CN101377191B - 流体输送装置的制造方法 - Google Patents
流体输送装置的制造方法 Download PDFInfo
- Publication number
- CN101377191B CN101377191B CN2007101472546A CN200710147254A CN101377191B CN 101377191 B CN101377191 B CN 101377191B CN 2007101472546 A CN2007101472546 A CN 2007101472546A CN 200710147254 A CN200710147254 A CN 200710147254A CN 101377191 B CN101377191 B CN 101377191B
- Authority
- CN
- China
- Prior art keywords
- valve body
- delivery system
- fluid delivery
- production method
- valve
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000012530 fluid Substances 0.000 title claims abstract description 97
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 37
- 238000012546 transfer Methods 0.000 title description 2
- 238000000034 method Methods 0.000 claims abstract description 15
- 239000012528 membrane Substances 0.000 claims abstract description 3
- 239000010410 layer Substances 0.000 claims description 54
- 239000000463 material Substances 0.000 claims description 26
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 15
- 229910052751 metal Inorganic materials 0.000 claims description 13
- 239000002184 metal Substances 0.000 claims description 13
- 239000010935 stainless steel Substances 0.000 claims description 13
- 229910001220 stainless steel Inorganic materials 0.000 claims description 13
- 238000003754 machining Methods 0.000 claims description 10
- 238000001259 photo etching Methods 0.000 claims description 10
- 239000007769 metal material Substances 0.000 claims description 9
- 238000005516 engineering process Methods 0.000 claims description 8
- 229910052759 nickel Inorganic materials 0.000 claims description 7
- 230000008569 process Effects 0.000 claims description 5
- 238000007789 sealing Methods 0.000 claims description 4
- 239000004065 semiconductor Substances 0.000 claims description 4
- 238000010276 construction Methods 0.000 claims description 3
- 239000011368 organic material Substances 0.000 claims description 3
- 239000002356 single layer Substances 0.000 claims description 3
- 239000012815 thermoplastic material Substances 0.000 claims description 3
- 230000015572 biosynthetic process Effects 0.000 claims description 2
- 238000001312 dry etching Methods 0.000 claims description 2
- 239000010408 film Substances 0.000 description 91
- 230000007246 mechanism Effects 0.000 description 17
- 238000003860 storage Methods 0.000 description 15
- 238000003825 pressing Methods 0.000 description 13
- 230000000694 effects Effects 0.000 description 7
- 239000007788 liquid Substances 0.000 description 7
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 6
- 230000005540 biological transmission Effects 0.000 description 6
- 238000005323 electroforming Methods 0.000 description 6
- 230000003287 optical effect Effects 0.000 description 6
- 238000005192 partition Methods 0.000 description 6
