CN101380594A - Titanium nitride carrier or mixed carrier of titanium nitride and carbon carrier for proton exchange membrane fuel cell catalyst - Google Patents
Titanium nitride carrier or mixed carrier of titanium nitride and carbon carrier for proton exchange membrane fuel cell catalyst Download PDFInfo
- Publication number
- CN101380594A CN101380594A CNA2008101963557A CN200810196355A CN101380594A CN 101380594 A CN101380594 A CN 101380594A CN A2008101963557 A CNA2008101963557 A CN A2008101963557A CN 200810196355 A CN200810196355 A CN 200810196355A CN 101380594 A CN101380594 A CN 101380594A
- Authority
- CN
- China
- Prior art keywords
- carrier
- titanium nitride
- carbon
- catalyst
- noble metal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Catalysts (AREA)
Abstract
质子交换膜燃料电池催化剂的氮化钛载体或氮化钛和炭载体混合载体,特征是载体由氮化钛构成或由氮化钛和炭载体混合构成,其中炭载体为活性碳、碳纳米管、碳分子筛或碳纤维中的一种或多种;氮化钛占载体总质量的1~100%。具体是指以下方法得到载体:(1)、氮化钛或氮化钛和炭载体混合的悬浊液中加入贵金属化合物,贵金属加入质量占悬浊液的1~90%;混合均匀得A;(2)、A中加入过量还原剂溶液,还原出的金属盐微粒吸附于载体上,得B;(3)、B过滤,水洗,干燥,得氮化钛或氮化钛和炭复合载体负载的催化剂;贵金属的粒子大小1~20nm。使用本发明载体的催化剂对甲醇、甲酸、H2和CO混合气体的电催化还原呈现很高的催化性能。
Titanium nitride carrier or mixed carrier of titanium nitride and carbon carrier for proton exchange membrane fuel cell catalyst, characterized in that the carrier is composed of titanium nitride or mixed with titanium nitride and carbon carrier, wherein the carbon carrier is activated carbon, carbon nanotube One or more of carbon molecular sieves or carbon fibers; titanium nitride accounts for 1-100% of the total mass of the carrier. Specifically, it refers to the following method to obtain the carrier: (1), adding a noble metal compound to the suspension mixed with titanium nitride or titanium nitride and carbon carrier, the weight of the noble metal added accounts for 1-90% of the suspension; mix uniformly to obtain A; (2) Excessive reducing agent solution is added to A, and the reduced metal salt particles are adsorbed on the carrier to obtain B; (3), B is filtered, washed with water, and dried to obtain titanium nitride or titanium nitride and carbon composite carrier loading Catalyst; the particle size of noble metal is 1-20nm. The catalyst using the carrier of the present invention exhibits very high catalytic performance for the electrocatalytic reduction of methanol, formic acid, H2 and CO mixed gas.
Description
技术领域 technical field
本发明涉及到一种催化剂的载体,具体涉及一种质子交换膜燃料电池催化剂的氮化钛载体或氮化钛和炭载体混合载体。使用该载体负载的贵金属催化剂对甲醇、甲酸、H2和CO混合气体的电化学氧化以及氧气的电催化还原呈现了很高的催化性能。The invention relates to a catalyst carrier, in particular to a titanium nitride carrier or a mixed carrier of titanium nitride and carbon carrier for a proton exchange membrane fuel cell catalyst. The noble metal catalyst supported by this support exhibits high catalytic performance for the electrochemical oxidation of methanol, formic acid, H2 and CO mixed gas and the electrocatalytic reduction of oxygen.
背景技术 Background technique
燃料电池由于具有能量转换效率高、对环境污染小等优点,成为未来最佳的“清洁能源”,许多国家政府对其的研究非常重视。特别是直接醇类燃料电池,由于它可以用作电动车辆的动力电源以及便携式可移动电源,而在近年来受到广泛关注。直接醇类燃料电池阳极催化剂基本上是贵金属催化剂。但是,由于这些金属的价格极其昂贵,且资源有限,从而造成电池价格昂贵,难以实行商业化,因此,人们希望能尽可能的提高金属催化剂的活性和利用率来降低催化剂的成本。Due to the advantages of high energy conversion efficiency and low environmental pollution, fuel cells will become the best "clean energy" in the future, and many governments attach great importance to their research. In particular, direct alcohol fuel cells have attracted extensive attention in recent years due to their potential as power sources for electric vehicles and portable mobile power sources. Direct alcohol fuel cell anode catalysts are basically noble metal catalysts. However, because these metals are extremely expensive and resources are limited, batteries are expensive and difficult to commercialize. Therefore, it is hoped that the activity and utilization of metal catalysts can be improved as much as possible to reduce the cost of catalysts.
