[go: up one dir, main page]

CN101383479A - Two-dimensional fiber laser array phase-locking and aperture filling device - Google Patents

Two-dimensional fiber laser array phase-locking and aperture filling device Download PDF

Info

Publication number
CN101383479A
CN101383479A CNA2008102007599A CN200810200759A CN101383479A CN 101383479 A CN101383479 A CN 101383479A CN A2008102007599 A CNA2008102007599 A CN A2008102007599A CN 200810200759 A CN200810200759 A CN 200810200759A CN 101383479 A CN101383479 A CN 101383479A
Authority
CN
China
Prior art keywords
mode fiber
phase
array
fiber array
compensation plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CNA2008102007599A
Other languages
Chinese (zh)
Inventor
闫爱民
刘立人
刘德安
孙建锋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Institute of Optics and Fine Mechanics of CAS
Original Assignee
Shanghai Institute of Optics and Fine Mechanics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Institute of Optics and Fine Mechanics of CAS filed Critical Shanghai Institute of Optics and Fine Mechanics of CAS
Priority to CNA2008102007599A priority Critical patent/CN101383479A/en
Publication of CN101383479A publication Critical patent/CN101383479A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Lasers (AREA)

Abstract

一种二维光纤激光阵列锁相和孔径装填装置,由全反射镜、二维单模光纤阵列、泵浦源、相位补偿板和部分反射/输出镜组成,所述的全反射镜和部分反射/输出镜以及放置其中的二维单模光纤阵列和相位补偿板满足Talbot自成像条件,组成Lau效应共振腔,本发明具有结构简单,性能稳定可靠,高功率连续输出等优点,特别适用于激光雷达、卫星激光通信和定向能武器等领域,对于发展紧凑型、轻量化和高光束质量的高功率激光系统具有实际意义。

Figure 200810200759

A two-dimensional fiber laser array phase locking and aperture filling device, composed of a total reflection mirror, a two-dimensional single-mode fiber array, a pump source, a phase compensation plate and a partial reflection/output mirror. The total reflection mirror and the partial reflection/output mirror and the two-dimensional single-mode fiber array and the phase compensation plate placed therein meet the Talbot self-imaging conditions to form a Lau effect resonant cavity. The invention has the advantages of simple structure, stable and reliable performance, high-power continuous output, etc., and is particularly suitable for laser radar, satellite laser communication, directed energy weapons and other fields, and has practical significance for the development of compact, lightweight and high-beam quality high-power laser systems.

Figure 200810200759

Description

二维光纤激光阵列锁相和孔径装填装置 Two-dimensional fiber laser array phase-locking and aperture filling device

技术领域 technical field

本发明涉及激光雷达和卫星激光通信,特别是一种二维光纤激光阵列锁相和孔径装填装置,在激光雷达和卫星激光通信发射系统中用于产生高功率和近衍射极限的高光学质量的连续激光输出。The invention relates to laser radar and satellite laser communication, especially a two-dimensional fiber laser array phase-locking and aperture filling device, which is used in laser radar and satellite laser communication transmission systems to generate high power and high optical quality near the diffraction limit Continuous laser output.

背景技术 Background technique

光纤激光器是国际上新近发展的一种新型固体激光器件,它具有散热面积大、光束质量好、体积小巧等优点,在高精度激光加工、光通信、激光雷达、空间技术、高能武器和激光医学等领域中得到应用。随着激光应用技术的发展,在激光雷达等领域需要高功率、高质量和高亮度的激光束,而且朝着小型化、全固态化、大功率化方向发展。一般来说,从单个光纤激光器获得的连续输出功率是有限的,因此采取锁相阵列结构,实现多个激光光束的锁相。Fiber laser is a new type of solid-state laser device recently developed in the world. It has the advantages of large heat dissipation area, good beam quality and small size. It is used in high-precision laser processing, optical communication, laser radar, space technology, high-energy weapons and laser medicine. applied in other fields. With the development of laser application technology, high-power, high-quality and high-brightness laser beams are required in fields such as laser radar, and they are developing in the direction of miniaturization, full solid-state, and high power. Generally speaking, the continuous output power obtained from a single fiber laser is limited, so a phase-locked array structure is adopted to achieve phase-locking of multiple laser beams.

光纤激光阵列锁相的要求是光纤阵列激光器的谐振腔容易起振,有稳定的模式输出而且光束质量好,在远场能产生单一主瓣强度输出,最终目的是获得高输出功率的同时又保证良好的光束质量。在各种光纤激光阵列锁相方法中,Talbot(泰伯)外腔锁相技术是一种非常有效的技术。众所周知,强度分布具有一定周期性的相干光在传输一定距离后会出现自身的像,这个距离称为Talbot距离。对于周期排列的激光器阵列,在Talbot距离处放置具有一定反射率的平面镜,经反射后耦合进激光器的是自身的Talbot像,从而形成稳定相干的光场输出。在先技术1(参见M.Wrage,P.Glas,et al.,Phase locking in a multicore fiber laser by means of a Talbot resonator,Opt.Lett.,25(19),436-1438,2000.)中,对多芯光纤激光器用Talbot外腔进行了模式选择,实现锁相输出。然而,该方法只是将阵列激光器锁相,但相当部分的能量分布在阵列远场的旁瓣中。The requirements for phase-locking of fiber laser arrays are that the resonator of the fiber array laser is easy to vibrate, has stable mode output and good beam quality, and can produce a single main lobe intensity output in the far field. The ultimate goal is to obtain high output power while ensuring Good beam quality. Among various fiber laser array phase-locking methods, Talbot external cavity phase-locking technology is a very effective technology. As we all know, coherent light with a certain periodicity in intensity distribution will appear its own image after a certain distance, and this distance is called the Talbot distance. For a periodically arranged laser array, a plane mirror with a certain reflectivity is placed at the Talbot distance, and what is coupled into the laser after reflection is its own Talbot image, thus forming a stable coherent light field output. Prior Art 1 (see M.Wrage, P.Glas, et al., Phase locking in a multicore fiber laser by means of a Talbot resonator, Opt.Lett., 25(19), 436-1438, 2000.) , the multi-core fiber laser is mode-selected with Talbot external cavity, and the phase-locked output is realized. However, this method only phase-locks the array laser, but a considerable part of the energy is distributed in the sidelobe of the array far field.

为了把旁瓣能量集中到中心主瓣内,要进行锁相激光阵列的孔径装填,得到单一远场零级主瓣,在近场要产生恒定振幅同相波面。在激光阵列端面和输出镜之间放置一相位补偿板,利用Talbot自成像和相位补偿效应对激光阵列进行锁相和孔径装填,获得远场单一主瓣输出。事实上,带有相位补偿板的自成像腔类似于Lau效应装置。在先技术2(参见Liren Liu,Lau cavity and phase locking of laser arrays,Opt.Lett.,14(23),1312-1314,1989.)中,设计了带相位补偿板的Lau效应共振腔,实现了半导体激光阵列的锁相和相干输出,但对于光纤激光器阵列的锁相和孔径装填没有涉及,而且是一维激光阵列锁相。In order to concentrate the side lobe energy into the central main lobe, the aperture of the phase-locked laser array must be filled to obtain a single far-field zero-order main lobe, and a constant-amplitude in-phase wavefront must be generated in the near-field. A phase compensation plate is placed between the end face of the laser array and the output mirror, and the phase-locking and aperture filling of the laser array are carried out by using Talbot self-imaging and phase compensation effects to obtain a single main lobe output in the far field. In fact, a self-imaging cavity with a phase compensation plate resembles a Lau effect device. In prior art 2 (see Liren Liu, Lau cavity and phase locking of laser arrays, Opt. Lett., 14(23), 1312-1314, 1989.), a Lau effect resonant cavity with a phase compensation plate was designed to realize The phase-locking and coherent output of the semiconductor laser array are covered, but the phase-locking and aperture filling of the fiber laser array are not involved, and it is a one-dimensional laser array phase-locking.

发明内容 Contents of the invention

本发明的目的在于克服上述在先技术的不足,提供一种二维面阵排列的光纤激光阵列锁相和孔径装填装置,以产生高功率和高光学质量的连续激光光束输出。The purpose of the present invention is to overcome the shortcomings of the above-mentioned prior art, and provide a two-dimensional area array fiber laser array phase-locking and aperture filling device to produce continuous laser beam output with high power and high optical quality.