- 238000012545 processing Methods 0.000 description 6
- 239000004642 Polyimide Substances 0.000 description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 4
- 239000010949 copper Substances 0.000 description 4
- 229910052802 copper Inorganic materials 0.000 description 4
- 230000005684 electric field Effects 0.000 description 4
- 229920001721 polyimide Polymers 0.000 description 4
- 239000000758 substrate Substances 0.000 description 4
- 239000004734 Polyphenylene sulfide Substances 0.000 description 3
- 230000002411 adverse Effects 0.000 description 3
- 230000006835 compression Effects 0.000 description 3
- 238000007906 compression Methods 0.000 description 3
- 229920001903 high density polyethylene Polymers 0.000 description 3
- 239000004700 high-density polyethylene Substances 0.000 description 3
- 229920001684 low density polyethylene Polymers 0.000 description 3
- 239000004702 low-density polyethylene Substances 0.000 description 3
- 229920006324 polyoxymethylene Polymers 0.000 description 3
- 229920000069 polyphenylene sulfide Polymers 0.000 description 3
- 238000007639 printing Methods 0.000 description 3
- 229910000838 Al alloy Inorganic materials 0.000 description 2
- 229910000851 Alloy steel Inorganic materials 0.000 description 2
- 229920000089 Cyclic olefin copolymer Polymers 0.000 description 2
- 229910000990 Ni alloy Inorganic materials 0.000 description 2
- 239000002033 PVDF binder Substances 0.000 description 2
- 239000004743 Polypropylene Substances 0.000 description 2
- 229920000122 acrylonitrile butadiene styrene Polymers 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 239000004411 aluminium Substances 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000006073 displacement reaction Methods 0.000 description 2
- 239000003814 drug Substances 0.000 description 2
- 229920000840 ethylene tetrafluoroethylene copolymer Polymers 0.000 description 2
- 229910052451 lead zirconate titanate Inorganic materials 0.000 description 2
- 229920002521 macromolecule Polymers 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 238000001020 plasma etching Methods 0.000 description 2
- 239000004417 polycarbonate Substances 0.000 description 2
- -1 polypropylene Polymers 0.000 description 2
- 229920001155 polypropylene Polymers 0.000 description 2
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 2
- 238000010992 reflux Methods 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- 230000007306 turnover Effects 0.000 description 2
- 229910021578 Iron(III) chloride Inorganic materials 0.000 description 1
- 229930040373 Paraformaldehyde Natural products 0.000 description 1
- 229930182556 Polyacetal Natural products 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 230000009102 absorption Effects 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- XECAHXYUAAWDEL-UHFFFAOYSA-N acrylonitrile butadiene styrene Chemical compound C=CC=C.C=CC#N.C=CC1=CC=CC=C1 XECAHXYUAAWDEL-UHFFFAOYSA-N 0.000 description 1
