CN101358963A - A method for rapid detection of malachite green in aquatic products using aptamers - Google Patents
A method for rapid detection of malachite green in aquatic products using aptamers Download PDFInfo
- Publication number
- CN101358963A CN101358963A CNA2007100703810A CN200710070381A CN101358963A CN 101358963 A CN101358963 A CN 101358963A CN A2007100703810 A CNA2007100703810 A CN A2007100703810A CN 200710070381 A CN200710070381 A CN 200710070381A CN 101358963 A CN101358963 A CN 101358963A
- Authority
- CN
- China
- Prior art keywords
- malachite green
- sequence
- ssdna
- adaptive
- aptamer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- FDZZZRQASAIRJF-UHFFFAOYSA-M malachite green Chemical compound [Cl-].C1=CC(N(C)C)=CC=C1C(C=1C=CC=CC=1)=C1C=CC(=[N+](C)C)C=C1 FDZZZRQASAIRJF-UHFFFAOYSA-M 0.000 title claims abstract description 99
- 229940107698 malachite green Drugs 0.000 title claims abstract description 98
- 238000000034 method Methods 0.000 title claims abstract description 40
- 108091023037 Aptamer Proteins 0.000 title abstract description 42
- 238000001514 detection method Methods 0.000 title abstract description 31
- 238000012360 testing method Methods 0.000 claims abstract description 18
- 108020004414 DNA Proteins 0.000 claims description 54
- 102000053602 DNA Human genes 0.000 claims description 54
- 238000012216 screening Methods 0.000 claims description 15
- 230000000295 complement effect Effects 0.000 claims description 11
- 241000907663 Siproeta stelenes Species 0.000 claims description 8
- 238000005251 capillar electrophoresis Methods 0.000 claims description 7
- 238000007846 asymmetric PCR Methods 0.000 claims description 5
- 238000013461 design Methods 0.000 claims description 4
- 108091008146 restriction endonucleases Proteins 0.000 claims description 3
- 108010001336 Horseradish Peroxidase Proteins 0.000 claims description 2
- 230000003321 amplification Effects 0.000 claims description 2
- 238000003199 nucleic acid amplification method Methods 0.000 claims description 2
- 230000003044 adaptive effect Effects 0.000 claims 11
- 230000005298 paramagnetic effect Effects 0.000 claims 1
- 239000002245 particle Substances 0.000 claims 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 abstract description 3
- YBJHBAHKTGYVGT-ZKWXMUAHSA-N (+)-Biotin Chemical compound N1C(=O)N[C@@H]2[C@H](CCCCC(=O)O)SC[C@@H]21 YBJHBAHKTGYVGT-ZKWXMUAHSA-N 0.000 description 28
- 229960002685 biotin Drugs 0.000 description 14
- 235000020958 biotin Nutrition 0.000 description 14
- 239000011616 biotin Substances 0.000 description 14
- 239000011324 bead Substances 0.000 description 11
- 239000012528 membrane Substances 0.000 description 7
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 6
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 6
- 230000027455 binding Effects 0.000 description 6
- 239000000243 solution Substances 0.000 description 6
- 108010090804 Streptavidin Proteins 0.000 description 5
- 238000000926 separation method Methods 0.000 description 5
- 239000000020 Nitrocellulose Substances 0.000 description 4
- 108091034117 Oligonucleotide Proteins 0.000 description 4
- 238000012408 PCR amplification Methods 0.000 description 4
- 239000012148 binding buffer Substances 0.000 description 4
- 239000000872 buffer Substances 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- 239000003550 marker Substances 0.000 description 4
- 239000002207 metabolite Substances 0.000 description 4
- 229920001220 nitrocellulos Polymers 0.000 description 4
- 239000000758 substrate Substances 0.000 description 4
- 238000002965 ELISA Methods 0.000 description 3
- 108090000790 Enzymes Proteins 0.000 description 3
- 102000004190 Enzymes Human genes 0.000 description 3
- 238000010171 animal model Methods 0.000 description 3
- 238000009360 aquaculture Methods 0.000 description 3
- 244000144974 aquaculture Species 0.000 description 3
- 239000003153 chemical reaction reagent Substances 0.000 description 3