本发明的技术解决方案如下:Technical solution of the present invention is as follows:

一种二维光纤激光阵列锁相和孔径装填装置,包括全反射镜、单模光纤阵列、泵浦源、相位补偿板和部分反射/输出镜,其特点是:A two-dimensional fiber laser array phase-locking and aperture filling device, including a total reflection mirror, a single-mode fiber array, a pump source, a phase compensation plate and a partial reflection/output mirror, is characterized by:

所述的全反射镜、单模光纤阵列、相位补偿板和部分反射/输出镜同光轴依次设置;The total reflection mirror, the single-mode fiber array, the phase compensation plate and the partial reflection/output mirror are arranged in sequence on the same optical axis;

所述的单模光纤阵列是由多根单模光纤排列而成,其横截面具有对称的二维格点面阵结构,所述的单模光纤阵列的一端紧贴所述的全反射镜,另一端为输出端,每根单模光纤纤芯的直径为d,两正交方向的周期分别为T1x和T1y,定义光纤阵列两正交方向的占空比分别为d/T1x和d/T1yThe single-mode fiber array is formed by arranging a plurality of single-mode fibers, and its cross section has a symmetrical two-dimensional lattice structure. One end of the single-mode fiber array is close to the total reflection mirror, The other end is the output end, the diameter of each single-mode fiber core is d, the periods of the two orthogonal directions are T 1x and T 1y respectively, and the duty cycles of the two orthogonal directions of the fiber array are defined as d/T 1x and d/T 1y ;

所述的泵浦源由多个半导体激光二极管组成;The pumping source is composed of a plurality of semiconductor laser diodes;

所述的单模光纤阵列中的每根单模光纤与所述的泵浦源中的一个半导体激光二极管连接,形成激光泵浦关系;Each single-mode fiber in the single-mode fiber array is connected to a semiconductor laser diode in the pump source to form a laser pumping relationship;

所述的单模光纤阵列的输出端面至所述的相位补偿板的距离Z1满足Talbot(泰伯)效应自成像条件:The distance Z1 from the output end face of the single-mode fiber array to the phase compensation plate satisfies the Talbot (Talbot) effect self-imaging condition:

zz 11 == αα 11 xx ββ 11 xx TT 11 xx 22 λλ == αα 11 ythe y ββ 11 ythe y TT 11 ythe y 22 λλ

其中:α1x、β1x和α1y、β1y都为互质的正整数,λ为激光波长,而且在两个正交方向的占空比的倒数T1x/d=β1x,T1y/d=β1y为整数,则在Z1将产生一等振幅纯相位分布光场;Among them: α 1x , β 1x and α 1y , β 1y are coprime positive integers, λ is the laser wavelength, and the reciprocal T 1x /d of the duty cycle in two orthogonal directions T 1x /d=β 1x , T 1y / d=β 1y is an integer, then a first-class amplitude pure phase distribution light field will be produced in Z 1 ;

所述的相位补偿板的透过率函数t(x,y)为所述的z1处等振幅纯相位分布光场的复数共轭函数;The transmittance function t(x, y) of the phase compensation plate is the complex conjugate function of the equal-amplitude pure phase distribution light field at the z1 place;

所述的相位补偿板与部分反射/输出镜的距离满足Talbot自成像和Lau效应条件: z 1 z 2 z 1 + z 2 = α 2 x β 2 x T 2 x 2 λ = α 2 y β 2 y T 2 y 2 λ The distance between the phase compensation plate and the partial reflection/output mirror satisfies the Talbot self-imaging and Lau effect conditions: z 1 z 2 z 1 + z 2 = α 2 x β 2 x T 2 x 2 λ = α 2 the y β 2 the y T 2 the y 2 λ

z2>>z1 z 2 >>z 1

式中:α2x、β2x和α2y、β2y都为互质的正整数。In the formula: α 2x , β 2x and α 2y , β 2y are all relatively prime positive integers.

一种二维光纤激光阵列锁相和孔径装填装置,包括单模光纤阵列、泵浦源、相位补偿板和部分反射/输出镜,其特点在于:A two-dimensional fiber laser array phase-locking and aperture filling device, including a single-mode fiber array, a pump source, a phase compensation plate and a partial reflection/output mirror, is characterized in that:

所述的单模光纤阵列、相位补偿板和部分反射/输出镜同光轴依次设置;The single-mode fiber array, the phase compensation plate and the partial reflection/output mirror are sequentially arranged on the same optical axis;

所述的单模光纤阵列是由多根单模光纤排列而成,其横截面具有对称的二维格点面阵结构,所述的单模光纤阵列的一端镀全反射膜,另一端为输出端,每根单模光纤纤芯的直径为d,两正交方向的周期分别为T1x和T1y,定义光纤阵列两正交方向的占空比分别为d/T1x和d/T1yThe single-mode optical fiber array is formed by arranging a plurality of single-mode optical fibers, and its cross section has a symmetrical two-dimensional lattice structure. One end of the single-mode optical fiber array is coated with a total reflection film, and the other end is an output end, the diameter of each single-mode fiber core is d, the periods of the two orthogonal directions are T 1x and T 1y respectively, and the duty ratios of the two orthogonal directions of the fiber array are defined as d/T 1x and d/T 1y respectively ;

所述的泵浦源由多个半导体激光二极管组成;The pumping source is composed of a plurality of semiconductor laser diodes;

所述的单模光纤阵列中的每根单模光纤与所述的泵浦源中的一个半导体激光二极管连接,形成激光泵浦关系;Each single-mode fiber in the single-mode fiber array is connected to a semiconductor laser diode in the pump source to form a laser pumping relationship;

所述的单模光纤阵列的输出端面至所述的相位补偿板的距离Z1满足Talbot(泰伯)效应自成像条件:The distance Z1 from the output end face of the single-mode fiber array to the phase compensation plate satisfies the Talbot (Talbot) effect self-imaging condition:

zz 11 == αα 11 xx ββ 11 xx TT 11 xx 22 λλ == αα 11 ythe y ββ 11 ythe y TT 11 ythe y 22 λλ

其中:α1x、β1x和α1y、β1y都为互质的正整数,λ为激光波长,而且在两个正交方向的占空比的倒数T1x/d=β1x,T1y/d=β1y为整数,则在Z1将产生一等振幅纯相位分布光场;Among them: α 1x , β 1x and α 1y , β 1y are coprime positive integers, λ is the laser wavelength, and the reciprocal T 1x /d of the duty cycle in two orthogonal directions T 1x /d=β 1x , T 1y / d=β 1y is an integer, then a first-class amplitude pure phase distribution light field will be produced in Z 1 ;

所述的相位补偿板的透过率函数t(x,y)为所述的z1处等振幅纯相位分布光场的复数共轭函数;The transmittance function t(x, y) of the phase compensation plate is the complex conjugate function of the equal-amplitude pure phase distribution light field at the z1 place;

所述的相位补偿板与部分反射/输出镜的距离满足Talbot自成像和Lau效应条件: z 1 z 2 z 1 + z 2 = α 2 x β 2 x T 2 x 2 λ = α 2 y β 2 y T 2 y 2 λ The distance between the phase compensation plate and the partial reflection/output mirror satisfies the Talbot self-imaging and Lau effect conditions: z 1 z 2 z 1 + z 2 = α 2 x β 2 x T 2 x 2 λ = α 2 the y β 2 the y T 2 the y 2 λ

z2>>z1 z 2 >>z 1

式中:α2x、β2x和α2y、β2y都为互质的正整数。In the formula: α 2x , β 2x and α 2y , β 2y are all relatively prime positive integers.

所述的单模光纤阵列的输出端面镀减反射膜。The output end face of the single-mode fiber array is coated with an anti-reflection film.

所述的单模光纤阵列的横截面为正三角形、正方形、长方形、圆形或六角形。The cross-section of the single-mode fiber array is regular triangle, square, rectangle, circle or hexagon.