- 239000004676 acrylonitrile butadiene styrene Substances 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000008034 disappearance Effects 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 238000007667 floating Methods 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- RBTARNINKXHZNM-UHFFFAOYSA-K iron trichloride Chemical compound Cl[Fe](Cl)Cl RBTARNINKXHZNM-UHFFFAOYSA-K 0.000 description 1
- HFGPZNIAWCZYJU-UHFFFAOYSA-N lead zirconate titanate Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ti+4].[Zr+4].[Pb+2] HFGPZNIAWCZYJU-UHFFFAOYSA-N 0.000 description 1
- 229920000092 linear low density polyethylene Polymers 0.000 description 1
- 239000004707 linear low-density polyethylene Substances 0.000 description 1
- 229920002492 poly(sulfone) Polymers 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 239000004431 polycarbonate resin Substances 0.000 description 1
- 229920005668 polycarbonate resin Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 238000004080 punching Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 230000008961 swelling Effects 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
- 238000001039 wet etching Methods 0.000 description 1
Images
Landscapes
- Reciprocating Pumps (AREA)
Abstract
本发明为一种流体输送装置的制造方法,其包含下列步骤:形成阀体层;于该阀体层上对应形成阀体盖层,其具有压力腔室;形成可挠薄膜,其具有多个阀片结构;形成致动薄膜;形成致动片,并将致动片贴附定位于致动薄膜上,以形成致动器;将可挠薄膜设置于阀体层及阀体盖层之间,且将阀体层、可挠薄膜与阀体盖层相互组装定位;以及将致动器设置于阀体盖层上,以使致动薄膜封闭阀体盖层的压力腔室,以形成流体输送装置。
Description
技术领域
本发明是关于一种流体输送装置的制造方法,尤指一种适用于微泵结构的流体输送装置的制造方法。
背景技术
目前于各领域中无论是医药、计算机科技、打印、能源等工业,产品均朝精致化及微小化方向发展,其中微泵、喷雾器、喷墨头、工业打印装置等产品所包含的流体输送结构为其关键技术,因此,如何借助创新结构突破其技术瓶颈,为发展的重要内容。
请参阅图1(a),其为已知微泵结构于未作动时的结构示意图,已知微泵结构10包含入口通道13、微致动器15、传动块14、隔层膜12、压缩室111、基板11以及出口通道16,其中基板11与隔层膜12间形成一压缩室111,主要用来储存液体,将因隔层膜12的形变影响而使得压缩室111的体积受到改变。
当一电压作用在微致动器15的上下两极时,会产生一电场,使得微致动器15在此电场的作用下产生弯曲而向隔层膜12及压缩室111方向移动,由于微致动器15设置于传动块14上,因此传动块14能将微致动器15所产生的推力传递至隔层膜12,使得隔层膜12也跟着被挤压变形,即如图1(b)所示,液体即可依图中箭号X的方向流动,使由入口通道13流入后储存于压缩室111内的液体受挤压,而经由出口通道16流向其它预先设定的空间,以达到供给流体的目的。
请再参阅图2,其为图1(a)所示的微泵结构的俯视图,如图所示,当微泵结构10作动时流体的输送方向是如图中标号Y的箭头方向所示,入口扩流器17为两端开口大小不同的锥状结构,开口较大的一端是与入口流道191相连接,而以开口较小的一端与微压缩室111连接,同时,连接压缩室111及出口流道192的扩流器18是与入口扩流器17同向设置,其是以开口较大的一端连接于压缩室111,而以开口较小的一端与出口流道192相连接,由于连接于压缩室111两端的入口扩流器17及出口扩流器18为同方向设置,故可利用扩流器两方向流阻不同的特性,及压缩室111体积的涨缩使流体产生单方向的净流率,以使流体可自入口流道191经由入口扩流器17流入压缩室111内,再由出口扩流器18经出口流道192流出。
此种无实体阀门的微泵结构10容易产生流体大量回流的状况,所以为促使流率增加,压缩室111需要有较大的压缩比,以产生足够的腔压,故需要耗费较高的成本在致动器15上。
因此,如何发展一种可改善上述已知技术缺失的流体输送装置,实为目前迫切需要解决的问题。
发明内容
本发明的主要目的在于提供一种流体输送装置的制造方法,主要依序形成阀体层、阀体盖层、可挠薄膜、致动薄膜及致动片,且使可挠薄膜相对应设置于阀体层及阀体盖层之间,并将致动薄膜及致动片相互对应贴合,通过致动片作动时带动致动薄膜产生形变,使介于致动薄膜及阀体盖层间的压力腔室体积改变,以产生正负的压力差,同时,由于可挠薄膜上的阀片结构的迅速反应,使得压力腔室于涨缩的瞬间可产生较大的流体吸力与推力,故可使流体达到高效率的传输,并可有效阻挡流体的逆流,以解决已知技术的微泵结构于流体传送过程中易产生流体回流的现象。