在质子交换膜燃料电池中,一般来说,对催化剂有几个基本的要求,即要有高的电催化活性、稳定性和电子导电性。目前,催化剂一般为贵金属或贵金属基复合催化剂(如Pt、Pd、Ir、Au、Ru等),但由于贵金属价格较贵,资源有限,必须采取有效的措施降低贵金属载量。因此,为了提高催化剂的催化效率,尽可能减少贵金属用量,人们选择具有高比表面积的基质,如石墨、碳黑、活性碳、分子筛、质子交换膜等作为贵金属载体。然而,由于不同载体的表面结构、表面基团不同,导致载体与活性组分间的相互作用也不相同,使得催化剂的催化活性发生变化。因此,寻找能够提高贵金属催化剂性能的载体是一个值得关注的问题。In proton exchange membrane fuel cells, generally speaking, there are several basic requirements for catalysts, namely high electrocatalytic activity, stability and electronic conductivity. At present, catalysts are generally noble metals or noble metal-based composite catalysts (such as Pt, Pd, Ir, Au, Ru, etc.), but because noble metals are expensive and resources are limited, effective measures must be taken to reduce the loading of noble metals. Therefore, in order to improve the catalytic efficiency of catalysts and reduce the amount of precious metals as much as possible, people choose substrates with high specific surface area, such as graphite, carbon black, activated carbon, molecular sieves, proton exchange membranes, etc., as noble metal supports. However, due to the different surface structures and surface groups of different supports, the interaction between the support and the active components is also different, resulting in changes in the catalytic activity of the catalyst. Therefore, finding supports that can enhance the performance of noble metal catalysts is a matter of concern.
要获得高活性的贵金属纳米催化剂,一般是以活性炭作为载体。然而,由于活性炭表面含有较多的含氧基团,这些含氧基团的存在尽管有利于金属纳米粒子的锚定。但另一方面,贵金属粒子与含氧基团之间的相互作用也导致金属表面的电子状态发生变化,从而导致催化剂活性降低。To obtain highly active noble metal nanocatalysts, activated carbon is generally used as a carrier. However, since the surface of activated carbon contains more oxygen-containing groups, the presence of these oxygen-containing groups is beneficial to the anchoring of metal nanoparticles. But on the other hand, the interaction between noble metal particles and oxygen-containing groups also leads to changes in the electronic state of the metal surface, which leads to a decrease in catalyst activity.
发明内容 Contents of the invention
针对现有技术的上述不足,本发明的目的是提供一种质子交换膜燃料电池催化剂的氮化钛载体或氮化钛和炭载体混合载体。与传统的活性炭相比,利用以氮化钛载体或氮化钛和炭载体作为混合载体制得的催化剂表现出极为优异的电催化性能;尤其对甲醇、甲酸、H2和CO混合气体的电化学氧化以及氧气的电催化还原呈现了很高的催化性能。Aiming at the above-mentioned deficiencies in the prior art, the object of the present invention is to provide a titanium nitride carrier or a mixed carrier of titanium nitride and carbon carrier for a proton exchange membrane fuel cell catalyst. Compared with the traditional activated carbon, the catalyst prepared by using titanium nitride support or titanium nitride and carbon support as a mixed support shows excellent electrocatalytic performance; especially for methanol, formic acid, H 2 and CO mixed gas. The chemical oxidation and electrocatalytic reduction of oxygen exhibit high catalytic performance.
完成上述发明任务的技术方案是:The technical scheme of finishing above-mentioned invention task is:
一种质子交换膜燃料电池催化剂的氮化钛载体或氮化钛和炭载体混合载体,其特征在于:A titanium nitride carrier or a mixed carrier of titanium nitride and carbon carrier for a proton exchange membrane fuel cell catalyst, characterized in that:
该载体由氮化钛构成或由氮化钛和炭载体混合构成,其中所述的炭载体为活性碳、碳纳米管、碳分子筛或碳纤维中的一种或多种,所述氮化钛占载体总质量的1~100%。The carrier is composed of titanium nitride or a mixture of titanium nitride and carbon carrier, wherein the carbon carrier is one or more of activated carbon, carbon nanotubes, carbon molecular sieves or carbon fibers, and the titanium nitride accounts for 1-100% of the total mass of the carrier.
换言之,本发明的质子交换膜燃料电池催化剂的氮化钛载体或氮化钛和炭载体混合载体是,所述的催化剂载体为氮化钛载体或氮化钛和炭载体混合载体;所述的质子交换膜燃料电池催化剂为贵金属及贵金属基催化剂;所述的贵金属为Pt、Pd、Au、Ir或Ru中的一种或多种。In other words, the titanium nitride carrier or the titanium nitride and carbon carrier mixed carrier of the proton exchange membrane fuel cell catalyst of the present invention is that the catalyst carrier is a titanium nitride carrier or a titanium nitride and carbon carrier mixed carrier; The proton exchange membrane fuel cell catalyst is a noble metal or a noble metal-based catalyst; the noble metal is one or more of Pt, Pd, Au, Ir or Ru.