本发明的技术效果如下:Technical effect of the present invention is as follows:

由于本发明的全反射镜和部分反射/输出镜以及放置其中的光纤阵列组成Lau效应共振腔,非相干自发辐射的光纤阵列在共振腔中传输一周后,产生正确的自成像周期阵列,原辐射光场和在共振腔中振荡返回的光场叠加,产生稳定谐振模式的激光输出。Lau效应外腔技术和其他外腔组束技术相比,有明显的优点:能实现阵列发光单元场的再现,通过外腔对模式的选择,可以实现远场单瓣强度输出,而且外腔采用平面镜耦合输出,结构简单稳定。Since the total reflection mirror and partial reflection/output mirror of the present invention and the optical fiber array placed therein form a Lau effect resonant cavity, after the optical fiber array of incoherent spontaneous emission is transmitted in the resonant cavity for a week, a correct self-imaging periodic array is produced, and the original radiation The light field and the light field oscillating back in the resonant cavity are superimposed to produce a laser output in a stable resonant mode. Compared with other external cavity beam technology, the Lau effect external cavity technology has obvious advantages: it can realize the reproduction of the field of the array light-emitting unit, and through the selection of the mode of the external cavity, the far-field single lobe intensity output can be realized, and the external cavity adopts The output is coupled by a plane mirror, and the structure is simple and stable.

所述的光纤阵列输出端面至相位补偿板的距离满足分数Talbot(泰伯)效应自成像条件,在此距离处产生纯相位分布的波前,所述的相位补偿板的相位分布为该光场相位分布的复数共轭,这样通过相位补偿板输出的光场为等幅连续平面波;The distance from the output end face of the optical fiber array to the phase compensation plate satisfies the fractional Talbot (Talbot) effect self-imaging condition, and the wavefront of the pure phase distribution is generated at this distance, and the phase distribution of the phase compensation plate is the optical field The complex conjugate of the phase distribution, so that the light field output through the phase compensation plate is a constant-amplitude continuous plane wave;

由单模光纤阵列输出的激光光束阵列至相位补偿板的距离满足分数Talbot效应自成像条件,振幅分布的阵列光场将转换成等幅的周期位相变化的光场分布。共轭的相位补偿板的校正使其成为均匀位相的光场分布。经部分反射的输出镜返回的光场自由传输至相位补偿板,同样由于分数Talbot自成像效应,周期位相变化场分布衍射至光纤阵列端面上将产生正确的阵列自成像,这样就构成Lau共振腔,具备了共振腔持续振荡的必要条件,最后在输出镜输出稳定模式的激光,实现光纤激光阵列的锁相和孔径装填。The distance from the laser beam array output by the single-mode fiber array to the phase compensation plate satisfies the fractional Talbot effect self-imaging condition, and the array light field with amplitude distribution will be converted into a light field distribution with equal amplitude periodic phase change. The correction of the conjugate phase compensation plate makes it a uniform phase light field distribution. The light field returned by the partially reflected output mirror is freely transmitted to the phase compensation plate. Also due to the fractional Talbot self-imaging effect, the periodic phase change field distribution diffracted to the end face of the fiber array will produce a correct array self-image, thus forming a Lau resonant cavity , the necessary conditions for the continuous oscillation of the resonator are met, and finally the output mirror outputs the laser in a stable mode to realize the phase-locking and aperture filling of the fiber laser array.

本发明技术简单,原理可靠,并且对于大量的光纤阵列以及其他类型的固体激光阵列的锁相同样适合。特别适用于激光雷达、卫星激光通信和定向能武器等领域,对于发展紧凑型、轻量化和高光束质量的高功率激光系统具有实际意义。The technology of the invention is simple, the principle is reliable, and it is also suitable for the phase-locking of a large number of optical fiber arrays and other types of solid-state laser arrays. It is especially suitable for the fields of laser radar, satellite laser communication and directed energy weapons, and has practical significance for the development of compact, lightweight and high-power laser systems with high beam quality.

附图说明 Description of drawings

图1为本发明光纤激光阵列锁相和孔径装填装置实施例1的结构示意图。Fig. 1 is a schematic structural diagram of Embodiment 1 of a fiber laser array phase-locking and aperture filling device of the present invention.

图2为本发明的相干辐射状态时光场等价传输正向传输模拟示意图。Fig. 2 is a schematic diagram of the forward transmission simulation of optical field equivalent transmission in the coherent radiation state of the present invention.

图3为本发明的相干辐射状态时光场等价传输反向传输模拟示意图。Fig. 3 is a schematic diagram of simulation of optical field equivalent transmission and reverse transmission in the coherent radiation state of the present invention.

图4为本发明的初始非相干辐射状态时光场等价传输正向传输模拟示意图。Fig. 4 is a schematic diagram of forward transmission simulation of optical field equivalent transmission in the initial incoherent radiation state of the present invention.

图5为本发明的初始非相干辐射状态时光场等价传输反向传输模拟示意图。Fig. 5 is a schematic diagram of simulation of optical field equivalent transmission and reverse transmission in the initial incoherent radiation state of the present invention.

图中:1—全反射镜,2—单模光纤阵列,3—泵浦源,4—相位补偿板,5—部分反射/输出镜。z1为单模光纤阵列2至相位补偿板4的距离,z2为相位补偿板4至部分反射/输出镜5的距离。In the figure: 1—total reflection mirror, 2—single-mode fiber array, 3—pump source, 4—phase compensation plate, 5—partial reflection/output mirror. z 1 is the distance from the single-mode fiber array 2 to the phase compensation plate 4 , and z 2 is the distance from the phase compensation plate 4 to the partial reflection/output mirror 5 .

具体实施方式 Detailed ways

以下结合附图与实施例对本发明作进一步的说明,但不应以此限制本发明的保护范围。The present invention will be further described below in conjunction with the accompanying drawings and embodiments, but the protection scope of the present invention should not be limited thereby.

先请参阅图1,图1为本发明光纤激光阵列锁相和孔径装填装置实施例1的结构示意图。由图可见,本发明二维光纤激光阵列锁相和孔径装填装置包括全反射镜1、单模光纤阵列2、泵浦源3、相位补偿板4和部分反射/输出镜5,其特点是:Please refer to FIG. 1 first. FIG. 1 is a schematic structural diagram of Embodiment 1 of the fiber laser array phase-locking and aperture filling device of the present invention. As can be seen from the figure, the two-dimensional fiber laser array phase-locking and aperture filling device of the present invention includes a total reflection mirror 1, a single-mode fiber array 2, a pump source 3, a phase compensation plate 4 and a partial reflection/output mirror 5, and its characteristics are:

所述的全反射镜1、单模光纤阵列2、相位补偿板4和部分反射/输出镜5同光轴依次设置;The total reflection mirror 1, the single-mode fiber array 2, the phase compensation plate 4 and the partial reflection/output mirror 5 are arranged in sequence with the optical axis;

所述的单模光纤阵列2是由多根单模光纤紧密排列而成,其横截面具有对称的二维格点面阵结构,所述的单模光纤阵列2的一端紧贴所述的全反射镜1,另一输出端面镀减反射膜,每根单模光纤纤芯的直径为d,两正交方向的周期分别为T1x和T1y,定义光纤阵列两正交方向的占空比分别为d/T1x和d/T1yThe single-mode fiber array 2 is formed by a plurality of single-mode fibers closely arranged, and its cross-section has a symmetrical two-dimensional lattice structure. One end of the single-mode fiber array 2 is close to the full Reflector 1, the other output end face is coated with anti-reflection coating, the diameter of each single-mode fiber core is d, and the periods of the two orthogonal directions are T 1x and T 1y respectively, defining the duty cycle of the two orthogonal directions of the fiber array are d/T 1x and d/T 1y respectively;

所述的泵浦源3由多个半导体激光二极管组成;The pumping source 3 is composed of a plurality of semiconductor laser diodes;

所述的单模光纤阵列2中的每根单模光纤与所述的泵浦源3中的一个半导体激光二极管连接,形成激光泵浦关系;Each single-mode fiber in the single-mode fiber array 2 is connected to a semiconductor laser diode in the pump source 3 to form a laser pumping relationship;