为达上述目的,本发明的较广义实施态样为提供一种流体输送装置的制造方法,其包含下列步骤:形成阀体层;于该阀体层上对应形成阀体盖层,其具有压力腔室;分别于该阀体层及该阀体盖层上形成一微凸结构;形成可挠薄膜,其具有至少一个阀片结构;形成致动薄膜;形成致动器,并将致动器贴附定位于致动薄膜上,以形成致动装置;将可挠薄膜设置于阀体层及阀体盖层之间,且将阀体层、可挠薄膜与阀体盖层相互组装定位,使该可挠薄膜的该阀片结构分别与该阀体层及该阀体盖层上的该微凸结构相抵触,且施予一预作用力,并使该阀片结构与该阀体层的表平面间形成一间隔,及该阀片结构与该阀体盖层的表平面间形成一间隙;以及将致动装置设置于阀体盖层上,以使致动薄膜封闭阀体盖层的压力腔室,以形成流体输送装置。
附图说明
图1(a)为已知微泵结构于未作动时的结构示意图。
图1(b)为图1(a)于作动时的结构示意图。
图2为图1(a)所示的微泵结构的俯视图。
图3为本发明第一较佳实施例的流体输送装置的结构示意图。
图4为图3所示的阀体座侧面结构示意图。
图5(a)为图3所示的阀体盖体的背面结构示意图。
图5(b)为图5(a)的剖面结构示意图。
图6为图3所示的阀体薄膜结构示意图。
图7(a)为本发明较佳实施例的流体输送装置的未作动状态示意图。
图7(b)为图7(a)的压力腔室膨胀状态示意图。
图7(c)为图7(b)的压力腔室压缩状态示意图。
图8为本发明第二较佳实施例的流体输送装置的制造流程图。
具体实施方式
体现本发明特征与优点的一些典型实施例将在后段的说明中详细叙述。应理解的是本发明能够在不同的态样上具有各种的变化,其皆不脱离本发明的范围,且其中的说明及图标在本质上是当作说明之用,而非用以限制本发明。
请参阅图3,其为本发明第一较佳实施例的流体输送装置的结构示意图,如图所示,本发明的流体输送装置20可适用于医药生技、计算机科技、打印或是能源等工业,且可输送气体或是液体,但不以此为限,流体输送装置20主要是由阀体座21、阀体盖体22、阀体薄膜23、多个暂存室、致动装置24及盖体25所组成,其中阀体座21、阀体盖体22、阀体薄膜23形成一流体阀座201,且在阀体盖体22及致动装置24之间形成一压力腔室226,主要用来储存流体。
该流体输送装置20的组装方式是将阀体薄膜23设置于阀体座21及阀体盖体22之间,并使阀体薄膜23与阀体座21及阀体盖体22相对应设置,且在阀体薄膜23与阀体盖体22之间形成一第一暂存室,而在阀体薄膜23与阀体座21之间形成一第二暂存室,并且于阀体盖体22上的相对应位置更设置有致动装置24,致动装置24是由一振动薄膜241以及一致动器242组装而成,用以驱动流体输送装置20的作动,最后,再将盖体25设置于致动装置24的上方,故其是依序将阀体座21、阀体薄膜23、阀体盖体22、致动装置24及盖体25相对应堆栈设置,以完成流体输送装置20的组装。
其中,阀体座21及阀体盖体22为本发明流体输送装置20中导引流体进出的主要结构,请参阅图4并配合图3,其中图4为图3所示的阀体座的侧面结构示意图,如图所示,阀体座21具有一个入口流道211以及一个出口流道212,流体可由外界输入,经由入口流道211传送至阀体座21上表面210的一开口213,并且,于本实施例中,阀体薄膜23及阀体座21之间所形成的第二暂存室即为图中所示的出口暂存腔215,但不以此为限,其是由阀体座21的上表面210于与出口流道212相对应的位置产生部分凹陷而形成,并与出口流道212相连通,该出口暂存腔215是用以暂时储存流体,并使该流体由出口暂存腔215经由一开口214而输送至出口通道212,再流出阀体座21之外。以及,在阀体座21上还具有多个凹槽结构,用以供一密封环26(如图7(a)所示)设置于其上,于本实施例中,阀体座21具有环绕开口213外围的凹槽216、218,及环绕于出口暂存腔215外围的凹槽217。
请参阅图5(a)并配合图3,其中图5(a)为图3所示的阀体盖体的背面结构示意图,如图所示,阀体盖座22具有一上表面220及一下表面228,以及在阀体盖座22上亦具有贯穿上表面220至下表面228的入口阀门通道221及出口阀门通道222,且该入口阀门通道221设置于与阀体座21的开口213相对应的位置,而出口阀门通道222则设置于与阀体座21的出口暂存腔215内的开口214相对应的位置,并且,于本实施例中,阀体薄膜23及阀体盖体22之间所形成的第一暂存室即为图中所示的入口暂存腔223,且不以此为限,其是由阀体盖体22的下表面228于与入口阀门通道221相对应的位置产生部份凹陷而形成,且其连通于入口阀门通道221。
请参阅图5(b),其为图5(a)的剖面结构示意图,如图所示,阀体盖体22的上表面220是部份凹陷,以形成一压力腔室226,其是与致动装置24的致动器242相对应设置,压力腔室226是通过入口阀门通道221连通于入口暂存腔223,并同时与出口阀门通道222相连通,因此,当致动器242受电压致动使致动装置24上凸变形,造成压力腔室226的体积膨胀而产生负压差,可使流体经入口阀门通道22 1流至压力腔室226内,其后,当施加于致动器242的电场方向改变后,致动器242将使致动装置24下凹变形压力腔室226收缩而体积减小,使压力腔室226与外界产生正压力差,促使流体由出口阀门通道222流出压力腔室226之外,于此同时,同样有部分流体会流入入口阀门通道221及入口暂存室223内,然而由于此时的入口阀门结构231(如图6(c)所示)为使受压而关闭的状态,故该流体不会通过入口阀片231而产生倒流的现象,至于暂时储存于入口暂存腔223内的流体,则于致动器242再受电压致动,重复使致动装置24再上凸变形而增加压力腔室226体积时,再由入口暂存腔223经至入口阀门通道221而流入压力腔室226内,以进行流体的输送。
另外,阀体盖体22上同样具有多个凹槽结构,以本实施例为例,在阀体盖座22的上表面220具有环绕压力腔室226而设置的凹槽227,而在下表面228上则具有环绕设置于入口暂存腔223的凹槽224、环绕设置于出口阀门通道222的凹槽225以及凹槽229,同样地,上述凹槽结构是用以供一密封环27(如图7(a)所示)设置于其中。
请参阅图6(a)并配合图3,其中图6(a)为图3所示的阀体薄膜的结构示意图,如图所示,阀体薄膜23主要因此传统加工、或光刻、或激光加工、或电铸加工、或放电加工等方式制出,且为一厚度实质上相同的薄片结构,其上具有多个镂空阀开关,包含第一阀开关以及第二阀开关,于本实施例中,第一阀开关为入口阀门结构231,而第二阀开关为出口阀门结构232,其中,入口阀门结构231具有入口阀片2313以及多个环绕入口阀片2313外围而设置的镂空孔洞2312,另外,在孔洞2312之间还具有与入口阀片2313相连接的延伸部2311,当阀体薄膜23承受一自压力腔室226传递而来向下的应力时,如图7(c)所示,入口阀门结构231是整个向下平贴于阀体座21之上,此时入口阀片2313会紧靠凹槽216上密封环26突出部分,而密封住阀体座21上的开口213,且其外围的镂空孔洞2312及延伸部2311则顺势浮贴于阀体座21之上,故因此入口阀门结构231的关闭作用,使流体无法流出。