- 238000004925 denaturation Methods 0.000 description 3
- 230000036425 denaturation Effects 0.000 description 3
- 229940088598 enzyme Drugs 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 238000000746 purification Methods 0.000 description 3
- 108010088751 Albumins Proteins 0.000 description 2
- 102000009027 Albumins Human genes 0.000 description 2
- 108090001008 Avidin Proteins 0.000 description 2
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- 241001465754 Metazoa Species 0.000 description 2
- 101800004937 Protein C Proteins 0.000 description 2
- 102100036546 Salivary acidic proline-rich phosphoprotein 1/2 Human genes 0.000 description 2
- 101800001700 Saposin-D Proteins 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 239000007984 Tris EDTA buffer Substances 0.000 description 2
- ZKHQWZAMYRWXGA-KNYAHOBESA-N [[(2r,3s,4r,5r)-5-(6-aminopurin-9-yl)-3,4-dihydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl] dihydroxyphosphoryl hydrogen phosphate Chemical compound C1=NC=2C(N)=NC=NC=2N1[C@@H]1O[C@H](COP(O)(=O)OP(O)(=O)O[32P](O)(O)=O)[C@@H](O)[C@H]1O ZKHQWZAMYRWXGA-KNYAHOBESA-N 0.000 description 2
- 239000007853 buffer solution Substances 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 201000010099 disease Diseases 0.000 description 2
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 2
- 239000003814 drug Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000010828 elution Methods 0.000 description 2
- IIEWJVIFRVWJOD-UHFFFAOYSA-N ethyl cyclohexane Natural products CCC1CCCCC1 IIEWJVIFRVWJOD-UHFFFAOYSA-N 0.000 description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 2
- 230000001900 immune effect Effects 0.000 description 2
- 238000000338 in vitro Methods 0.000 description 2
- 230000005764 inhibitory process Effects 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 238000004895 liquid chromatography mass spectrometry Methods 0.000 description 2
- 230000001404 mediated effect Effects 0.000 description 2
- 229960000856 protein c Drugs 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 230000009870 specific binding Effects 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- -1 that is Chemical compound 0.000 description 2
- 238000011144 upstream manufacturing Methods 0.000 description 2
- 239000008096 xylene Substances 0.000 description 2
- JKMHFZQWWAIEOD-UHFFFAOYSA-N 2-[4-(2-hydroxyethyl)piperazin-1-yl]ethanesulfonic acid Chemical compound OCC[NH+]1CCN(CCS([O-])(=O)=O)CC1 JKMHFZQWWAIEOD-UHFFFAOYSA-N 0.000 description 1
- QKNYBSVHEMOAJP-UHFFFAOYSA-N 2-amino-2-(hydroxymethyl)propane-1,3-diol;hydron;chloride Chemical compound Cl.OCC(N)(CO)CO QKNYBSVHEMOAJP-UHFFFAOYSA-N 0.000 description 1
- WZKXBGJNNCGHIC-UHFFFAOYSA-N Leucomalachite green Chemical compound C1=CC(N(C)C)=CC=C1C(C=1C=CC(=CC=1)N(C)C)C1=CC=CC=C1 WZKXBGJNNCGHIC-UHFFFAOYSA-N 0.000 description 1
- 241000699670 Mus sp. Species 0.000 description 1
- 229920001213 Polysorbate 20 Polymers 0.000 description 1
- 108020004682 Single-Stranded DNA Proteins 0.000 description 1
- 206010043275 Teratogenicity Diseases 0.000 description 1
- 241001482311 Trionychidae Species 0.000 description 1
- 238000002835 absorbance Methods 0.000 description 1
- 230000006978 adaptation Effects 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 230000000843 anti-fungal effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000009395 breeding Methods 0.000 description 1
- 230000001488 breeding effect Effects 0.000 description 1
- YTRQFSDWAXHJCC-UHFFFAOYSA-N chloroform;phenol Chemical compound ClC(Cl)Cl.OC1=CC=CC=C1 YTRQFSDWAXHJCC-UHFFFAOYSA-N 0.000 description 1
- 239000003593 chromogenic compound Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000008367 deionised water Substances 0.000 description 1
- 229910021641 deionized water Inorganic materials 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000010494 dissociation reaction Methods 0.000 description 1