所述的单模光纤阵列2的输出端面至所述的相位补偿板4的距离Z1满足Talbot(泰伯)效应自成像条件:The distance Z1 from the output end face of the single-mode fiber array 2 to the phase compensation plate 4 satisfies the Talbot (Talbot) effect self-imaging condition:

zz 11 == αα 11 xx ββ 11 xx TT 11 xx 22 λλ == αα 11 ythe y ββ 11 ythe y TT 11 ythe y 22 λλ

其中:α1x、β1x和α1y、β1y都为互质的正整数,λ为激光波长,而且在两个正交方向的占空比的倒数T1x/d=β1x,T1y/d=β1y为整数,则在Z1将产生一等振幅纯相位分布光场;Among them: α 1x , β 1x and α 1y , β 1y are coprime positive integers, λ is the laser wavelength, and the reciprocal T 1x /d of the duty cycle in two orthogonal directions T 1x /d=β 1x , T 1y / d=β 1y is an integer, then a first-class amplitude pure phase distribution light field will be produced in Z 1 ;

所述的相位补偿板4的透过率函数t(x,y)为所述的z1处等振幅纯相位分布光场的复数共轭函数,从相位补偿板4输出的光场是占空比为1:1的等幅连续平面波;The transmittance function t(x, y) of the phase compensation plate 4 is the complex conjugate function of the equal-amplitude pure phase distribution light field at z 1 , and the light field output from the phase compensation plate 4 is duty cycle Equal-amplitude continuous plane waves with a ratio of 1:1;

所述的相位补偿板4与部分反射/输出镜5的距离满足Talbot自成像和Lau效应条件: z 1 z 2 z 1 + z 2 = α 2 x β 2 x T 2 x 2 λ = α 2 y β 2 y T 2 y 2 λ The distance between the phase compensation plate 4 and the partial reflection/output mirror 5 satisfies the Talbot self-imaging and Lau effect conditions: z 1 z 2 z 1 + z 2 = α 2 x β 2 x T 2 x 2 λ = α 2 the y β 2 the y T 2 the y 2 λ

z2>>z1 z 2 >>z 1

式中:α2x、β2x和α2y、β2y都为互质的正整数。In the formula: α 2x , β 2x and α 2y , β 2y are all relatively prime positive integers.

所述的单模光纤阵列2中每根光纤纤芯的直径为d,两正交方向的周期分别为T1x和T1y,定义光纤阵列两正交方向的占空比分别为d/T1x和d/T1y,于是所述的单模光纤阵列2可以看作具有特定占空比的振幅型周期结构。The diameter of each fiber core in the single-mode fiber array 2 is d, the periods of the two orthogonal directions are T 1x and T 1y respectively, and the duty cycles of the two orthogonal directions of the fiber array are defined as d/T 1x and d/T 1y , so the single-mode fiber array 2 can be regarded as an amplitude-type periodic structure with a specific duty ratio.

所述的单模光纤阵列2的输出端面输出的光场传输至相位补偿板4再传输到部分反射/输出镜5的方向定义为正向传输方向,从部分反射/输出镜5反射回来的光传输至相位补偿板4再进一步传输到单模光纤阵列2的端面方向定义为反向传输方向。The direction in which the light field output from the output end face of the single-mode fiber array 2 is transmitted to the phase compensation plate 4 and then transmitted to the partial reflection/output mirror 5 is defined as the forward transmission direction, and the light reflected from the partial reflection/output mirror 5 The direction of transmission to the phase compensation plate 4 and further transmission to the end face of the single-mode fiber array 2 is defined as the reverse transmission direction.

所述的单模光纤阵列2至相位补偿板4的距离 z 1 = α 1 x β 1 x T 1 x 2 λ = α 1 y β 1 y T 1 y 2 λ The distance from the single-mode fiber array 2 to the phase compensation plate 4 z 1 = α 1 x β 1 x T 1 x 2 λ = α 1 the y β 1 the y T 1 the y 2 λ

其中:α1x、β1x和α1y、β1y都为互质的正整数,满足分数Talbot(泰伯)效应自成像条件,而且在两个正交方向的占空比的倒数T1x/d=β1x,T1y/d=β1y为整数,此时,振幅分布的阵列光场转换成纯相位分布的光场;Among them: α 1x , β 1x and α 1y , β 1y are coprime positive integers, which satisfy the fractional Talbot effect self-imaging condition, and the reciprocal T 1x /d of the duty cycle in two orthogonal directions =β 1x , T 1y /d=β 1y is an integer, at this time, the array light field of amplitude distribution is converted into the light field of pure phase distribution;

所述的单模光纤阵列2、相位补偿板4和输出镜5构成Lau效应共振腔,从单模光纤阵列2输出的光场,在共振腔内往返一周在单模光纤阵列2的端面上可以产生正确的阵列自成像,形成稳定模式的光场输出。The single-mode fiber array 2, the phase compensation plate 4 and the output mirror 5 form a Lau effect resonant cavity, and the light field output from the single-mode fiber array 2 can go back and forth in the resonant cavity for a week on the end face of the single-mode fiber array 2. Generate correct array self-imaging and form a stable mode of light field output.

以正交周期排列的二维光纤阵列为例,说明所述的相位补偿板4的具体设计原理:Taking the two-dimensional optical fiber array arranged in an orthogonal period as an example, the specific design principle of the phase compensation plate 4 is described:

假设单模光纤阵列2辐射的光场为空间完全相干光,其复振幅为u0(x,y,0),T1x和T1y分别为单模光纤阵列在x、y两个正交方向的周期。空间完全相干辐射阵列光场等价传输模拟示意图如图2和图3所示。Assuming that the optical field radiated by the single-mode fiber array 2 is spatially completely coherent light, its complex amplitude is u 0 (x, y, 0), and T 1x and T 1y are respectively the two orthogonal directions of x and y of the single-mode fiber array cycle. Figure 2 and Figure 3 show the schematic diagrams of the equivalent transmission simulation of the spatially fully coherent radiation array light field.

由菲涅耳衍射公式知道,单模光纤阵列2在z距离处的衍射场在傍轴近似下为:According to the Fresnel diffraction formula, the diffraction field of the single-mode fiber array 2 at the z distance is approximated by:

uu 11 (( xx ,, ythe y ,, zz )) == expexp (( ikzikz )) iλziλz uu 00 (( xx ,, ythe y ,, 00 )) ** ** hh (( xx ,, ythe y ,, zz )) ,, -- -- -- (( 11 ))

式中,k=2π/λ,λ为激光波长,h(x,y,z)=exp[iπ(x2+y2)/λz],‘**’表示二维卷积。In the formula, k=2π/λ, λ is the laser wavelength, h(x, y, z)=exp[iπ(x 2 +y 2 )/λz], and ' ** ' means two-dimensional convolution.

将周期函数u0(ξ,η,0)进行傅立叶级数展开后,距离z处的衍射光场可写为:After Fourier series expansion of the periodic function u 0 (ξ, η, 0), the diffracted light field at a distance z can be written as:

u1(x,y,z)=up(x,y,0)**Δ(x,y,z)         (2)u 1 (x, y, z) = u p (x, y, 0)**Δ(x, y, z) (2)

式中, Δ ( x , y , z ) = 1 T 1 x T 1 y [ Σ n Σ m exp [ - iπλz ( m 2 T 1 x 2 + n 2 T 1 y 2 ) ] exp [ 2 iπ ( m T 1 x x + n T 1 y y ) ] ] , u p ( ξ , η , 0 ) In the formula, Δ ( x , the y , z ) = 1 T 1 x T 1 the y [ Σ no Σ m exp [ - iπλz ( m 2 T 1 x 2 + no 2 T 1 the y 2 ) ] exp [ 2 iπ ( m T 1 x x + no T 1 the y the y ) ] ] , u p ( ξ , η , 0 )

为函数u0(ξ,η,0)一个周期的函数表达式,可取为圆函数或者矩形函数。is a periodic function expression of the function u 0 (ξ, η, 0), which can be a circular function or a rectangular function.