而当阀体薄膜23受到压力腔室226体积增加而产生的吸力作用下,由于设置于阀体座21的凹槽216内的密封环26已提供入口阀门结构231一预作用力(Preforce),因而入口阀片23 13可通过延伸部2311的支撑而产生更大的预盖紧效果,以防止逆流,当因压力腔室226的负压而使入口阀门结构231往上产生位移(如图6(b)所示),此时,流体则可通过镂空的孔洞2312由阀体座21流至阀体盖体22的入口暂存腔223,并通过入口暂存腔223及入口阀门通道221传送至压力腔室226内,如此一来,入口阀门结构231即可因应压力腔室226产生的正负压力差而迅速的开启或关闭,以控制流体的进出,并使流体不会回流至阀体座21上。
同样地,位于同一阀体薄膜23上的另一阀门结构则为出口阀门结构232,其中的出口阀片2323、延伸部2321以及孔洞2322的作动方式均与入口阀门结构231相同,因而不再赘述,惟出口阀门结构232外围的密封环26设置方向是与入口阀门结构231的密封环27反向设置,如图6(c)所示,因而当压力腔室226压缩而产生一推力时,设置于阀体盖体22的凹槽225内的密封环27将提供出口阀门结构232一预作用力(Preforce),使得出口阀片2323可通过延伸部2321的支撑而产生更大的预盖紧效果,以防止逆流,当因压力腔室226的正压而使出口阀门结构232往下产生位移,此时,流体则可通过镂空的孔洞2322由压力腔室226经阀体盖体22而流至阀体座21的出口暂存腔215内,并可通过开口214及出口流道212排出,如此一来,则可通过出口阀门结构232开启的机制,将流体自压力腔室226内泄出,以达到流体输送的功能。
请参阅图7(a),其为本发明较佳实施例的流体输送装置的未作动状态示意图,于本实施例中,所有的凹槽结构216、217、218分别设置密封环26,而凹槽224、225、229内亦分别设置密封环27,其材质为可耐化性佳的橡胶材料,且不以此为限,其中,设置于阀体座21上环绕开口213的凹槽216内的密封环可为一圆环结构,其厚度是大于凹槽216深度,使得设置于凹槽216内的密封环26是部分凸出于阀体座21之上表面210构成一微凸结构,因而使得贴合设置于阀体座21上的阀体薄膜23的入口阀门结构231的入口阀片2313因密封环26的微凸结构而形成一向上隆起,而阀体薄膜23的其余部分是与阀体盖体22相抵顶,如此微凸结构对入口阀门231顶推而产生一预作用力(Preforce)作用,有助于产生更大的预盖紧效果,以防止逆流,且由于密封环26向上隆起的微凸结构是位于阀体薄膜23的入口阀门结构231处,故使入口阀门结构231在未作动时使入口阀片2313与阀体座21之上表面210之间具有一间隙,同样地,当密封环27设置于环绕出口阀门通道222的凹槽225内时,由于其密封环27设置于阀体盖体22的下表面228,因而该密封环27是使阀体薄膜23的出口阀门结构向下凸出而形成一向下隆起于阀体盖体22的微凸结构,此微凸结构仅其方向与形成于入口阀门结构231的微凸结构为反向设置,然而其功能均与前述相同,因而不再赘述。至于其余分别设置于凹槽结构217、218及224、229以及227内的密封环26、27及28,主要用来分别使阀体座21与阀体薄膜23、阀体薄膜23与阀体盖体22以及阀体盖体22与致动装置24之间紧密贴合时,防止流体外泄。
当然,上述的微凸结构除了使用凹槽及密封环来搭配形成外,于一些实施例中,阀体座21及阀体盖体22的微凸结构也可采用半导体工艺,例如:光刻或镀膜或电铸技术,直接在阀体座21及阀体盖体22上形成。
请同时参阅图7(a)、7(b)、7(c),如图所示,当盖体25、致动装置24、阀体盖体22、阀体薄膜23、密封环26以及阀体座21彼此对应组装设置后,阀体座21上的开口213是与阀体薄膜23上的入口阀门结构231以及阀体盖体22上的入口阀门通道221相对应,且阀体座21上的开口214则与阀体薄膜23上的出口阀片232以及阀体盖体22上的出口阀门通道222相对应,并且,由于密封环26设置于凹槽216内,使得阀体薄膜23的入口阀门结构231微凸起于阀体座21之上,并通过位于凹槽216内的密封环26顶触阀体薄膜23而产生一预作用力((Preforce)作用,使得入口阀门结构231在未作动时则与阀体座21的上表面210形成一间隙,同样地,出口阀门结构232也通过将密封环27设至于凹槽225中的相同方式与阀体盖体22的下表面228形成一间隙。
当以一电压驱动致动器242时,致动装置24产生弯曲变形,如图7(b)所示,致动装置24是朝箭号a所指的方向向上弯曲变形,使得压力腔室226的体积增加,因而产生一吸力,使阀体薄膜23的入口阀门结构231、出口阀门结构232承受一向上的拉力,并使已具有一预作用力(Preforce)的入口阀门结构231的入口阀片2313迅速开启(如图6(b)所示),使液体可大量地自阀体座21上的入口通道211被吸取进来,并流经阀体座21上的开口213、阀体薄膜23上的入口阀门结构231的孔洞2312、阀体盖体22上的入口暂存腔223、入口阀片通道221而流入压力腔室226的内,此时,由于阀体薄膜23的入口阀门结构231、出口阀门结构232承受该向上拉力,故位于另一端的出口阀门结构232是因该向上拉力使得位于阀体薄膜23上的出口阀片2323密封住出口阀门通道222,而使得出口阀门结构232关闭,因而流体逆流。
当致动装置24因电场方向改变而如图7(c)所示的箭号b向下弯曲变形时,则会压缩压力腔室226的体积,使得压力腔室226对内部的流体产生一推力,并使阀体薄膜23的入口阀门结构231、出口阀门结构232承受一向下推力,此时,设置于凹槽225内的密封环27上出口阀门结构232的出口阀片2323其可迅速开启(如图6(c)所示),并使液体瞬间大量宣泄,由压力腔室226通过阀体盖体22上的出口阀门通道222、阀体薄膜23上的出口阀门结构232的孔洞2322、阀体座21上的出口暂存腔215、开口214及出口通道212而流出流体输送装置20之外,因而完成流体的传输过程,同样地,此时由于入口阀门结构231是承受该向下的推力,因而使得入口阀片2313密封住开口213,因而关闭入口阀门结构231,使得流体不逆流,并且,通过入口阀门结构231及出口阀门结构232配合设置于阀体座21及阀体盖体22上的凹槽216、225内的密封环26、27的设计,可使流体于传送过程中不会产生回流的情形,达到高效率的传输。