- 230000005593 dissociations Effects 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 238000007877 drug screening Methods 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- 239000012149 elution buffer Substances 0.000 description 1
- 238000004817 gas chromatography Methods 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- YQOKLYTXVFAUCW-UHFFFAOYSA-N guanidine;isothiocyanic acid Chemical compound N=C=S.NC(N)=N YQOKLYTXVFAUCW-UHFFFAOYSA-N 0.000 description 1
- 238000004128 high performance liquid chromatography Methods 0.000 description 1
- 230000007688 immunotoxicity Effects 0.000 description 1
- 231100000386 immunotoxicity Toxicity 0.000 description 1
- 238000011031 large-scale manufacturing process Methods 0.000 description 1
- 239000003446 ligand Substances 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 230000007886 mutagenicity Effects 0.000 description 1
- 231100000299 mutagenicity Toxicity 0.000 description 1
- 102000039446 nucleic acids Human genes 0.000 description 1
- 108020004707 nucleic acids Proteins 0.000 description 1
- 150000007523 nucleic acids Chemical class 0.000 description 1
- 235000010486 polyoxyethylene sorbitan monolaurate Nutrition 0.000 description 1
- 239000000256 polyoxyethylene sorbitan monolaurate Substances 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 238000003757 reverse transcription PCR Methods 0.000 description 1
- 238000012772 sequence design Methods 0.000 description 1
- 238000012163 sequencing technique Methods 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 230000009897 systematic effect Effects 0.000 description 1
- 239000013076 target substance Substances 0.000 description 1
- 231100000211 teratogenicity Toxicity 0.000 description 1
- 239000003053 toxin Substances 0.000 description 1
- 231100000765 toxin Toxicity 0.000 description 1
- AAAQKTZKLRYKHR-UHFFFAOYSA-N triphenylmethane Chemical compound C1=CC=CC=C1C(C=1C=CC=CC=1)C1=CC=CC=C1 AAAQKTZKLRYKHR-UHFFFAOYSA-N 0.000 description 1
- 239000000273 veterinary drug Substances 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Images
Landscapes
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Abstract
Description
技术领域 technical field
本发明涉及食品检测领域,尤其涉及一种水产品中孔雀石绿的检测方法。The invention relates to the field of food detection, in particular to a method for detecting malachite green in aquatic products.
背景技术 Background technique
孔雀石绿(Malachite green,简称MG),属三苯甲烷类染料,其代谢物为无色孔雀石绿(Leucomalachite green,LMG),长期以来,由于孔雀石绿在水产养殖中具有良好的抗真菌病,水产品保鲜以及价格低廉等优点,因此,成为许多养殖户青睐的“渔药”来使用,但这两种物质所均具有高毒素、高残留和高致畸、致突变等副作用,不仅给我国水产品的出口带来了巨大障碍,而更为重要的是,给人们的健康构成了潜在威胁。Malachite green (Malachite green, referred to as MG), belongs to triphenylmethane dyes, and its metabolite is colorless malachite green (Leucomalachite green, LMG). For a long time, because malachite green has good antifungal properties in aquaculture disease, freshness of aquatic products and low price, etc. Therefore, it has become the "fishing medicine" favored by many farmers to use, but these two substances have side effects such as high toxin, high residue, high teratogenicity and mutagenicity, not only It has brought huge obstacles to the export of aquatic products in our country, and more importantly, it has constituted a potential threat to people's health.
鉴于孔雀石绿及其代谢物的危害性,许多国家都将其列为水产养殖禁用药物,我国也于2002年5月将其列为《食品动物禁用的兽药及其化合物清单》中,然而,由于水产养殖户健康养殖的意识淡薄,以及水产品安全管理机制的不完善等原因,仅2005年,就在国内许多地方(尤其是福建、江西和浙江)的多种水产品(如:鳗鱼、甲鱼等)中检测出孔雀石绿的高残留。In view of the harmfulness of malachite green and its metabolites, many countries have listed it as a banned drug for aquaculture, and my country also listed it in the "List of Veterinary Drugs and Their Compounds Banned for Food Animals" in May 2002. However, Due to the weak awareness of aquaculture farmers' healthy breeding and the imperfect safety management mechanism of aquatic products, in 2005 alone, various aquatic products (such as: eel, eel, High residues of malachite green were detected in soft-shelled turtles, etc.).