在本发明的设计中,相位补偿板4放置在分数Talbot距离上:In the design of the present invention, the phase compensation plate 4 is placed on the fractional Talbot distance:

z 1 = α 1 x β 1 x · T 1 x 2 d = α 1 y β 1 y · T 1 y 2 d 平面上,当孔径装填条件 β 1 x = T 1 x d , β 1 y = T 1 y d 满足时,衍射场u1(x,y,z1)为等振幅的纯相位分布,即|u1(x,y,z1)|=K,K为常数。 z 1 = α 1 x β 1 x &Center Dot; T 1 x 2 d = α 1 the y β 1 the y &Center Dot; T 1 the y 2 d In the plane, when the aperture filling condition β 1 x = T 1 x d , β 1 the y = T 1 the y d When satisfied, the diffraction field u 1 (x, y, z 1 ) is a pure phase distribution with equal amplitude, that is, |u 1 (x, y, z 1 )|=K, where K is a constant.

相位补偿板4的的透过率函数t(x,y)为所述的z1处等振幅纯相位分布光场的复数共轭函数,衍射场u1(x,y,z1)的复共轭函数,即The transmittance function t(x, y) of the phase compensation plate 4 is the complex conjugate function of the equal-amplitude pure phase distribution light field at z 1 , and the complex number of the diffraction field u 1 (x, y, z 1 ) Conjugate function, that is

tt (( xx ,, ythe y ,, zz 11 )) == uu 11 ** (( xx ,, ythe y ,, zz 11 )) // KK

       = ( β 1 x β 1 y ) u p ( x , y ) * * Δ ( x , y , z 1 )                      (3) = ( β 1 x β 1 the y ) u p ( x , the y ) * * Δ ( x , the y , z 1 ) (3)

其中,当α1xβ1x和α1yβ1y为偶数时,Among them, when α 1x β 1x and α 1y β 1y are even numbers,

ΔΔ (( xx ,, ythe y ,, zz 11 )) == ΣΣ kk ΣΣ ll RR klkl δδ (( xx -- kk TT 11 xx ββ 11 xx )) δδ (( ythe y -- ll TT 11 ythe y ββ 11 ythe y )) ,, -- -- -- (( 44 ))

R kl = 1 β 1 x β 1 y Σ m ′ Σ n ′ exp [ iπ ( α 1 x β 1 x m ′ 2 + α 1 y β 1 y n ′ 2 ) ] exp [ - 2 iπ ( km ′ β 1 x + ln ′ β 1 y ) ] , m=kβ1x+m’, R kl = 1 β 1 x β 1 the y Σ m ′ Σ no ′ exp [ iπ ( α 1 x β 1 x m ′ 2 + α 1 the y β 1 the y no ′ 2 ) ] exp [ - 2 iπ ( km ′ β 1 x + ln ′ β 1 the y ) ] , m=kβ 1x +m',

n=lβ1x+n’其中m’=0,1,…,(β1x-1),n’=0,1,…,(β1y-1)和k,l=0,±1,±2,…。当α1xβ1x和α1yβ1y为奇数时,n=lβ 1x +n' where m'=0, 1, ..., (β 1x -1), n' = 0, 1, ..., (β 1y -1) and k, l = 0, ±1, ± 2,…. When α 1x β 1x and α 1y β 1y are odd numbers,

ΔΔ (( xx ,, ythe y ,, zz 11 )) == ΣΣ kk ΣΣ ll RR klkl δδ (( xx -- kk TT 11 xx ββ 11 xx -- TT 11 xx 22 ββ 11 xx )) δδ (( ythe y -- ll TT 11 ythe y ββ 11 ythe y -- TT 11 ythe y 22 ββ 11 ythe y )) ,, -- -- -- (( 55 ))

RR klkl == 11 ββ 11 xx ββ 11 ythe y ΣΣ mm ′′ ΣΣ nno ′′ expexp [[ iπiπ (( αα 11 xx ββ 11 xx mm ′′ 22 ++ αα 11 ythe y ββ 11 ythe y nno ′′ 22 )) ]] expexp [[ -- 22 iπiπ (( kmkm ′′ ββ 11 xx ++ lmlm ′′ ββ 11 ythe y )) ]] ,, mm ′′ == 0,10,1 ,, ·· ·· ·· ,,

(2β1x-1),n’=0,1,…,(2β1y-1)和k,l=0,±1,±2,…。(2β 1x −1), n′=0, 1, . . . , (2β 1y −1) and k, l=0, ±1, ±2, . . .

因此,在正向传输方向,周期为T1x,T1y的单模光纤阵列2输出的光场入射到所述的相位补偿板4上,它们的距离z1满足Talbot自成像条件,把单模光纤阵列2输出光场看作一振幅光栅,振幅分布的周期阵列将转换成等幅的周期位相变化的场分布,共轭的相位补偿板4的校正使其成为均匀位相的场分布即平面波,然后传播到所述的部分反射/输出镜5,产生单一主瓣的远场强度输出。Therefore, in the forward transmission direction, the light field output by the single-mode fiber array 2 whose period is T 1x and T 1y is incident on the phase compensation plate 4, and their distance z 1 satisfies the Talbot self-imaging condition, and the single-mode The output light field of the fiber array 2 is regarded as an amplitude grating, and the periodic array of amplitude distribution will be converted into a field distribution of equal-amplitude periodic phase change, and the correction of the conjugate phase compensation plate 4 makes it a field distribution of uniform phase, that is, a plane wave. Then it propagates to the partial reflection/output mirror 5 to generate the far-field intensity output of a single main lobe.

同理,在反向传输方向,如图3所示,用反射率为r的部分反射/输出镜5反射的平面波垂直照射到相位补偿板4上,由于Talbot自成像效应,在距离位相板4距离z1的单模光纤阵列2的端面处,耦合回到单模光纤阵列2内的光场并考虑到(5)式可表示为:Similarly, in the reverse transmission direction, as shown in Figure 3, the plane wave reflected by the partial reflection/output mirror 5 with reflectivity r is vertically irradiated on the phase compensation plate 4, due to the Talbot self-imaging effect, at a distance from the phase plate 4 At the end face of the single-mode fiber array 2 at a distance z 1 , the light field coupled back into the single-mode fiber array 2 and considering (5) can be expressed as:

uu 11 ′′ [[ xx ,, ythe y ,, 22 (( zz 11 ++ zz 22 )) ]] == rKexpkexp [[ 22 ikik (( zz 11 ++ zz 22 )) ]] expexp (( ikik zz 11 )) iλiλ zz 11 tt (( xx ,, ythe y )) ** ** expexp [[ ikik (( xx 22 ++ ythe y 22 )) // 22 zz 11 ]] -- -- -- (( 66 ))

            = rexp [ 2 ik ( z 1 + z 2 ) ] u 1 ( x , y , 0 ) = rexp [ 2 ik ( z 1 + z 2 ) ] u 1 ( x , the y , 0 )

因此,从部分反射/输出镜5反射回的光场传输至相位补偿板4,同样由于自成像效应,周期位相变化场分布衍射至光纤阵列面上产生了正确的列阵自成像,其光场只差比例常数和一传播因子。具有这种能使周期分布光场产生正确自成像效应的共振腔可以使得单模光纤激光阵列辐射光场,在腔内多次有效振荡后,输出面上的场分布基本不变,获得稳定模式输出的空间完全相干场。Therefore, the light field reflected back from the partial reflection/output mirror 5 is transmitted to the phase compensation plate 4. Also due to the self-imaging effect, the periodic phase change field distribution diffracts to the fiber array surface to produce a correct array self-image, and the light field The only difference is a proportionality constant and a propagation factor. Having this kind of resonant cavity that can make the periodic distribution light field produce correct self-imaging effect can make the single-mode fiber laser array radiate the light field. After multiple effective oscillations in the cavity, the field distribution on the output surface is basically unchanged, and a stable mode is obtained. The output is a spatially fully coherent field.

需要说明的是,非正交周期阵列的分数Talbot距离处的场强和相位分布可以通过坐标的旋转或倾斜,用类似的计算方法得到相位补偿板的相位分布。It should be noted that the field strength and phase distribution at the fractional Talbot distance of the non-orthogonal periodic array can be rotated or tilted by the coordinates, and the phase distribution of the phase compensation plate can be obtained by a similar calculation method.