另外,于本实施例中,阀体座21以及阀体盖体22的材质可采用热塑性塑料材料,例如聚碳酸酯树酯(Polycarbonate PC)、聚讽(Polysulfone,PSF)、ABS树脂(Acrylonitrile Butadiene Styrene)、纵性低密度聚乙烯(LLDPE)、低密度聚乙烯(LDPE)、高密度聚乙烯(HDPE)、聚丙烯(PP)、聚苯硫醚(Polyphenylene Sulfide,PPS)、对位性聚苯乙烯(SPS)、聚苯醚(PPO)、聚缩醛(Polyacetal,POM)、聚对苯二甲酸二丁酯(PBT)、聚偏氟乙烯(PVDF)、乙烯四氟乙烯共聚物(ETFE)、环状烯烃聚合物(COC)等热塑性塑料材料,但不以此为限,且于本实施例中,压力腔室226的深度是介于100μm至300μm之间,直径介于10mm~30mm之间,且不以此为限。
于本实施例中,该阀体薄膜23与阀体座21及阀体盖体22之间的间隙距离可为10μm至790μm,且最佳者为180μm至300μm,且于一些实施例中,该致动装置24的振动薄膜241与阀体盖体22间的分隔距离,即间隙,可为10μm至790μm,较佳者为100μm至300μm。
而阀体薄膜23是可以传统加工或光刻或激光加工或电铸加工或放电加工等方式制出,其材质可为任何耐化性佳的有机高分子材料或金属,当阀体薄膜23采用该高分子材料,其弹性系数为2Gpa~20Gpa,例如聚亚酰胺(Polyimide,PI),其弹性系数,即杨氏系数(E值)可为10GPa,当阀体薄膜23采用金属材料时,例如铝、铝合金、镍、镍合金、铜、铜合金或不锈钢等金属材料,其杨氏系数为2GPa~240GPa,若该金属材料为铝金属,其弹性系数为70GPa,或是镍金属,其弹性系数为210GPa,或是不锈钢金属,其弹性系数为240GPa等,且不以此为限。至于阀体薄膜23的厚度可介于10μm至50μm,最佳者为21μm至40μm。
以下分别就阀体薄膜23使用不同材质时所制成的方法提出说明。
当阀体薄膜23的材质为聚亚酰胺(Polyimide,PI)时,其制造方法主要是利用反应离子气体干蚀刻(reactive ion etching,RIE)的方法,以感旋光性光刻胶涂布于阀门结构之上,并曝光显影出阀门结构图案后,再以进行蚀刻,由于有光刻胶覆盖处会保护聚亚酰胺(Polyimide,PI)片不被蚀刻,因而可蚀刻出阀体薄膜23上的阀门结构。
若阀体薄膜23的材质为不锈钢金属,则可以光刻、激光加工及机械加工等制出阀门结构,其中光刻的方式得到在不锈钢片上的阀门结构的光刻胶图案,再浸泡于FeCl3加HCl溶液中进行湿蚀刻,与前述方法类似,有光刻胶覆盖处会保护不锈钢片不被蚀刻,因而可蚀刻出阀体薄膜23上的阀门结构。
以及,若是阀体薄膜23的材质为金属镍,则是利用电铸成形的方法,同样利用光刻方法,得到在不锈钢基板上的阀门结构的光刻胶图案,然后进行镍电铸,有光刻胶覆盖处不会电铸,当电铸的镍金属达一定厚度后,将其从不锈钢基板上脱离,则可得到具阀门结构231、232的阀体薄膜23。
另外,除了上述的制造方法之外,应用于阀体薄膜23的所有材质均可用精密冲孔的加工方法,或是应用传统机械加工方式、激光加工或电铸加工或放电加工等方式制作出其上的阀片结构,但不以此为限。
而,致动装置24内的致动器242为一压电板,可采用高压电系数的锆钛酸铅(PZT)系列的压电粉末制造而成,其中致动器242的厚度可介于100μm至500μm之间,较佳厚度为150μm至250μm,杨氏系数为100GPa至150GPa,且不以此为限。
而贴附致动器242的振动薄膜241的厚度为10μm至300μm,较佳厚度为100μm至250μm,其材质可为一单层金属所构成,例如不锈钢金属,其杨氏系数为240Gpa,厚度是介于140μm至160μm,例如铜,其杨氏系数为100Gpa,厚度是介于190μm至210μm,且不以此为限,或其材质可为金属材料上贴附一层耐生化高分子薄板以构成的双层结构,。
于一些实施例中,为了因应大流量流体传输的需求,可于致动装置24的致动器242上施予操作频率为10-50Hz,并配合以下条件:
致动器242的厚度约为100μm至500μm的刚性特性,较佳厚度为150μm至250μm,杨氏系数约为100GPa-150Gpa。
以及振动薄膜241的厚度为10μm至300μm之间,较佳厚度为100μm至250μm,杨氏系数为60-300GPa,其材质可为一单层金属所构成,例如不锈钢金属,其杨氏系数为240Gpa,厚度是介于140μm至160μm,例如铜,其杨氏系数为100Gpa,厚度是介于190μm至210μm,且不以此为限,或其材质可为金属材料上贴附一层耐生化高分子薄板以构成的双层结构。
该压力腔室226的深度是介于100μm至300μm之间,直径介于10mm~30mm之间。
以及,阀体薄膜23上的阀门结构231、232的厚度为10μm至50μm,杨氏系数为2GPa~240Gpa,可为任何耐化性佳的有机高分子材料或金属,该阀体薄膜23采用该高分子材料,其弹性系数为2GPa~20Gpa,例如聚亚酰胺(Polyimide,PI),其弹性系数,即杨氏系数(E值)可为10Gpa,该阀体薄膜23采用金属材料,例如铝、铝合金、镍、镍合金、铜、铜合金或不锈钢等金属材料,其杨氏系数为2GPa~240GPa,铝金属弹性系数为70GPa,或是镍金属弹性系数为210GPa,或是不锈钢金属弹性系数为240Gpa以及,阀体薄膜23与阀体座21及阀体盖体22之间的间隙距离可为10μm至790μm,且最佳者为180μm至300μm。
由上述致动器242、振动薄膜241、压力腔室226及阀体薄膜23等相关参数条件搭配,则可驱动阀体薄膜23的入口阀门结构231及出口阀门结构232进行启闭作用,驱使流体进行单向流动,并使流经压力腔室226的流体能达到每分钟5cc以上的大流量输出。
综上所述,本发明的流体传输装置20可通过致动装置24的驱动,且阀体薄膜23及其上一体成形的入口阀门结构231可配合设置于阀体座21的凹槽216内的软性密封环26,使入口阀门结构231开启而将流体输送至压力腔室226,再因致动装置24改变压力腔室226的体积,因而使出口阀门结构232配合设置于阀体盖体22上的凹槽225内的软性密封环27而开启,以使流体输送至压力腔室226之外,由于压力腔室226于体积涨缩的瞬间可产生较大的流体吸力与推力,配合阀体薄膜23上的阀门结构其迅速的开合反应,使得故可使流体达到大流量的传输,并有效阻挡流体的逆流。