以上方案中所述的贵金属的加入质量一般占催化剂总质量的1~90%。The added mass of the noble metal described in the above scheme generally accounts for 1-90% of the total mass of the catalyst.
更详细地说,本发明的质子交换膜燃料电池催化剂的氮化钛载体或氮化钛和炭载体混合载体,是指用以下方法制备得到的质子交换膜燃料电池催化剂的氮化钛载体或氮化钛和炭载体混合载体:In more detail, the titanium nitride carrier or the titanium nitride and carbon carrier mixed carrier of the proton exchange membrane fuel cell catalyst of the present invention refers to the titanium nitride carrier or the nitrogen carrier of the proton exchange membrane fuel cell catalyst prepared by the following method Titanium oxide and carbon carrier mixed carrier:
(1)、在氮化钛的悬浊液或氮化钛和炭载体混合的悬浊液中加入贵金属化合物:H2PtCl6、K2PtCl6、PdCl2、Pd(NO3)2、HAuCl4、IrCl3或RuCl3中的一种或多种,其中贵金属加入的质量一般占悬浊液总质量的1~90%;超声使混合均匀,得组分A。(1) Add noble metal compounds: H 2 PtCl 6 , K 2 PtCl 6 , PdCl 2 , Pd(NO 3 ) 2 , HAuCl to the suspension of titanium nitride or the suspension mixed with titanium nitride and carbon support 4. One or more of IrCl 3 or RuCl 3 , in which the mass of noble metal generally accounts for 1-90% of the total mass of the suspension; ultrasonically mixes evenly to obtain Component A.
(2)、在组分A中缓缓加入过量还原剂溶液,使金属盐还原,使还原出的金属盐微粒吸附于载体上,得组分B。(2) Slowly add excess reducing agent solution to component A to reduce the metal salt and adsorb the reduced metal salt particles on the carrier to obtain component B.
(3)、将组分B经过滤后,水洗,干燥,即制得氮化钛或氮化钛和炭复合载体负载的催化剂;贵金属的粒子大小为1~20nm。(3) Component B is filtered, washed with water, and dried to obtain a catalyst supported by a titanium nitride or titanium nitride and carbon composite carrier; the particle size of the noble metal is 1-20 nm.
更具体和更优化地说,所述的质子交换膜燃料电池催化剂的氮化钛载体或氮化钛和炭载体混合载体的制备方法,具体步骤如下,More specifically and more optimally, the preparation method of the titanium nitride carrier of the proton exchange membrane fuel cell catalyst or the mixed carrier of titanium nitride and carbon carrier, the specific steps are as follows,
(1)、催化剂前驱体的注入:称取一定量氮化钛和炭载体(氮化钛占载体总质量的百分数为1~100%)分散于水中,超声振荡,形成悬浊液。在悬浊液中加入一定比例的贵金属化合物(H2PtCl6、K2PtCl6、PdCl2、Pd(NO3)2、HAuCl4、IrCl3、RuCl3中的一种或多种),贵金属加入的质量一般占催化剂总质量的1~90%。继续超声使混合均匀,得组分A。(1) Injection of catalyst precursor: Weigh a certain amount of titanium nitride and carbon support (titanium nitride accounts for 1-100% of the total mass of the support) and disperse them in water, vibrate ultrasonically to form a suspension. Add a certain proportion of noble metal compounds (one or more of H 2 PtCl 6 , K 2 PtCl 6 , PdCl 2 , Pd(NO 3 ) 2 , HAuCl 4 , IrCl 3 , RuCl 3 ) to the suspension, noble metal The mass added generally accounts for 1-90% of the total mass of the catalyst. Continue to sonicate to make the mixture uniform, and obtain component A.
(2)、液相还原:将得到的组分A在0~100℃条件下缓缓加入过量还原剂溶液(如NaBH4、聚甲醛、Na2S2O4、甲酸钠、Na2SO3等)通过机械搅拌或超声振荡,使金属盐与还原剂发生充分反应,从而使还原出的金属盐微粒吸附于载体上,得组分B。(2) Liquid phase reduction: Slowly add excess reducing agent solution (such as NaBH 4 , polyoxymethylene, Na 2 S 2 O 4 , sodium formate, Na 2 SO 3 , etc. ) fully react the metal salt and the reducing agent by mechanical stirring or ultrasonic vibration, so that the reduced metal salt particles are adsorbed on the carrier to obtain component B.