当单模光纤阵列2处于初始激发状态时,所辐射的光场为非相干的,正向传输过程如图4所示,可看成周期在x,y方向为T1x,T1y的多个点源球面波的叠加,When the single-mode fiber array 2 is in the initial excitation state, the radiated light field is incoherent, and the forward transmission process is shown in Figure 4, which can be regarded as a plurality of T 1x and T 1y cycles in the x and y directions. Superposition of point source spherical waves,

uu 00 (( xx ,, ythe y )) == ΣΣ mm ΣΣ nno rectrect (( xx -- mm TT 11 xx TT 11 xx )) rectrect (( ythe y -- nno TT 11 ythe y TT 11 ythe y )) expexp {{ iπiπ λλ zz 11 [[ (( xx -- mm TT 11 xx )) 22 ++ (( ythe y -- nno TT 11 ythe y )) 22 ]] }} -- -- -- (( 77 ))

经过周期为T2x,T2y的相位补偿板4后,在传输距离z2处部分反射/输出镜5上的光场分布为:After passing through the phase compensation plate 4 with a period of T 2x and T 2y , the light field distribution on the partial reflection/output mirror 5 at the transmission distance z 2 is:

uu 11 (( xx ,, ythe y ,, zz )) == expexp (( ikik zz 22 )) iλiλ zz 22 [[ uu 22 (( xx ,, ythe y )) tt (( xx ,, ythe y ,, zz 11 )) ]] ** ** hh (( xx ,, ythe y ,, zz 22 ))

       = exp ( ik z 2 ) iλ z 2 z 1 z 1 + z 2 exp [ iπ λ z 2 ( x 2 + y 2 ) ] u x ( x ) u y ( y ) - - - ( 8 ) = exp ( ik z 2 ) iλ z 2 z 1 z 1 + z 2 exp [ iπ λ z 2 ( x 2 + the y 2 ) ] u x ( x ) u the y ( the y ) - - - ( 8 )

其中,in,

uu xx (( xx )) == expexp (( iπiπ mm 22 TT 11 xx 22 λλ zz 11 )) 11 TT 11 xx TT 22 xx ΣΣ mm ΣΣ nno GG (( mm TT 11 xx )) Hh (( nno TT 22 xx )) expexp [[ -- iπiπ λλ zz 11 zz 22 zz 11 ++ zz 22 (( xx λλ zz 22 ++ mm TT 11 xx λλ zz 11 -- mm TT 11 xx -- nno TT 22 xx )) 22 ]]

uu ythe y (( ythe y )) == expexp (( iπiπ mm ′′ 22 TT 11 ythe y 22 λλ zz 11 )) 11 TT 11 ythe y TT 22 ythe y ΣΣ mm ′′ ΣΣ nno ′′ GG (( mm ′′ TT 11 ythe y )) Hh (( nno ′′ TT 22 ythe y )) expexp [[ -- iπiπ λλ zz 11 zz 22 zz 11 ++ zz 22 (( ythe y λλ zz 22 ++ mm ′′ TT 11 ythe y λλ zz 11 -- mm ′′ TT 11 ythe y -- nno ′′ TT 22 ythe y )) 22 ]]

其中G(m/T1x,n/T1y)为周期函数u0(x,y)的傅立叶系数,H(m’/T2x,n’/T2y)为周期函数t(x,y)的傅立叶系数。由(8)式可见,当满足条件 z 1 z 2 z 1 + z 2 = α 2 x β 2 x T 2 x 2 λ = α 2 y β 2 y T 2 y 2 λ (其中α2x、β2x和α2y、β2y都为互质的正整数),在距离z2处同样产生周期性Lau条纹分布的光场。Where G(m/T 1x , n/T 1y ) is the Fourier coefficient of the periodic function u 0 (x, y), H(m'/T 2x , n'/T 2y ) is the periodic function t(x, y) The Fourier coefficients of . It can be seen from (8) that when the condition is satisfied z 1 z 2 z 1 + z 2 = α 2 x β 2 x T 2 x 2 λ = α 2 the y β 2 the y T 2 the y 2 λ (wherein α 2x , β 2x , and α 2y , β 2y are all coprime positive integers), a light field with periodic Lau fringe distribution is also generated at the distance z 2 .

同理在反向传输方向,如图5所示,把z2距离处的光场u1(x,y,z)也看成多个点源球面波光源,该光场照射到相位补偿板4上同样由于满足Talbot自成像条件,类似(8)式,在单模光纤阵列2的端面处产生和原单模光纤阵列2周期相同或者整数倍周期的正确自成像。这样单模光纤阵列2的原辐射光场和振荡返回的周期光场在Lau共振腔耦合,经过多次振荡传输后形成稳定模式的激光场,实现单模光纤阵列2的锁相和孔径装填。Similarly, in the reverse direction of transmission, as shown in Figure 5, the light field u 1 (x, y, z) at the distance z 2 is also regarded as multiple point source spherical wave light sources, and the light field irradiates the phase compensation plate 4 also satisfies the Talbot self-imaging condition, similar to formula (8), at the end face of the single-mode fiber array 2, a correct self-image with the same period or an integer multiple of the period of the original single-mode fiber array 2 is generated. In this way, the original radiation light field of the single-mode fiber array 2 and the periodic light field returned by oscillation are coupled in the Lau resonator, and a stable mode laser field is formed after multiple oscillation transmissions to realize phase-locking and aperture filling of the single-mode fiber array 2 .

下面通过一个具体实施例对本发明作进一步的说明:The present invention will be further described below by a specific embodiment:

用10×10个半导体二极管激光器作泵浦源3,泵浦波长975nm;所述的单模2采用10×10个掺Yb/Er的双包层光纤,长度都为10m,输出波长1.5μm,在两个垂直方向以周期间距T1x和T1y排成10×10的正方形面阵,且T1x=T1y=200μm,纤芯直径为dx=dy=20μm,因此单模光纤阵列2在x,y方向的占空比dx/T1x=dy/T1y=0.1;这些光纤阵列的两个端面都磨平使得它们均处于同一个平面,单模光纤阵列2的输出端面针对工作波长1.5μm镀增透膜,让尽量多的返回光耦合到光纤阵列中。10×10 semiconductor diode lasers are used as the pumping source 3, and the pumping wavelength is 975nm; the single-mode 2 adopts 10×10 Yb/Er-doped double-clad optical fibers, the length of which is 10m, and the output wavelength is 1.5μm. In two vertical directions, a 10×10 square array is arranged at a periodic interval T 1x and T 1y , and T 1x = T 1y = 200 μm, and the core diameter is d x = d y = 20 μm, so the single-mode fiber array 2 In x, the duty ratio of y direction d x /T 1x =d y /T 1y =0.1; the two end faces of these fiber arrays are ground so that they are all in the same plane, and the output end face of the single-mode fiber array 2 is for The working wavelength of 1.5μm is coated with an anti-reflection coating to allow as much return light as possible to be coupled into the fiber array.

全反射镜1、部分反射/输出镜5和相位补偿板4相对单模光纤阵列2来说假设为无限大,Talbot自成像距离 z 1 = α 1 x β 1 x T 1 x 2 λ = α 1 y β 1 y T 1 y 2 λ , α 1 x β 1 x = α 1 y β 1 y = 1 10 , β1x=10,β1y=10,在z1=2.67mm的距离上产生纯相位分布得周期变化波前,相位补偿板4应设计为这些相位的复共轭,如表1所示,其中所有的相位取值范围在0~2π之间,省略掉了2π整数倍的相位。The total reflection mirror 1, the partial reflection/output mirror 5 and the phase compensation plate 4 are assumed to be infinite relative to the single-mode fiber array 2, and the Talbot self-imaging distance z 1 = α 1 x β 1 x T 1 x 2 λ = α 1 the y β 1 the y T 1 the y 2 λ , make α 1 x β 1 x = α 1 the y β 1 the y = 1 10 , β 1x = 10, β 1y = 10, a period-varying wavefront of pure phase distribution is produced at a distance of z 1 = 2.67mm, and the phase compensation plate 4 should be designed as the complex conjugate of these phases, as shown in Table 1, where All phase values range from 0 to 2π, and phases that are integer multiples of 2π are omitted.

需要说明的是,表1的相位个数虽然为10×10=100个。因为在x、y方向的每一周期内都存在对称相位分布,最多有6×6=36个相位值,大大简化相位板的制作难度。It should be noted that although the number of phases in Table 1 is 10×10=100. Because there is a symmetrical phase distribution in each cycle in the x and y directions, there are at most 6×6=36 phase values, which greatly simplifies the difficulty of making the phase plate.