目前,关于孔雀石绿及其代谢物的检测方法主要有三种,但这些方法均存在着一定局限性:(1)高效液相色谱法,当含量较低时,利用保留时间很难定性;(2)气质联用法,只能用来对无色孔雀石绿的进行定性;(3)液质联用法(LC/MS),效果较好,但价格昂贵;因此,孔雀石绿及其代谢物在水产动物中快速、稳定可靠残留检测方法的建立成为国内外亟待解决的技术难题。At present, there are mainly three kinds of detection methods about malachite green and its metabolites, but these methods all have certain limitations: (1) high performance liquid chromatography, when the content is low, it is difficult to qualitatively utilize the retention time; 2) Gas chromatography method can only be used to qualitatively colorless malachite green; (3) Liquid chromatography-mass spectrometry (LC/MS) has a better effect but is expensive; therefore, malachite green and its metabolites The establishment of fast, stable and reliable residue detection methods in aquatic animals has become a technical problem to be solved urgently at home and abroad.
免疫学方法的核心技术就是通过实验动物获得孔雀石绿特异性抗体,但孔雀石绿具有很强的免疫毒性,制备孔雀石绿特异性抗体是一个非常困难的工作,而且制备一种抗体周期也比较长,一般需要6个月以上。因此通过实验动物获得特异性抗体成为了研究孔雀石绿快速检测方法的一个瓶颈问题。The core technology of immunological methods is to obtain malachite green-specific antibodies through experimental animals, but malachite green has strong immunotoxicity, and it is very difficult to prepare malachite green-specific antibodies, and the cycle of preparing an antibody is also very long. It takes a long time, generally more than 6 months. Therefore, obtaining specific antibodies through experimental animals has become a bottleneck problem in the study of rapid detection methods for malachite green.
寡核苷酸适配子技术是近年来发展的一种新型的分子印迹技术,是采用SELEX技术体外筛选获得的。SELEX技术由Tuerk和Gold等在90年代初建立的,通过多轮的选择和扩增过程(PCR或RT-PCR)从随机寡核苷酸文库中筛选特异识别靶物质的寡核苷酸适配子的组合化学技术,是一种研究核酸结构与功能的有效方法。SELEX技术自创立以来得到迅猛发展,目前因其具有库容量大、筛选的适配子的靶分子范围广、亲和力高与特异性强等优点已在生命科学基础研究、疾病治疗、药物筛选和临床诊断等领域得到了广泛的探索和运用。Oligonucleotide aptamer technology is a new type of molecular imprinting technology developed in recent years, which is obtained by in vitro screening using SELEX technology. SELEX technology was established by Tuerk and Gold in the early 1990s, through multiple rounds of selection and amplification process (PCR or RT-PCR) to screen random oligonucleotide libraries for oligonucleotide adaptations that specifically recognize target substances It is an effective method to study the structure and function of nucleic acid. SELEX technology has developed rapidly since its inception. At present, due to its advantages of large library capacity, wide range of target molecules for screened aptamers, high affinity and strong specificity, it has been widely used in life science basic research, disease treatment, drug screening and clinical research. Diagnosis and other fields have been widely explored and applied.
中国发明专利申请200510060995.1中公开了一种水产品中无色孔雀石绿间接竞争ELISA检测试剂盒。试剂盒的检测板为包被无色孔雀石绿与白蛋白偶联物的可拆96孔酶标板,抗无色孔雀石绿抗体为利用无色孔雀石绿与白蛋白的偶联物免疫小鼠而制备的单克隆抗体,检测样品先经过匀质后用乙酸乙酯和环己烷进行提取,调节pH值后稀释用于检测。样本检测的判定标准为:以标样浓度的对数值为横坐标,抑制率为纵坐标的回归曲线。根据每个样品的抑制率就可从曲线上读出相对应样品的浓度。该方法检测的灵敏度为0.0023μg/ml,检测范围是0.0016-1μg/ml。Chinese invention patent application 200510060995.1 discloses a colorless malachite green indirect competition ELISA detection kit in aquatic products. The detection plate of the kit is a detachable 96-well ELISA plate coated with a colorless malachite green-albumin conjugate, and the anti-colorless malachite green antibody is immunoimmunized with a colorless malachite green-albumin conjugate The monoclonal antibody prepared from mice, the detection sample is firstly homogenized and then extracted with ethyl acetate and cyclohexane, adjusted the pH value and then diluted for detection. The judgment standard for sample detection is: the regression curve with the logarithmic value of the standard sample concentration as the abscissa and the inhibition rate as the ordinate. According to the inhibition rate of each sample, the concentration of the corresponding sample can be read from the curve. The detection sensitivity of this method is 0.0023 μg/ml, and the detection range is 0.0016-1 μg/ml.