(3)、后处理部分:将组分B经过滤后,依次用水洗至洗出液中无氯离子,然后干燥,即制得氮化钛或氮化钛和炭复合载体负载的催化剂。其中炭载体为活性碳、碳纳米管、碳分子筛、碳纤维等中的一种或多种。氮化钛占炭载体和氮化钛总质量的百分数为1~100%;贵金属的粒子大小为1~20nm。(3) Post-treatment part: After filtering the component B, wash it with water successively until there is no chloride ion in the eluate, and then dry it to prepare the catalyst supported by titanium nitride or titanium nitride and carbon composite carrier. The carbon carrier is one or more of activated carbon, carbon nanotubes, carbon molecular sieves, carbon fibers and the like. The percentage of the titanium nitride in the total mass of the carbon support and the titanium nitride is 1-100%; the particle size of the noble metal is 1-20nm.
加载在该氮化钛载体或氮化钛和炭载体混合载体上的催化剂为,贵金属:Pt、Pd、Au、Ir或Ru中的一种或多种。The catalyst loaded on the titanium nitride carrier or the mixed carrier of titanium nitride and carbon carrier is noble metal: one or more of Pt, Pd, Au, Ir or Ru.
本发明的优点在于:以氮化钛作为载体或氮化钛和炭载体作为混合载体,制备质子交换膜燃料电池贵金属及贵金属基催化剂。本发明的特点在于将氮化钛使用到贵金属及贵金属基催化剂的载体中。The invention has the advantages that the noble metal and the noble metal-based catalyst of the proton exchange membrane fuel cell are prepared by using titanium nitride as a carrier or titanium nitride and carbon carrier as a mixed carrier. The feature of the present invention is that titanium nitride is used in the carrier of noble metal and noble metal-based catalyst.
循环伏安法等电化学研究方法表明:与传统的活性炭相比,利用以氮化钛载体或氮化钛和炭载体作为混合载体制得的催化剂表现出极为优异的电催化性能;尤其对甲醇、甲酸、H2和CO混合气体的电化学氧化以及氧气的电催化还原呈现了很高的催化性能。Electrochemical research methods such as cyclic voltammetry show that compared with traditional activated carbon, catalysts prepared using titanium nitride support or titanium nitride and carbon support as a mixed support show excellent electrocatalytic performance; especially for methanol The electrochemical oxidation of , formic acid, H 2 and CO mixed gas and the electrocatalytic reduction of oxygen exhibited high catalytic performance.
附图说明 Description of drawings
图1为金属载量为20%、TiN:C质量比为1∶2的Pd/TiN-C催化剂的XRD图谱。其中络合还原制得的Pd/TiN-C(1:2)(曲线a),E-TEKPd/C样品(曲线b)和TiN的XRD图谱;根据XRD图谱可以初步计算得到Pd复合载体催化剂中的金属粒子的平均粒径大约在4nm,与ETEK公司的样品相似。Figure 1 is the XRD pattern of the Pd/TiN-C catalyst with a metal loading of 20% and a TiN:C mass ratio of 1:2. Among them, the XRD patterns of Pd/TiN-C (1:2) (curve a), E-TEKPd/C sample (curve b) and TiN prepared by complex reduction; The average particle size of the metal particles is about 4nm, which is similar to the sample of ETEK company.
图2为20%、TiN:C质量比为1∶2的Pd/TiN-C催化剂的TEM照片。照片清楚的显示出通过液相还原方法制得的Pd复合载体催化剂,金属粒子的平均粒径大约在4nm,金属粒子具有良好的均一性和分散度。Figure 2 is a TEM photograph of a Pd/TiN-C catalyst with 20% TiN:C mass ratio of 1:2. The photos clearly show that the Pd composite carrier catalyst prepared by the liquid phase reduction method has an average particle diameter of about 4nm metal particles, and the metal particles have good uniformity and dispersion.
图3为20%、TiN:C质量比为1∶2的Pd/TiN-C催化剂与商业化的E-TEK公司同类Pd/C催化剂在0.5mol/L H2SO4+0.5mol/L HCOOH溶液中的循环伏安图。其中络合还原制得的Pd/TiN-C(曲线a)和ETEK样品(曲线b)在0.5mol/L H2SO4+0.5mol/L HCOOH溶液中的线性扫描伏安图。扫描速率:50mV/s,温度:30℃。Figure 3 shows the 20% Pd/TiN-C catalyst with a mass ratio of TiN:C of 1:2 and the commercialized E-TEK company's similar Pd/C catalyst in 0.5mol/L H 2 SO 4 +0.5mol/L HCOOH solution The cyclic voltammogram in . The linear sweep voltammograms of Pd/TiN-C (curve a) and ETEK sample (curve b) prepared by complex reduction in 0.5mol/L H 2 SO 4 +0.5mol/L HCOOH solution. Scan rate: 50mV/s, temperature: 30°C.