根据上述计算,相位补偿板4放置在距离单模光纤阵列2端面2.67mm的距离处,该相位光栅的周期T2为T1/10=20μm,周期T2和纤芯直径d相等,因此占空比为d/T2x=1:1和d/T2y=1:1,因此在z1距离处产生了等振幅等相位分布的波前。According to the above calculation, the phase compensation plate 4 is placed at a distance of 2.67mm from the end face of the single-mode fiber array 2, and the period T2 of the phase grating is T1 /10=20μm, and the period T2 is equal to the fiber core diameter d, so it occupies The space ratios are d/T 2x =1:1 and d/T 2y =1:1, thus generating wavefronts with equal amplitude and equal phase distribution at the z 1 distance.

所述的相位补偿板4与部分反射/输出镜5的距离z2满足Lau效应条件,取 α 2 x β 2 x = α 2 y β 2 y = 5 , z2=19.97mm,此时透过相位补偿板4的光场再传输z1距离后,将产生与原单模光纤阵列周期相同或者整数倍周期的的正确自成像。这样光纤阵列的原辐射光场和振荡返回的光场叠加,形成相干振荡的Lau共振腔,经过多次振荡传输后形成稳定模式的激光场,实现单模光纤阵列2的锁相和孔径装填,即产生单一主瓣的远场强度输出。The distance z 2 between the phase compensation plate 4 and the partial reflection/output mirror 5 satisfies the Lau effect condition, and takes α 2 x β 2 x = α 2 the y β 2 the y = 5 , z 2 =19.97mm. At this time, after the light field passing through the phase compensation plate 4 travels for a distance of z 1 , a correct self-image with the same period or an integer multiple of the period of the original single-mode fiber array will be produced. In this way, the original radiation light field of the fiber array and the light field returned by oscillation are superimposed to form a coherently oscillating Lau resonator, which forms a stable mode laser field after multiple oscillation transmissions, and realizes phase-locking and aperture filling of the single-mode fiber array 2. That is, the far-field intensity output of a single main lobe is produced.

表1 z1距离处相位补偿板的一个周期内的相位Table 1 The phase of the phase compensation plate in one cycle at z 1 distance

Figure A200810200759D00131
Figure A200810200759D00131

Claims (5)

1、一种二维光纤激光阵列锁相和孔径装填装置,包括全反射镜(1)、单模光纤阵列(2)、泵浦源(3)、相位补偿板(4)和部分反射/输出镜(5),其特征在于:1. A two-dimensional fiber laser array phase-locking and aperture filling device, including a total reflection mirror (1), a single-mode fiber array (2), a pump source (3), a phase compensation plate (4) and a partial reflection/output Mirror (5), characterized in that: 所述的全反射镜(1)、单模光纤阵列(2)、相位补偿板(4)和部分反射/输出镜(5)沿光轴依次设置;The total reflection mirror (1), the single-mode fiber array (2), the phase compensation plate (4) and the partial reflection/output mirror (5) are sequentially arranged along the optical axis; 所述的单模光纤阵列(2)是由多根单模光纤排列而成,其横截面具有对称的二维格点面阵结构,所述的单模光纤阵列(2)的一端紧贴所述的全反射镜(1),另一端为输出端,每根单模光纤纤芯的直径为d,两正交方向的周期分别为T1x和T1y,定义光纤阵列两正交方向的占空比分别为d/T1x和d/T1yThe single-mode fiber array (2) is formed by arranging a plurality of single-mode fibers, and its cross section has a symmetrical two-dimensional grid structure. One end of the single-mode fiber array (2) is close to the The total reflection mirror (1) mentioned above, the other end is the output end, the diameter of the core of each single-mode fiber is d, and the periods of the two orthogonal directions are T 1x and T 1y respectively, defining the occupation of the two orthogonal directions of the fiber array The empty ratios are d/T 1x and d/T 1y respectively; 所述的泵浦源(3)由多个半导体激光二极管组成;The pumping source (3) is composed of a plurality of semiconductor laser diodes; 所述的单模光纤阵列(2)中的每根单模光纤与所述的泵浦源(3)中的一个半导体激光二极管连接,形成激光泵浦关系;Each single-mode fiber in the single-mode fiber array (2) is connected to a semiconductor laser diode in the pump source (3) to form a laser pumping relationship; 所述的单模光纤阵列(2)的输出端面至所述的相位补偿板(4)的距离Z1满足Talbot效应自成像条件:The distance Z1 from the output end face of the single-mode fiber array (2) to the phase compensation plate (4) satisfies the Talbot effect self-imaging condition: zz 11 == αα 11 xx ββ 11 xx TT 11 xx 22 λλ == αα 11 ythe y ββ 11 ythe y TT 11 ythe y 22 λλ 其中:α1x、β1x和α1y、β1y都为互质的正整数,λ为激光波长,而且在两个正交方向的占空比的倒数T1x/d=β1x,T1y/d=β1y为整数,则在Z1将产生一等振幅纯相位分布光场;Among them: α 1x , β 1x and α 1y , β 1y are coprime positive integers, λ is the laser wavelength, and the reciprocal T 1x /d of the duty cycle in two orthogonal directions T 1x /d=β 1x , T 1y / d=β 1y is an integer, then a first-class amplitude pure phase distribution light field will be produced in Z 1 ; 所述的相位补偿板(4)的透过率函数t(x,y)为所述的z1处等振幅纯相位分布光场的复数共轭函数;The transmittance function t(x, y) of the phase compensation plate (4) is the complex conjugate function of the equal-amplitude pure-phase distribution light field at the z1 place; 所述的相位补偿板(4)与部分反射/输出镜(5)的距离满足Talbot自成像和Lau效应条件: z 1 z 2 z 1 + z 2 = α 2 x β 2 x T 2 x 2 λ = α 2 y β 2 y T 2 y 2 λ The distance between the phase compensation plate (4) and the partial reflection/output mirror (5) satisfies the Talbot self-imaging and Lau effect conditions: z 1 z 2 z 1 + z 2 = α 2 x β 2 x T 2 x 2 λ = α 2 the y β 2 the y T 2 the y 2 λ z2>>z1 z 2 >>z 1 式中:α2x、β2x和α2y、β2y都为互质的正整数,z2为相位补偿板(4)至部分反射/输出镜(5)的距离。In the formula: α 2x , β 2x and α 2y , β 2y are all relatively prime positive integers, and z 2 is the distance from the phase compensation plate (4) to the partial reflection/output mirror (5). 2、一种二维光纤激光阵列锁相和孔径装填装置,包括单模光纤阵列(2)、泵浦源(3)、相位补偿板(4)和部分反射/输出镜(5),其特征在于:2. A two-dimensional fiber laser array phase-locking and aperture filling device, including a single-mode fiber array (2), a pump source (3), a phase compensation plate (4) and a partial reflection/output mirror (5), its characteristics in: 单模光纤阵列(2)、相位补偿板(4)和部分反射/输出镜(5)沿光轴依次设置;A single-mode fiber array (2), a phase compensation plate (4) and a partial reflection/output mirror (5) are sequentially arranged along the optical axis; 所述的单模光纤阵列(2)是由多根单模光纤排列而成,其横截面具有对称的二维格点面阵结构,所述的单模光纤阵列(2)的一端镀全反射膜,另一端为输出端,每根单模光纤纤芯的直径为d,两正交方向的周期分别为T1x和T1y,定义光纤阵列两正交方向的占空比分别为d/T1x和d/T1yThe single-mode optical fiber array (2) is formed by arranging a plurality of single-mode optical fibers, and its cross section has a symmetrical two-dimensional lattice structure. One end of the single-mode optical fiber array (2) is plated with total reflection film, the other end is the output end, the diameter of each single-mode fiber core is d, the periods of the two orthogonal directions are T 1x and T 1y respectively, and the duty cycles of the two orthogonal directions of the fiber array are defined as d/T 1x and d/T 1y ; 所述的泵浦源(3)由多个半导体激光二极管组成;The pumping source (3) is composed of a plurality of semiconductor laser diodes; 所述的单模光纤阵列(2)中的每根单模光纤与所述的泵浦源(3)中的一个半导体激光二极管连接,形成激光泵浦关系;Each single-mode fiber in the single-mode fiber array (2) is connected to a semiconductor laser diode in the pump source (3) to form a laser pumping relationship; 所述的单模光纤阵列(2)的输出端面至所述的相位补偿板(4)的距离Z1满足Talbot(泰伯)效应自成像条件:The distance Z1 from the output end face of the single-mode fiber array (2) to the phase compensation plate (4) satisfies the Talbot (Talbot) effect self-imaging condition: zz 11 == αα 11 xx ββ 11 xx TT 11 xx 22 λλ == αα 11 ythe y ββ 11 ythe y TT 11 ythe y 22 λλ 其中:α1x、β1x和α1y、β1y都为互质的正整数,λ为激光波长,而且在两个正交方向的占空比的倒数T1x/d=β1x,T1y/d=β1y为整数,则在Z1将产生一等振幅纯相位分布光场;Among them: α 1x , β 1x and α 1y , β 1y are coprime positive integers, λ is the laser wavelength, and the reciprocal T 1x /d of the duty cycle in two orthogonal directions T 1x /d=β 1x , T 1y / d=β 1y is an integer, then a first-class amplitude pure phase distribution light field will be produced in Z 1 ; 所述的相位补偿板(4)的透过率函数t(x,y)为所述的z1处等振幅纯相位分布光场的复数共轭函数;The transmittance function t(x, y) of the phase compensation plate (4) is the complex conjugate function of the equal-amplitude pure-phase distribution light field at the z1 place; 所述的相位补偿板(4)与部分反射/输出镜(5)的距离满足Talbot自成像和Lau效应条件: z 1 z 2 z 1 + z 2 = α 2 x β 2 x T 2 x 2 λ = α 2 y β 2 y T 2 y 2 λ The distance between the phase compensation plate (4) and the partial reflection/output mirror (5) satisfies the Talbot self-imaging and Lau effect conditions: z 1 z 2 z 1 + z 2 = α 2 x β 2 x T 2 x 2 λ = α 2 the y β 2 the y T 2 the y 2 λ z2>>z1 z 2 >>z 1 式中:α2x、β2x和α2y、β2y都为互质的正整数,z2为相位补偿板(4)至部分反射/输出镜(5)的距离。In the formula: α 2x , β 2x and α 2y , β 2y are all relatively prime positive integers, and z 2 is the distance from the phase compensation plate (4) to the partial reflection/output mirror (5). 3、根据权利要求1或2所述的二维光纤激光阵列锁相和孔径装填装置,其特征在于所述的单模光纤阵列(2)的输出端面镀减反射膜。3. The two-dimensional fiber laser array phase-locking and aperture filling device according to claim 1 or 2, characterized in that the output end of the single-mode fiber laser array (2) is coated with an anti-reflection film. 4、根据权利要求1所述的二维光纤激光阵列锁相和孔径装填装置,其特征在于所述的单模光纤阵列(2)的横截面为正三角形、正方形、长方形、圆形或六角形。4. The two-dimensional fiber laser array phase-locking and aperture filling device according to claim 1, characterized in that the cross-section of the single-mode fiber array (2) is an equilateral triangle, square, rectangle, circle or hexagon . 5、根据权利要求2所述的二维光纤激光阵列锁相和孔径装填装置,其特征在于所述的单模光纤阵列(2)的横截面为正三角形、正方形、长方形、圆形或六角形。5. The two-dimensional fiber laser array phase-locking and aperture filling device according to claim 2, characterized in that the cross-section of the single-mode fiber array (2) is an equilateral triangle, square, rectangle, circle or hexagon .
CNA2008102007599A 2008-09-28 2008-09-28 Two-dimensional fiber laser array phase-locking and aperture filling device Pending CN101383479A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNA2008102007599A CN101383479A (en) 2008-09-28 2008-09-28 Two-dimensional fiber laser array phase-locking and aperture filling device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNA2008102007599A CN101383479A (en) 2008-09-28 2008-09-28 Two-dimensional fiber laser array phase-locking and aperture filling device