请参阅图8并搭配图3,其中图8为本发明第二较佳实施例的流体输送装置的制造流程图,首先需形成一阀体层,即如图3所示的阀体座21(如步骤S81所示),其后,形成一阀体盖层,于本实施例中,该阀体盖层即为图3所示的阀体盖体22,且其具有一压力腔室226(如步骤S82所示),接着,于阀体座21及阀体盖体22上分别形成一微凸结构(如步骤S83所示),该微凸结构的形成方式可有两种方式,且不以此为限:一、请参考图3及本发明的实施例,需先于阀体座21及阀体盖体22上分别形成至少一个凹槽,如图中所示的阀体座21上即具有凹槽216,并于凹槽216内设置一密封环26(如图7(a)所示),由于设置于凹槽216内的密封环26是部份凸出于阀体座21的上表面210,因而可于阀体座21的上表面210形成一微凸结构,同样地,凹槽225及密封环26也可以上述方式于阀体盖体22的下表面228上形成一微凸结构(如图5(b)所示);二、可采用半导体工艺,例如:光刻或镀膜或电铸技术,但不以此为限,直接于阀体座21及阀体盖体22上形成一微凸结构。
接着,形成一可挠薄膜,其具有至少一阀片结构,即为本发明的阀体薄膜23以及所具有的入口阀门结构231及出口阀门结构232(如步骤S84所示),接着,再形成一致动薄膜,即为本发明的振动薄膜241(如步骤S85所示),以及形成一致动器242(如步骤S86所示),之后,将致动器242贴附定位于振动薄膜241之上,以组装构成一致动装置24,并使致动器242与压力腔室226相对应设置(如步骤S87所示),在步骤S87之后将阀体薄膜23设置于阀体座21与阀体盖体22之间,并且使阀体座21、阀体薄膜23以及阀体盖体22彼此相对应设置(如步骤S88所示),最后,将致动装置24对应设置于阀体盖体22上,并使阀体薄膜23封闭阀体盖体22的压力腔室226,以形成一流体输送装置(如步骤S89所示)。
综上所述,本发明的流体输送装置的制造方法,主要依序形成阀体层、阀体盖层、可挠薄膜、致动薄膜及致动片,且使可挠薄膜相对应设置于阀体层及阀体盖层之间,并将致动薄膜及致动片相互对应贴合,通过致动片作动时带动致动薄膜产生形变,使介于致动薄膜及阀体盖层间的压力腔室的体积改变,以产生正负的压力差,由于使用本发明制造方法所形成的流体输送装置可输送气体及流体,不仅有极佳的流率与输出压力,可于初始状态自我汲取液体,还具有高精度控制性,且因其可输送气体,因此于流体输送过程更可排除气泡,以达到高效率的传输。
Claims (23)
1.一种流体输送装置制造方法,其特征在于包含下列步骤:
形成一阀体层;
于该阀体层上对应形成一阀体盖层,该阀体盖层具有一压力腔室;
分别于该阀体层及该阀体盖层上形成一微凸结构;
形成一可挠薄膜,其具有至少一个阀片结构;
形成一致动薄膜;
形成一致动器,并将该致动器贴附定位于该致动薄膜上,以形成一致动装置;
将该可挠薄膜设置于该阀体层及该阀体盖层之间,且将该阀体层、该可挠薄膜与该阀体盖层相互组装定位,使该可挠薄膜的该阀片结构分别与该阀体层及该阀体盖层上的该微凸结构相抵触,且施予一预作用力,并使该阀片结构与该阀体层的表平面间形成一间隔,及该阀片结构与该阀体盖层的表平面间形成一间隙;以及
将该致动装置设置于该阀体盖层上,以使该致动薄膜封闭该阀体盖层的该压力腔室,以形成一流体输送装置。
2.根据权利要求1所述的流体输送装置的制造方法,其特征在于该阀体层及该阀体盖层是以热塑性塑料材料射出而形成。
3.根据权利要求1所述的流体输送装置的制造方法,其特征在于该微凸结构的形成是于该阀体层及该阀体盖层形成多个凹槽,且分别于该多个凹槽内设置一密封环,并使该密封环部份突出于该凹槽,以形成该微凸结构,用以施一预作用力于该可挠薄膜。
4.根据权利要求3所述的流体输送装置的制造方法,其特征在于该密封环的材质为耐化性佳的橡胶材料。
5.根据权利要求1所述的流体输送装置的制造方法,其特征在于该微凸结构是直接采用半导体工艺形成于阀体层及阀体盖层上。
6.根据权利要求5所述的流体输送装置的制造方法,其特征在于该半导体工艺为光刻或镀膜或电铸技术。
7.根据权利要求1所述的流体输送装置的制造方法,其特征在于该可挠薄膜的厚度为10μm至50μm。
8.根据权利要求1所述的流体输送装置的制造方法,其特征在于该可挠薄膜的厚度为21μm至40μm。
9.根据权利要求1所述的流体输送装置的制造方法,其特征在于该可挠薄膜的材质为耐化性佳的有机高分子材料,且其弹性模数为2GPa~20GPa。
10.根据权利要求9所述的流体输送装置的制造方法,其特征在于该可挠薄膜的材质为聚亚酰胺。
11.根据权利要求1所述的流体输送装置的制造方法,其特征在于该可挠薄膜是利用反应离子气体干蚀刻方法制出。
12.根据权利要求1所述的流体输送装置的制造方法,其特征在于该可挠薄膜的材质为金属材料,且其弹性模数为2GPa至240GPa。
13.根据权利要求12所述的流体输送装置的制造方法,其特征在于该可挠薄膜的材质为不锈钢材料,且其是以光刻或机械加工进行制出该阀片结构。
14.根据权利要求12所述的流体输送装置的制造方法,其特征在于该可挠薄膜的材质为镍金属,其是以电铸成形方法及光刻方法制出该阀片结构。
15.根据权利要求1所述的流体输送装置的制造方法,其特征在于该致动薄膜的厚度为10μm至300μm。
16.根据权利要求1所述的流体输送装置的制造方法,其特征在于该致动薄膜的厚度为100μm至250μm。
17.根据权利要求1所述的流体输送装置的制造方法,其特征在于该致动薄膜为单层金属结构。
18.根据权利要求1所述的流体输送装置的制造方法,其特征在于该致动薄膜为双层结构,由金属材料与高分子材料贴附而成。
19.根据权利要求1所述的流体输送装置的制造方法,其特征在于该致动器为一压电板。
20.根据权利要求1所述的流体输送装置的制造方法,其特征在于该致动器的厚度为100μm至500μm。
21.根据权利要求1所述的流体输送装置的制造方法,其特征在于该致动器的厚度为150μm至250μm。
22.根据权利要求1所述的流体输送装置的制造方法,其特征在于该阀体盖层的该压力腔室的深度为100μm至300μm,直径为10mm至30mm。
23.根据权利要求12所述的流体输送装置的制造方法,其特征在于该可挠薄膜的材质为不锈钢材料,且其是以激光加工进行制出该阀片结构。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2007101472546A CN101377191B (zh) | 2007-08-30 | 2007-08-30 | 流体输送装置的制造方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2007101472546A CN101377191B (zh) | 2007-08-30 | 2007-08-30 | 流体输送装置的制造方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101377191A CN101377191A (zh) | 2009-03-04 |