在循环伏安曲线电位正扫方向上的甲酸氧化峰都出现在0.20V左右,但峰电流密度不同。甲酸在自制Pd/TiN-C(1:2)催化剂和商业化的E-TEK公司催化剂上氧化的峰电流密度分别为26.69和16.22mA/cm2。相比E-TEK公司的样品,自制Pd/TiN-C催化剂对甲酸的电催化氧化性能提高了将近1倍。The oxidation peaks of formic acid in the positive sweep direction of the cyclic voltammetry curves all appeared at about 0.20V, but the peak current densities were different. The peak current densities of formic acid oxidation on homemade Pd/TiN-C(1:2) catalyst and commercial E-TEK catalyst were 26.69 and 16.22mA/cm 2 , respectively. Compared with the samples from E-TEK Company, the electrocatalytic oxidation performance of the self-made Pd/TiN-C catalyst for formic acid was nearly doubled.
具体实施方式 Detailed ways
实施例1:Example 1:
称取氮化钛60mg,加入112.68mL 0.04504mol/L的PdCl2溶液,搅拌使混合均匀。Weigh 60 mg of titanium nitride, add 112.68 mL of 0.04504 mol/L PdCl 2 solution, stir to mix evenly.
(2)、100℃下,缓缓加入过量还原剂溶液(聚甲醛),搅拌使金属盐与还原剂完全反应。(2) At 100°C, slowly add excess reducing agent solution (polyoxymethylene) and stir to completely react the metal salt and reducing agent.
(3)、过滤,洗涤至洗出液中无氯离子。干燥,即制得Pd/TiN催化剂。(3), filter and wash until there is no chloride ion in the eluate. After drying, the Pd/TiN catalyst is obtained.
其中氮化钛占载体总质量100%,贵金属载量为催化剂总质量的90%,还原温度为100℃。The titanium nitride accounts for 100% of the total mass of the carrier, the noble metal load is 90% of the total mass of the catalyst, and the reduction temperature is 100°C.
实施例2:Example 2:
称取氮化钛1mg和活性碳99mg。加入0.115mL 0.04504mol/L H2PtCl6溶液,搅拌使混合均匀。Weigh 1 mg of titanium nitride and 99 mg of activated carbon. Add 0.115 mL of 0.04504 mol/L H 2 PtCl 6 solution, and stir to make the mixture uniform.
(2)、0℃下,缓缓加入过量还原剂溶液(NaBH4),搅拌使金属盐与还原剂完全反应。(2) At 0°C, slowly add excess reducing agent solution (NaBH 4 ), and stir to completely react the metal salt and reducing agent.
(3)、过滤,洗涤至洗出液中无氯离子。干燥,即制得Pt/TiN-C催化剂,其中,Pt金属的载量为1%。(3), filter and wash until there is no chloride ion in the eluate. After drying, a Pt/TiN-C catalyst is obtained, wherein the loading of Pt metal is 1%.
其中氮化钛占载体总质量1%,贵金属载量为催化剂总质量的1%,还原温度为0℃。The titanium nitride accounts for 1% of the total mass of the carrier, the loading of the noble metal is 1% of the total mass of the catalyst, and the reduction temperature is 0°C.
实施例3:Example 3:
称取碳纳米管20mg和氮化钛40mg。加入1.32ml 0.0386mol/L H2PtCl6溶液和1.06ml0.04504mol/L PdCl2,搅拌使混合均匀。Weigh 20 mg of carbon nanotubes and 40 mg of titanium nitride. Add 1.32ml of 0.0386mol/L H 2 PtCl 6 solution and 1.06ml of 0.04504mol/L PdCl 2 , stir to make the mixture uniform.
(2)、25℃下,缓缓加入过量还原剂溶液(NaBH4),搅拌使金属盐与还原剂完全反应。(2) At 25°C, slowly add excess reducing agent solution (NaBH 4 ), and stir to completely react the metal salt and reducing agent.
(3)、过滤,洗涤至洗出液中无氯离子。干燥,即制得PtPd/TiN-CNTs催化剂,其中,Pt金属的载量为13%,Pd金属的载量为7%。(3), filter and wash until there is no chloride ion in the eluate. After drying, a PtPd/TiN-CNTs catalyst is obtained, wherein the loading of Pt metal is 13%, and the loading of Pd metal is 7%.
实施例4:Example 4:
称取碳分子筛20mg和氮化钛40mg。加入1.32mL 0.0386mol/L H2PtCl6溶液和1.1mL0.04504mol/L RuCl3,搅拌使混合均匀。Weigh 20 mg of carbon molecular sieve and 40 mg of titanium nitride. Add 1.32mL of 0.0386mol/L H 2 PtCl 6 solution and 1.1mL of 0.04504mol/L RuCl 3 , stir to make the mixture uniform.
(2)、25℃下,缓缓加入过量还原剂溶液(Na2S2O4),搅拌使金属盐与还原剂完全反应。(2) At 25°C, slowly add excess reducing agent solution (Na 2 S 2 O 4 ), and stir to completely react the metal salt and reducing agent.
(3)、过滤,洗涤至洗出液中无氯离子。干燥,即制得PtRu/TiN-C催化剂,其中,Pt金属的载量为13%,Ru金属的载量为7%。(3), filter and wash until there is no chloride ion in the eluate. After drying, a PtRu/TiN-C catalyst is prepared, wherein the loading of Pt metal is 13%, and the loading of Ru metal is 7%.
实施例5Example 5
称取碳纤维20mg和氮化钛40mg,加入2.07ml 0.04504mol/L PdCl2溶液和0.52mL0.09635mol/L RuCl3,搅拌使混合均匀。Weigh 20 mg of carbon fiber and 40 mg of titanium nitride, add 2.07 ml of 0.04504 mol/L PdCl 2 solution and 0.52 mL of 0.09635 mol/L RuCl 3 , and stir to make the mixture uniform.
(2)、10℃下,缓缓加入过量还原剂溶液(甲酸钠),搅拌使金属盐与还原剂完全反应。(2) At 10°C, slowly add excess reducing agent solution (sodium formate), and stir to completely react the metal salt and reducing agent.
(3)、过滤,洗涤至洗出液中无氯离子。干燥,即制得PdRu/TiN-炭纤维催化剂,其中,Pd金属的载量为13%,Ru金属的载量为7%。(3), filter and wash until there is no chloride ion in the eluate. After drying, a PdRu/TiN-carbon fiber catalyst is obtained, wherein the loading of Pd metal is 13%, and the loading of Ru metal is 7%.
实施例6Example 6
称取活性碳20mg和氮化钛40mg。加入1.32mL 0.0386mol/L H2PtCl6溶液和0.57mL 0.04504mol/L HAuCl4,搅拌使混合均匀。Weigh 20 mg of activated carbon and 40 mg of titanium nitride. Add 1.32mL of 0.0386mol/L H 2 PtCl 6 solution and 0.57mL of 0.04504mol/L HAuCl 4 , stir to make the mixture uniform.
(2)、25℃下,缓缓加入过量还原剂溶液(Na2SO3),搅拌使金属盐与还原剂完全反应。(2) At 25°C, slowly add excess reducing agent solution (Na 2 SO 3 ), and stir to completely react the metal salt and reducing agent.
(3)、过滤,洗涤至洗出液中无氯离子。干燥,即制得PtAu/TiN-C催化剂,其中,Pt金属的载量为13%,Au金属的载量为7%。(3), filter and wash until there is no chloride ion in the eluate. After drying, a PtAu/TiN-C catalyst is prepared, wherein the loading of Pt metal is 13%, and the loading of Au metal is 7%.
实施例7,Example 7,
与实施例3基本相同,但是有以下不同:Pd的前驱体采用Pd(NO3)2。It is basically the same as Example 3, but there are the following differences: Pd(NO 3 ) 2 is used as the precursor of Pd.
实施例8,与实施例6基本相同,但是有以下不同:添加的第二金属为Ir。Pt和Ir的原子比为1:1。Embodiment 8 is basically the same as Embodiment 6, but has the following difference: the added second metal is Ir. The atomic ratio of Pt and Ir is 1:1.
实施例8,Example 8,
与实施例3基本相同,但是有以下不同:所述的贵金属化合物为:K2PtCl6。It is basically the same as Example 3, but there are the following differences: the noble metal compound is: K 2 PtCl 6 .
实施例9,Example 9,
与实施例3基本相同,但是有以下不同:所述的贵金属化合物为:IrCl3或RuCl3。It is basically the same as Example 3, but there are the following differences: the noble metal compound is: IrCl 3 or RuCl 3 .