Publications (1)

Publication Number Publication Date
CN101383479A true CN101383479A (en) 2009-03-11

Family

ID=40463168

Family Applications (1)

Application Number Title Priority Date Filing Date
CNA2008102007599A Pending CN101383479A (en) 2008-09-28 2008-09-28 Two-dimensional fiber laser array phase-locking and aperture filling device

Country Status (1)

Country Link
CN (1) CN101383479A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110418975A (en) * 2017-03-09 2019-11-05 古河电气工业株式会社 The target position detection method of radar installations and radar installations
CN112290371A (en) * 2021-01-04 2021-01-29 中国工程物理研究院激光聚变研究中心 Laser beam combining system based on square optical fiber beam combiner
CN113985441A (en) * 2021-09-30 2022-01-28 哈尔滨新光光电科技股份有限公司 Laser three-dimensional imaging simulator
CN114264661A (en) * 2021-12-06 2022-04-01 浙江大学台州研究院 A method, device and system for web detection with self-adaptive definition

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110418975A (en) * 2017-03-09 2019-11-05 古河电气工业株式会社 The target position detection method of radar installations and radar installations
CN110418975B (en) * 2017-03-09 2023-10-03 古河电气工业株式会社 Radar apparatus and target position detection method for radar apparatus
US11977146B2 (en) 2017-03-09 2024-05-07 Furukawa Electric Co., Ltd. Radar device and detection method of target position of radar device
CN112290371A (en) * 2021-01-04 2021-01-29 中国工程物理研究院激光聚变研究中心 Laser beam combining system based on square optical fiber beam combiner
CN113985441A (en) * 2021-09-30 2022-01-28 哈尔滨新光光电科技股份有限公司 Laser three-dimensional imaging simulator
CN114264661A (en) * 2021-12-06 2022-04-01 浙江大学台州研究院 A method, device and system for web detection with self-adaptive definition
CN114264661B (en) * 2021-12-06 2024-05-31 浙江大学台州研究院 Definition self-adaptive coiled material detection method, device and system

Similar Documents

Publication Publication Date Title
US9596034B2 (en) High brightness dense wavelength multiplexing laser
US5033060A (en) Optical device for laser coupling and coherent beam combining
CN103199439B (en) Semiconductor laser device
CN101383479A (en) Two-dimensional fiber laser array phase-locking and aperture filling device
CN104111539B (en) A kind of array hot spot generator and production method
CN110308527B (en) Laser optical coupling device
CN101592783B (en) Coherent array laser inverse Dammann grating beam combination aperture filling device
CN103441419A (en) Optical fiber laser all-optical feedback passive coherence beam combination system based on Dammann grating
CN201294329Y (en) Two-dimensional fiber laser array phase-locking and aperture filling device
Ding et al. Rectangular Beam Pumped Raman Microchip Laser for Generating Multiwavelength High‐Order Hermite–Gaussian Lasers and Vortex Lasers
CN114296245B (en) Raman beam shaping device
CN100468892C (en) Intrinsically self-organized coherently combined laser with co-phase excitation
TW574777B (en) Laser device, excitation method thereof, and laser processing machine
CN109638631B (en) A kind of external cavity semiconductor laser array coherent beam combining method and device
CN210092562U (en) High-power double-output external cavity narrow linewidth laser easy for mass production
CN101383485A (en) A kind of external cavity that makes semiconductor laser array output double wavelength
CN103199416A (en) Optical fiber laser of semiconductor laser pumping
CN101369717A (en) Multi-beam coupling high-power semiconductor laser device
CN100373712C (en) Laser beam combination composite flat plate cavity
CN110011173B (en) Controllable one-dimensional vortex array laser passive Q-switched microchip laser
KR100458677B1 (en) Apparatus and method for Raman laser using simulated Brilllouin scattering and intra-cavity second harmonic generation
CN112688169A (en) Semiconductor laser bar and semiconductor external cavity
CN110429472B (en) A high-power dual-output external cavity narrow-linewidth laser that is easy to mass produce
CN112563879A (en) Dense wavelength beam combining device of multi-single-tube semiconductor laser
CN105406353A (en) Multiple single-tube beam-combination semiconductor lasers based on grating isosceles prism

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Open date: 20090311