但该技术中高效的单克隆抗体的获得十分困难,也增加了成本。However, it is very difficult to obtain high-efficiency monoclonal antibodies in this technology, which also increases the cost.
发明内容 Contents of the invention
本发明提供一种操作方便,准确度高的水产品中孔雀石绿的快速检测方法。The invention provides a rapid detection method for malachite green in aquatic products with convenient operation and high accuracy.
一种利用适配子快速检测水产品中孔雀石绿的方法,将待测样品与孔雀石绿适配子和带有检测标记物的报告序列混合,报告序列与待测样品中的孔雀石绿可竞争性地与孔雀石绿适配子结合后,检测(用酶相对的显色底物检测)报告序列上的标记物,计算待测样品中孔雀石绿含量。A method for quickly detecting malachite green in aquatic products using aptamers, mixing the sample to be tested with the malachite green aptamer and a reporter sequence with a detection marker, the reporter sequence is mixed with the malachite green in the sample to be tested After competitively binding to the malachite green aptamer, detect (detect with an enzyme-relative chromogenic substrate) the marker on the reporter sequence, and calculate the content of malachite green in the sample to be tested.
所述的检测标记物为辣根过氧化物酶、化学发光基团、化学荧光基团或胶体金等。The detection marker is horseradish peroxidase, chemiluminescent group, chemical fluorescent group or colloidal gold and the like.
所述的报告序列的制备:根据获得的孔雀石绿适配子序列,设计合成与适配子序列部分(5’端回文互补序列)互补的报告序列,将检测标记物标记在报告序列上。Preparation of the reporter sequence: According to the obtained malachite green adapter sequence, design and synthesize a reporter sequence complementary to the adapter sequence part (5' end palindromic complementary sequence), and mark the detection marker on the reporter sequence .
所述的孔雀石绿适配子通过如下步骤制得:The malachite green aptamer is prepared through the following steps:
(1)构建一个序列长度约为80个碱基的随机ssDNA文库,ssDNA序列两端带有限制性内切酶位点的固定序列、中间为35个序列随机的碱基,根据ssDNA序列两端的固定序列设计PCR引物;(1) Construct a random ssDNA library with a sequence length of about 80 bases. The two ends of the ssDNA sequence have fixed sequences with restriction endonuclease sites, and the middle is 35 random bases. According to the two ends of the ssDNA sequence Fixed sequence design of PCR primers;
(2)采用不对称PCR法或生物素-链亲和素磁珠法对步骤(1)得到的ssDNA文库进行扩增;(2) using asymmetric PCR method or biotin-streptavidin magnetic bead method to amplify the ssDNA library obtained in step (1);
(3)利用孔雀石绿-OVA偶联物包被微孔板介质法或高效毛细管电泳方法从扩增后的ssDNA文库中进行SELEX筛选,得到与孔雀石绿特异结合的ssDNA即孔雀石绿适配子。(3) SELEX screening was carried out from the amplified ssDNA library by using malachite green-OVA conjugate coated microporous plate medium method or high-efficiency capillary electrophoresis method to obtain ssDNA specifically combined with malachite green, that is, malachite green gamete.
步骤(2)中所述的不对称PCR法即在PCR扩增循环中引入不同浓度的引物(一般采用50∶1-100∶1比例的引物浓度),在最初10-15个循环中主要产物为双链DNA(dsDNA),但低浓度引物被耗尽后,高浓度引物介导的PCR反应可产生大量的ssDNA。The asymmetric PCR method described in step (2) promptly introduces primers of different concentrations in the PCR amplification cycle (generally adopting the primer concentration of 50:1-100:1 ratio), and in the initial 10-15 cycles, the main product It is double-stranded DNA (dsDNA), but after the low-concentration primers are exhausted, a high-concentration primer-mediated PCR reaction can produce a large amount of ssDNA.
步骤(2)中所述的生物素-链亲和素磁珠法即在PCR体系中,设计并合成下游引物的5’端标记有生物素,以ssDNA文库为模板,进行PCR扩增可得到3’端带有生物素的dsDNA产物,经分离纯化后与链亲和素磁珠结合(dsDNA通过3’端的生物素与磁珠上的链亲和素结合),然后用一定浓度(0.15mol/L)的NaOH使dsDNA变性解链,带有生物素的一条链与链亲和素结合留在磁珠上,而不带生物素的一条链被解离出来,经分离纯化后用于下一轮筛选,重复上述操作循环富集(一般10次左右)直至孔雀石绿和适配子的结合率达到90%。The biotin-streptavidin magnetic bead method described in step (2) is in the PCR system, the 5' end of the downstream primer is designed and synthesized to be labeled with biotin, and the ssDNA library is used as a template for PCR amplification to obtain The dsDNA product with biotin at the 3' end was separated and purified and combined with streptavidin magnetic beads (the dsDNA binds to the streptavidin on the magnetic beads through the biotin at the 3' end), and then with a certain concentration (0.15mol /L) NaOH denatures the dsDNA and dissolves it. A strand with biotin binds to streptavidin and stays on the magnetic beads, while a strand without biotin is dissociated. After separation and purification, it is used for the next step. One round of screening, repeating the above operation cycle enrichment (generally about 10 times) until the binding rate of malachite green and aptamer reaches 90%.
步骤(3)中所述的微孔板为介质的筛选方法即用孔雀石绿与白蛋白偶联物(MG-OVA)96孔酶标板,同时设白蛋白(OVA)包被孔和空白对照孔,均用3%的BSA封闭,PCR扩增与纯化的ssDNA文库先与空白对照孔反筛去除与BSA结合的ssDNA,再与OVA包被孔初筛去除与OVA结合的ssDNA,然后转移至孔雀石绿-OVA偶联物包被孔结合,经洗脱、分离与纯化得到与孔雀石绿特异结合的ssDNA。The screening method in which the microporous plate described in step (3) is a medium is to use a 96-well ELISA plate of malachite green and albumin conjugate (MG-OVA), and set albumin (OVA) to coat the hole and the blank at the same time. The control wells were all blocked with 3% BSA. The ssDNA library amplified and purified by PCR was first screened against the blank control wells to remove the ssDNA bound to BSA, and then screened with the OVA-coated wells to remove the ssDNA bound to OVA, and then transferred The malachite green-OVA conjugate is bound to the coated hole, and the ssDNA specifically combined with malachite green is obtained after elution, separation and purification.
步骤(3)中所述的高效毛细管电泳方法即将一定量的PCR扩增、纯化的ssDNA文库与孔雀石绿孵育后,通过高效毛细管电泳将未结合序列与孔雀石绿结合复合物分离,收集结合序列,重复上述操作循环富集-分离最后得到与孔雀石绿特异结合的ssDNA(即孔雀石绿适配子)。The high-efficiency capillary electrophoresis method described in step (3) is to incubate a certain amount of PCR-amplified and purified ssDNA library with malachite green, and then separate the unbound sequence from the malachite green-bound complex by high-efficiency capillary electrophoresis, and collect the bound Sequence, repeat the above operation cycle enrichment-separation and finally get the ssDNA specifically combined with malachite green (ie malachite green aptamer).
根据本发明所述的快速检测方法,可以将相关试剂封装或固定后制成试剂盒或快速检测试纸。According to the rapid detection method of the present invention, relevant reagents can be packaged or fixed to make a kit or rapid detection test paper.
本发明还提供了用于检测水产品中孔雀石绿的试剂盒,至少包括包被有孔雀石绿适配子的测试片基(如96孔酶标板或硝酸纤维膜等),还包括结合缓冲液,包被缓冲液。The present invention also provides a test kit for detecting malachite green in aquatic products, comprising at least a test piece coated with malachite green aptamers (such as 96-well microplate or nitrocellulose membrane, etc.), buffer, coating buffer.
将孔雀石绿适配子包被于测试片基上时,可将连接序列(如3’-ACTCATCTGTGA-5’)5’端与孔雀石绿适配子序列3’端连接合成孔雀石绿适配子-连接序列;设计合成与连接序列互补的固定序列(如3’-ATGAGTAGACACT-5’),将固定化基团(如将亲和素固定在NC膜的表面,再通过亲和素将带有生物素的单连Biotin-ssDNA固定)标记在固定序列的3’端,通过固定化基团与连接序列将孔雀石绿适配子包被于测试片基上。When the malachite green aptamer is coated on the test substrate, the 5' end of the linking sequence (such as 3'-ACTCATCTGTGA-5') can be connected with the 3' end of the malachite green aptamer sequence to synthesize the malachite green aptamer. Gamete-linker sequence; design and synthesize a fixed sequence complementary to the linker sequence (such as 3'-ATGAGTAGACACT-5'), fix the immobilized group (such as avidin on the surface of the NC membrane, and then pass the avidin The single-chain Biotin-ssDNA immobilized with biotin) is marked at the 3' end of the immobilized sequence, and the malachite green aptamer is coated on the test substrate through the immobilized group and the connecting sequence.