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNA2008101963557A CN101380594A (en) | 2008-09-05 | 2008-09-05 | Titanium nitride carrier or mixed carrier of titanium nitride and carbon carrier for proton exchange membrane fuel cell catalyst |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNA2008101963557A CN101380594A (en) | 2008-09-05 | 2008-09-05 | Titanium nitride carrier or mixed carrier of titanium nitride and carbon carrier for proton exchange membrane fuel cell catalyst |
Publications (1)
Publication Number | Publication Date |
---|---|
CN101380594A true CN101380594A (en) | 2009-03-11 |
Family
ID=40460747
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNA2008101963557A Pending CN101380594A (en) | 2008-09-05 | 2008-09-05 | Titanium nitride carrier or mixed carrier of titanium nitride and carbon carrier for proton exchange membrane fuel cell catalyst |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101380594A (en) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102658185A (en) * | 2012-04-23 | 2012-09-12 | 汉能科技有限公司 | Catalyst for secondary reversible air electrode and preparation method thereof |
CN103007975A (en) * | 2012-12-04 | 2013-04-03 | 西北师范大学 | Preparation of nitrogen-containing carbon material and application thereof as oxygen-reduction electrocatalyst in fuel cell |
CN103263917A (en) * | 2013-04-25 | 2013-08-28 | 浙江大学 | A kind of preparation method of Pt-BaTiO3 nanometer catalyst for CO catalytic oxidation |
CN103918112A (en) * | 2011-09-06 | 2014-07-09 | 住友化学株式会社 | Method for producing dispersion liquid of electrode catalyst, dispersion liquid of electrode catalyst, method for producing electrode catalyst, electrode catalyst, electrode structure, membrane electrode assembly, fuel cell, and air cell |
CN103952763A (en) * | 2014-05-15 | 2014-07-30 | 东南大学 | Gold microsphere-titanium nitride nanotube array composite material as well as preparation method and application thereof |
EP3276716A1 (en) * | 2016-07-27 | 2018-01-31 | Industrial Technology Research Institute | Electrocatalyst and fuel cell employing the same |
CN108630950A (en) * | 2018-04-17 | 2018-10-09 | 清华大学 | Monatomic air cathode, battery, electro-chemical systems and bioelectrochemical system |
CN110010906A (en) * | 2019-03-21 | 2019-07-12 | 青岛大学 | A Pt/TiN@CN catalyst with high oxygen reduction activity and its preparation method and application |
CN110336045A (en) * | 2019-07-12 | 2019-10-15 | 合肥工业大学 | Preparation method of proton exchange membrane fuel cell cathode catalyst based on MXene/rGO composite carrier |
WO2019200895A1 (en) * | 2018-04-17 | 2019-10-24 | 清华大学 | Single-atom air cathode, battery, electrochemical system and bioelectrochemical system |
CN112490452A (en) * | 2020-11-26 | 2021-03-12 | 中国科学院长春应用化学研究所 | Fuel cell anode catalyst and preparation method and application thereof |
CN114260011A (en) * | 2022-01-05 | 2022-04-01 | 贵州师范大学 | Preparation method of ruthenium-iridium-titanium-platinum-doped quaternary photoelectrocatalysis carbon-based electrode |
-
2008
- 2008-09-05 CN CNA2008101963557A patent/CN101380594A/en active Pending
Cited By (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103918112A (en) * | 2011-09-06 | 2014-07-09 | 住友化学株式会社 | Method for producing dispersion liquid of electrode catalyst, dispersion liquid of electrode catalyst, method for producing electrode catalyst, electrode catalyst, electrode structure, membrane electrode assembly, fuel cell, and air cell |
CN103918112B (en) * | 2011-09-06 | 2016-08-31 | 住友化学株式会社 | The manufacture method of the dispersion liquid of electrode catalyst, the dispersion liquid of electrode catalyst |
CN102658185A (en) * | 2012-04-23 | 2012-09-12 | 汉能科技有限公司 | Catalyst for secondary reversible air electrode and preparation method thereof |
CN103007975A (en) * | 2012-12-04 | 2013-04-03 | 西北师范大学 | Preparation of nitrogen-containing carbon material and application thereof as oxygen-reduction electrocatalyst in fuel cell |
CN103007975B (en) * | 2012-12-04 | 2014-07-02 | 西北师范大学 | Preparation of nitrogen-containing carbon material and application thereof as oxygen-reduction electrocatalyst in fuel cell |
CN103263917A (en) * | 2013-04-25 | 2013-08-28 | 浙江大学 | A kind of preparation method of Pt-BaTiO3 nanometer catalyst for CO catalytic oxidation |
CN103263917B (en) * | 2013-04-25 | 2015-01-28 | 浙江大学 | A kind of preparation method of Pt-BaTiO3 nanometer catalyst for CO catalytic oxidation |
CN103952763A (en) * | 2014-05-15 | 2014-07-30 | 东南大学 | Gold microsphere-titanium nitride nanotube array composite material as well as preparation method and application thereof |
CN103952763B (en) * | 2014-05-15 | 2016-05-04 | 东南大学 | A kind of gold microsphere-titanium nitride nano pipe array composite material and its preparation method and application |
US20180034065A1 (en) * | 2016-07-27 | 2018-02-01 | Industrial Technology Research Institute | Electrocatalyst and fuel cell employing the same |
CN107665998B (en) * | 2016-07-27 | 2021-02-26 | 财团法人工业技术研究院 | An electrocatalytic catalyst and its fuel cell |
CN107665998A (en) * | 2016-07-27 | 2018-02-06 | 财团法人工业技术研究院 | Electrocatalysis catalyst and fuel cell thereof |
EP3276716A1 (en) * | 2016-07-27 | 2018-01-31 | Industrial Technology Research Institute | Electrocatalyst and fuel cell employing the same |
US10566631B2 (en) | 2016-07-27 | 2020-02-18 | Industrial Technology Research Institute | Electrocatalyst and fuel cell employing the same |
CN108630950A (en) * | 2018-04-17 | 2018-10-09 | 清华大学 | Monatomic air cathode, battery, electro-chemical systems and bioelectrochemical system |
CN108630950B (en) * | 2018-04-17 | 2024-10-11 | 清华大学 | Monoatomic air cathode, battery, electrochemical system and bioelectrochemical system |
WO2019200895A1 (en) * | 2018-04-17 | 2019-10-24 | 清华大学 | Single-atom air cathode, battery, electrochemical system and bioelectrochemical system |
CN110010906A (en) * | 2019-03-21 | 2019-07-12 | 青岛大学 | A Pt/TiN@CN catalyst with high oxygen reduction activity and its preparation method and application |
CN110336045A (en) * | 2019-07-12 | 2019-10-15 | 合肥工业大学 | Preparation method of proton exchange membrane fuel cell cathode catalyst based on MXene/rGO composite carrier |
CN112490452A (en) * | 2020-11-26 | 2021-03-12 | 中国科学院长春应用化学研究所 | Fuel cell anode catalyst and preparation method and application thereof |
CN112490452B (en) * | 2020-11-26 | 2021-09-21 | 中国科学院长春应用化学研究所 | Fuel cell anode catalyst and preparation method and application thereof |
CN114260011A (en) * | 2022-01-05 | 2022-04-01 | 贵州师范大学 | Preparation method of ruthenium-iridium-titanium-platinum-doped quaternary photoelectrocatalysis carbon-based electrode |
CN114260011B (en) * | 2022-01-05 | 2023-09-12 | 贵州师范大学 | A method for preparing a ruthenium-iridium-titanium-platinum doped quaternary photoelectrocatalytic carbon-based electrode |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101380594A (en) | Titanium nitride carrier or mixed carrier of titanium nitride and carbon carrier for proton exchange membrane fuel cell catalyst | |
CN101966453B (en) | Method for preparing graphene-loaded platinum nano catalyst | |
CN1166019C (en) | Preparation method of nano electrocatalyst for proton exchange membrane fuel cell | |
CN104716333B (en) | Ordered gas diffusion electrode, and production method and application thereof | |
CN110021758B (en) | Pt-M metal alloy catalyst prepared by electrodeposition in organic system | |
CN103531821B (en) | Membrane electrode and use the fuel cell of this membrane electrode | |
CN108028391B (en) | Electrocatalyst on carbonitride matrix | |
CN105431230A (en) | Method of forming noble metal nanoparticles on a support | |
CN101728541A (en) | Method for preparing carbon nano tube loaded cobalt-platinum alloy catalyst | |
CN106784900B (en) | Carbon nano tube covered by platinum-based nano particle coated tin dioxide and preparation method thereof | |
CN101515648A (en) | Novel membrane electrode component available for fuel cell, preparation method and application thereof | |
CN104600326A (en) | Preparation method of carbon-supported nano platinum alloy catalyst | |
CN101976737B (en) | Preparation of load-type Pt-Fe intermetallic compound nanoparticle catalyst | |
CN109950566A (en) | A high-performance oxygen reduction catalyst based on enhanced surface function and its preparation method | |
CN103165914B (en) | Pt/Au/PdCo/C catalyst, and preparation and application thereof | |
CN101380584B (en) | High activity methanol-resistance direct methanol fuel cell cathode catalyst and production method thereof | |
JP5158334B2 (en) | Method for producing electrode catalyst for fuel cell | |
CN103579639B (en) | A kind of cathode catalyst for fuel cell and preparation method | |
CN111193043B (en) | A kind of anode catalyst for proton exchange membrane fuel cell and its synthesis method | |
TWI478428B (en) | Catalyst composition, method for fabricating the same and fuel cell including the same | |
CN101694880A (en) | Electrode catalyst of fuel cell | |
CN109167069B (en) | A kind of high active electrode preparation method of metal supported on binary carrier containing molecular sieve | |
CN101752571A (en) | Anode catalyst of direct methanol fuel cell and preparation method thereof | |
CN100503038C (en) | Complex reduction preparation method of highly alloyed platinum-based composite metal nanocatalyst | |
CN1632975A (en) | Cathodic electrocatalysts for proton exchange membrane fuel cells and their applications |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
WD01 | Invention patent application deemed withdrawn after publication |
Open date: 20090311 |