CN101377191B true CN101377191B (zh) | 2012-02-15 |
Family
ID=40420881
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2007101472546A Active CN101377191B (zh) | 2007-08-30 | 2007-08-30 | 流体输送装置的制造方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101377191B (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI612246B (zh) * | 2016-09-05 | 2018-01-21 | 研能科技股份有限公司 | 流體控制裝置之製造方法 |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104383621B (zh) * | 2014-11-04 | 2017-06-16 | 广东工业大学 | 激光诱导双腔微泵及其流体微泵驱动方法 |
WO2018065117A1 (en) * | 2016-10-07 | 2018-04-12 | Boehringer Ingelheim Vetmedica Gmbh | Cartridge, analysis system and method for testing a sample |
TWI622701B (zh) | 2017-01-20 | 2018-05-01 | 研能科技股份有限公司 | 流體輸送裝置 |
CN108331739A (zh) * | 2017-01-20 | 2018-07-27 | 研能科技股份有限公司 | 流体输送装置 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1047432C (zh) * | 1995-12-08 | 1999-12-15 | 清华大学 | 硅微热致动泵及其制造工艺 |
CN1534193A (zh) * | 2003-03-28 | 2004-10-06 | 汤玉生 | 带悬挂t字形阀膜微阀的单片型单向液体微泵 |
-
2007
- 2007-08-30 CN CN2007101472546A patent/CN101377191B/zh active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1047432C (zh) * | 1995-12-08 | 1999-12-15 | 清华大学 | 硅微热致动泵及其制造工艺 |
CN1534193A (zh) * | 2003-03-28 | 2004-10-06 | 汤玉生 | 带悬挂t字形阀膜微阀的单片型单向液体微泵 |
Non-Patent Citations (1)
Title |
---|
JP特开2003-214349A 2003.07.30 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI612246B (zh) * | 2016-09-05 | 2018-01-21 | 研能科技股份有限公司 | 流體控制裝置之製造方法 |
Also Published As
Publication number | Publication date |
---|---|
CN101377191A (zh) | 2009-03-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101377192B (zh) | 流体输送装置 | |
TWI431195B (zh) | 微液滴流體輸送裝置 | |
CN101463808A (zh) | 流体输送装置 | |
TWI376456B (en) | Manufacturing method of fluid transmission device | |
CN101550925B (zh) | 具有多个双腔体致动结构的流体输送装置 | |
CN101377191B (zh) | 流体输送装置的制造方法 | |
CN101550926B (zh) | 双腔流体输送装置 | |
CN101581291A (zh) | 流体输送装置 | |
CN101377196B (zh) | 流体阀座 | |
CN101408164B (zh) | 大流量流体输送装置 | |
TWI398577B (zh) | 大流體輸送裝置 | |
CN101550929B (zh) | 多流道双腔流体输送装置 | |
CN101520038A (zh) | 微液滴流体输送装置 | |
CN108506195B (zh) | 流体输送装置 | |
CN101520041A (zh) | 大流量流体输送装置 | |
CN101377193B (zh) | 大流体输送装置 | |
TWI376455B (en) | Fluid transmission device | |
TWI388727B (zh) | 流體閥座 | |
CN101520035A (zh) | 流体输送装置 | |
TW200916658A (en) | Fluid transmission device capable of transmitting fluid at relatively large fluid rate | |
CN101560972B (zh) | 具有流道板的流体输送装置 | |
CN101539206A (zh) | 适用于流体输送装置的阀体盖体及阀体座的制造方法 | |
TW200928101A (en) | Fluid transmission device | |
TW200938729A (en) | Fluid transmission device capable of transmitting large fluid rate | |
TW200944657A (en) | Fluid transmission device with multi flow channels |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |