于发光二极管驱动装置的输出端,即变压器230的二次侧,可耦接至少一个由一个或多个发光二极管LED所构成的发光二极管模块290。并且,可通过调整回授电路260,即调整电阻Rcs的阻值,控制的发光二极管模块290的亮度。换言之,电阻Rcs的阻值相应于发光二极管模块290的亮度。At least one
于此,若调整电阻Rcs的阻值,相应地,回授信号CS的电压值Vcs会随着电阻Rcs的阻值改变。而功率因子修正电路250根据回授信号CS而调整其输出信号V3,因此其输出信号V3则会相应回授信号CS的改变而被改变,进而影响了脉波信号Sa的电压峰值,并改变弦波信号Sb的电压峰值。根据变压器230的特性,变压器230的二次侧电流Isec为一次侧电流Ipri乘上变压器230的一次侧和二次侧的匝数比(NP/NS)。因此,改变变压器230的一次侧电流Ipri等效上相当于改变变压器230的二次侧电流Isec。举例来说,若增加电阻Rcs的阻值,回授信号CS的电压值Vcs会随之上升,致使功率因子修正电路250的输出信号V3的电压值下降,进而导致变压器230的一次侧电流Ipri下降,相应于一次侧电流Ipri的二次侧电流Isec则会随之下降。并且,因变压器230的一次侧电流Ipri下降,回授信号CS的电压值Vcs则会随之下降,最后回授信号CS的电压值Vcs会稳定于一定值。于此,电阻Rcs可采用可变电阻,以便于进行发光亮度的调整。Here, if the resistance value of the resistor Rcs is adjusted, correspondingly, the voltage value Vcs of the feedback signal CS will change with the resistance value of the resistor Rcs. The power factor correction circuit 250 adjusts its output signal V3 according to the feedback signal CS, so its output signal V3 will be changed corresponding to the change of the feedback signal CS, thereby affecting the peak voltage of the pulse signal Sa, and changing the The peak voltage of wave signal Sb. According to the characteristics of the
换句话说,可通过改变回授电路260的电阻Rcs阻值来调控发光二极管模块290的发光亮度。In other words, the brightness of the
此外,由于谐振电路240的谐振频率是kHz以上的频率,因此对人眼来说,并不会感受到发光二极管模块290有闪烁的现象。In addition, since the resonant frequency of the
以返驰式架构为例,脉波信号Sa、回授信号CS、流经发光二极管模块的电流信号ILED、及变压器230的一次侧电流Ipri和二次侧电流Isec的信号波形如图4所示,图4显示于根据本案的发光二极管装置驱动装置运作时,各信号信号间的关系。由图4可见,相应于脉波信号,于变压器230的一次侧形成一次侧电流Ipri,由于应于反驰式架构上,于变压器230的一次侧形成与一次侧电流Ipri反向的二次侧电流Isec,进而相应于二次侧电流Isec产生电流信号ILED,流经发光二极管模块290,以驱动发光二极管模块290。并且,于电阻Rcs阻值固定下,回授信号CS维持稳定,以致使功率因子修正电路250的输出信号V3稳定输出,进而桥式开关电路220得以据以提供电压峰值稳定的脉波信号Sa。Taking the flyback architecture as an example, the signal waveforms of the pulse signal Sa, the feedback signal CS, the current signal I LED flowing through the LED module, and the primary side current Ipri and the secondary side current Isec of the
在另一实施例中,参照图5,于发光二极管驱动装置的输出端,即变压器230的二次侧,可耦接至少一第一发光二极管模块292和至少一第二发光二极管模块294。并且,第一发光二极管模块292和第二发光二极管模块294反向并联,即,第一发光二极管模块292和第二发光二极管模块294反向耦接于变压器230的二次侧的两端。于此,变压器230会根据一次侧电流Ipri,而于其二次侧提供一输出电压Vo,以驱动第一发光二极管模块292和第二发光二极管模块294。此输出电压Vo为一交流弦波,且于输出电压Vo的正半周可驱动第一发光二极管模块292,负半周则可驱动第二发光二极管模块294。换言之,变压器230会根据一次侧电流Ipri交替驱动第一发光二极管模块292和第二发光二极管模块294。并且,电阻Rcs的阻值相应于两发光二极管模块(292、294)的亮度。In another embodiment, referring to FIG. 5 , at least one
于根据本案的发光二极管驱动装置中,由于利用变压器的一次侧电流来进行回授控制,变压器的两端一、二次侧为互相隔离,因此可节省线性稳压器及光耦合器元件的成本以及整体空间体积,也可避免更换发光二极管时发生触电的危险。另外,于根据本案的发光二极管驱动装置中,仅需调整回授电路的阻值,例如:调整电阻Rcs的电阻值,即可调整变压器的二次侧电流,进而控制发光二极管模块的发光亮度,相较于现有技术技术,控制方式较为简单。此外,根据本案的发光二极管驱动装置适用于高功率输出(例如:>200W)。并且,于根据本案的发光二极管驱动装置中,仅使用到单一具有回授功能的控制器(即,功率因子修正电路),其控制线路较为简单且整体价格较为便宜。In the light-emitting diode driving device according to this case, since the primary side current of the transformer is used for feedback control, the primary and secondary sides of the transformer are isolated from each other, so the cost of linear voltage regulators and optocoupler components can be saved As well as the overall space volume, the danger of electric shock when replacing the light-emitting diode can also be avoided. In addition, in the LED driving device according to the present application, it is only necessary to adjust the resistance value of the feedback circuit, for example, by adjusting the resistance value of the resistor Rcs, the secondary side current of the transformer can be adjusted, thereby controlling the luminance of the LED module. Compared with the prior art, the control method is relatively simple. Furthermore, the LED driver according to the present application is suitable for high power output (eg >200W). Moreover, in the light-emitting diode driving device according to the present application, only a single controller (ie, a power factor correction circuit) with a feedback function is used, and its control circuit is relatively simple and the overall price is relatively cheap.
当然,本发明还可有其它多种实施例,在不背离本发明精神及其实质的情况下,熟悉本领域的普通技术人员当可根据本发明做出各种相应的改变和变形,但这些相应的改变和变形都应属于本发明所附的权利要求的保护范围。Certainly, the present invention also can have other various embodiments, without departing from the spirit and essence of the present invention, those skilled in the art can make various corresponding changes and deformations according to the present invention, but these Corresponding changes and deformations should belong to the scope of protection of the appended claims of the present invention.
Claims (14)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2007101530185A CN101394699B (en) | 2007-09-18 | 2007-09-18 | LED driver |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2007101530185A CN101394699B (en) | 2007-09-18 | 2007-09-18 | LED driver |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101394699A true CN101394699A (en) | 2009-03-25 |
CN101394699B CN101394699B (en) | 2012-07-11 |
Family
ID=40494710
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2007101530185A Expired - Fee Related CN101394699B (en) | 2007-09-18 | 2007-09-18 | LED driver |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101394699B (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101932155A (en) * | 2009-06-24 | 2010-12-29 | 台达电子工业股份有限公司 | Power supply circuit of light emitting diode |
CN102065613A (en) * | 2010-12-22 | 2011-05-18 | 极创电子股份有限公司 | Drive circuit |
CN101965074B (en) * | 2009-07-22 | 2013-08-07 | 立锜科技股份有限公司 | Driving circuit and method of driving load |
CN104716842A (en) * | 2015-01-30 | 2015-06-17 | 西南交通大学 | Resonant type single-stage-structure single-switch multi-channel constant current output power-factor correction converter topology and control method thereof |
CN110971849A (en) * | 2018-09-28 | 2020-04-07 | 强弦科技股份有限公司 | Power supply for liquid crystal television |
TWI771039B (en) * | 2021-06-04 | 2022-07-11 | 龍華科技大學 | LED drive system with high light conversion efficiency |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7573729B2 (en) * | 2003-11-13 | 2009-08-11 | Koninklijke Philips Electronics N.V. | Resonant power LED control circuit with brightness and color control |
-
2007
- 2007-09-18 CN CN2007101530185A patent/CN101394699B/en not_active Expired - Fee Related
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101932155A (en) * | 2009-06-24 | 2010-12-29 | 台达电子工业股份有限公司 | Power supply circuit of light emitting diode |
CN101932155B (en) * | 2009-06-24 | 2013-04-17 | 台达电子工业股份有限公司 | LED power supply circuit |
CN101965074B (en) * | 2009-07-22 | 2013-08-07 | 立锜科技股份有限公司 | Driving circuit and method of driving load |
CN102065613A (en) * | 2010-12-22 | 2011-05-18 | 极创电子股份有限公司 | Drive circuit |
CN104716842A (en) * | 2015-01-30 | 2015-06-17 | 西南交通大学 | Resonant type single-stage-structure single-switch multi-channel constant current output power-factor correction converter topology and control method thereof |
CN110971849A (en) * | 2018-09-28 | 2020-04-07 | 强弦科技股份有限公司 | Power supply for liquid crystal television |
TWI771039B (en) * | 2021-06-04 | 2022-07-11 | 龍華科技大學 | LED drive system with high light conversion efficiency |
Also Published As
Publication number | Publication date |
---|---|
CN101394699B (en) | 2012-07-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7772782B2 (en) | Light emitting diode (LED) driving device | |
TWI586216B (en) | Improvements relating to lighting systems | |
CN104054226B (en) | Pulsation neutralizing converter with high power factor | |
US9000673B2 (en) | Multi-channel two-stage controllable constant current source and illumination source | |
US8598807B2 (en) | Multi-channel constant current source and illumination source | |
US8482214B2 (en) | Apparatus and methods of operation of passive LED lighting equipment | |
Fang et al. | Energy channeling LED driver technology to achieve flicker-free operation with true single stage power factor correction | |
US20110068700A1 (en) | Method and apparatus for driving multiple LED devices | |
CN110495253B (en) | Power converter circuit | |
TWI451807B (en) | Driving circuit structure | |
Liu et al. | Buck–boost–buck-type single-switch multistring resonant LED driver with high power factor and passive current balancing | |
CN102065600A (en) | LED dimming driving system | |
WO2010122403A1 (en) | Apparatus and methods of operation of passive led lighting equipment | |
Abdelmessih et al. | Analysis and experimentation on a new high power factor off-line LED driver based on interleaved integrated buck flyback converter | |
TW201526512A (en) | AC/DC converter without electroless capacitor and control method thereof | |
Liu et al. | A bridgeless electrolytic capacitor-free LED driver based on series resonant converter with constant frequency control | |
CN101621877A (en) | Current supply circuit and current control circuit of light emitting diode | |
CN101394699A (en) | Light emitting diode driving device | |
CN106664770A (en) | Power converter circuit and method thereof | |
US20100270930A1 (en) | Apparatus and methods of operation of passive led lighting equipment | |
CN105792421A (en) | A bridgeless LED drive power supply | |
AU2010286130B2 (en) | Apparatus and methods of operation of passive and active LED lighting equipment | |
US20110216567A1 (en) | Single switch inverter | |
KR101092218B1 (en) | LED Driving Circuit using Sumple Current Source | |
CN201859637U (en) | Isolated LED Driver |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20120711 Termination date: 20210918 |
|
CF01 | Termination of patent right due to non-payment of annual fee |