本发明采用一种不依赖实验动物的适配子(aptamer)技术,通过指数级富集配体的系统进化技术(systematic evolution of ligands by exponentialenrichment,SELEX)体外筛选到高亲和性特异识别孔雀石绿的适配子,替代传统免疫学方法中的抗体来建立一种快速检测孔雀石绿方法。The present invention adopts an aptamer technology that does not rely on experimental animals, and through the systematic evolution of ligands by exponential enrichment (SELEX) in vitro screening to identify malachite with high affinity The green aptamer replaces the antibody in the traditional immunological method to establish a rapid detection method for malachite green.
本发明检测方法优点为The detection method of the present invention has the advantages of
1.筛选周期短3周;1. The screening period is as short as 3 weeks;
2.与孔雀石绿结合的特异性强,灵敏度高;2. Strong specificity and high sensitivity for binding to malachite green;
3.适配子的合成周期短,利于大规模生产;3. The synthesis cycle of aptamers is short, which is conducive to large-scale production;
4.检测试剂稳定性强,变性后容易复性,利于运输、储存。4. The detection reagent has strong stability and is easy to refold after denaturation, which is convenient for transportation and storage.
根据本发明方法研制的试剂盒与快速检测试纸,能较好满足目前对水产品孔雀石绿残留检测的迫切需要,用于海关检测,食品卫生部门检测,易于大范围推广应用。The kit and rapid detection test paper developed according to the method of the present invention can better meet the current urgent need for malachite green residual detection in aquatic products, be used for customs detection and food hygiene department detection, and be easy to popularize and apply on a large scale.
附图说明 Description of drawings
图1为孔雀石绿适配子制备及孔雀石绿检测方法流程示意图;Fig. 1 is the schematic flow chart of malachite green aptamer preparation and malachite green detection method;
图2为孔雀石绿适配子固定示意图;Figure 2 is a schematic diagram of malachite green aptamer immobilization;
图3为孔雀石绿适配子竞争检测适宜图;Figure 3 is a suitable map for malachite green aptamer competition detection;
具体实施方式 Detailed ways
孔雀石绿适配子的制备Preparation of malachite green aptamer
(1)构建一个序列长度约为80(范围:75~90)个碱基的随机ssDNA文库,ssDNA序列两端带有限制性内切酶位点的固定序列,所述的ssDNA序列为:(5’ATAGAGCTCATGGAGTCTCCCTCGG-(N35)-TTTGGATCCGGCAGTGGTGGGCGGGC3’)、中间为35个序列随机的碱基(N35),根据ssDNA序列两端的固定序列设计PCR引物;(1) Construct a random ssDNA library with a sequence length of about 80 (range: 75 to 90) bases, with fixed sequences with restriction endonuclease sites at both ends of the ssDNA sequence, and the ssDNA sequence is: ( 5'ATAGAGCTCATGGAGTCTCCCTCGG-(N35)-TTTGGATCCGGCAGTGGTGGGCGGGC3'), with 35 random bases (N35) in the middle, and PCR primers were designed according to the fixed sequences at both ends of the ssDNA sequence;
上游引物:5’-ATAGAGCTCATGGAGTCTCC-3’,Upstream primer: 5'-ATAGAGCTCATGGAGTCTCC-3',
下游引物:5’-GCCCGCCCACCACTGCCGG-3’Downstream primer: 5'-GCCCGCCCACCACTGCCGG-3'
(2)采用不对称PCR法对步骤(1)得到的ssDNA文库进行扩增。(2) The asymmetric PCR method is used to amplify the ssDNA library obtained in step (1).
不对称PCR法操作过程为:The operation process of asymmetric PCR method is as follows:
在PCR扩增循环中引入不同浓度的引物(一般采用50∶1-100∶1比例的引物浓度),在最初10-15个循环中主要产物为双链DNA(dsDNA),但低浓度引物被耗尽后,高浓度引物介导的PCR反应可产生大量的ssDNA。PCR反应体系:dsDNA模板2μl,10×PCR缓冲液10μl,MgCl26μl,dNTPs100μmol/L,Tag酶2μl,上游引物60pmol,下游引物1pmol,加去离子水至100μl。PCR反应条件:94℃变性5min,然后40循环94℃变性30s,65℃退火1min,72℃延伸2min,最后72℃10min。Introduce different concentrations of primers in the PCR amplification cycle (generally using a primer concentration in the ratio of 50:1-100:1), the main product is double-stranded DNA (dsDNA) in the first 10-15 cycles, but low-concentration primers are eliminated. After depletion, PCR reactions mediated by high concentrations of primers can generate large amounts of ssDNA. PCR reaction system: dsDNA template 2 μl, 10×PCR buffer 10 μl, MgCl 2 6 μl, dNTPs 100 μmol/L, Tag enzyme 2 μl, upstream primer 60 pmol, downstream primer 1 pmol, add deionized water to 100 μl. PCR reaction conditions: denaturation at 94°C for 5min, followed by 40 cycles of denaturation at 94°C for 30s, annealing at 65°C for 1min, extension at 72°C for 2min, and finally 10min at 72°C.
也可以采用生物素-链亲和素磁珠法对步骤(1)得到的ssDNA文库进行扩增。The ssDNA library obtained in step (1) can also be amplified by the biotin-streptavidin magnetic bead method.
生物素-链亲和素磁珠法操作过程为:The operation process of the biotin-streptavidin magnetic bead method is as follows:
在PCR体系中,设计并合成下游引物的5’端标记有生物素,以ssDNA文库为模板,进行PCR扩增可得到3’端带有生物素的dsDNA产物,经分离纯化后与链亲和素磁珠结合(dsDNA通过3’端的生物素与磁珠上的链亲和素结合),然后用一定浓度(0.15mol/L)的NaOH使dsDNA变性解链,带有生物素的一条链与链亲和素结合留在磁珠上,而不带生物素的一条链被解离出来,将ssDNA溶解于20ul TE缓冲液中,测定吸光度(A)值,经分离纯化可用于下一轮筛选,重复上述操作循环富集(一般10次左右)直至孔雀石绿和适配子的结合率达到90%。In the PCR system, the 5' end of the downstream primer is designed and synthesized to be labeled with biotin, and the ssDNA library is used as a template to perform PCR amplification to obtain a dsDNA product with biotin at the 3' end, which is separated and purified to bind to the chain affinity Binding to prime magnetic beads (dsDNA binds to streptavidin on the magnetic beads through biotin at the 3' end), and then denatures and melts the dsDNA with a certain concentration (0.15mol/L) of NaOH, and one strand with biotin is combined with Streptavidin binds and stays on the magnetic beads, and a strand without biotin is dissociated. The ssDNA is dissolved in 20ul TE buffer, and the absorbance (A) value is measured. After separation and purification, it can be used for the next round of screening , repeat the above operation cycle enrichment (generally about 10 times) until the binding rate of malachite green and aptamer reaches 90%.
(3)利用孔雀石绿-OVA偶联物包被微孔板介质法从扩增后的ssDNA文库中进行SELEX筛选,得到与孔雀石绿特异结合的ssDNA即孔雀石绿适配子。(3) SELEX screening was carried out from the amplified ssDNA library by using the malachite green-OVA conjugate coated microwell plate medium method to obtain ssDNA that specifically binds to malachite green, that is, the malachite green aptamer.
孔雀石绿-OVA偶联物包被微孔板介质法操作过程为:The operation process of malachite green-OVA conjugate coated microporous plate medium method is as follows:
将MG-OVA蛋白包被于酶联板上,4℃过夜,包被液为0.05mol/LNaHCO3,pH9.6的缓冲液,同时设空白对照。C蛋白包被孔和空白对照孔均以3%BSA37℃封闭2h。随机ssDNA文库和一定量的tRNA先在结合缓冲液SHCMK液(20mmol/L Hepes pH 7.35,120mmol/L NaCl,5mmol/LKCl,1mmol/L CaCl2,1mmol/L MgCl2)中与经3%BSA封闭的空白对照孔37℃结合40min。用缓冲洗液洗(SHAMK液+0.05%吐温20)6次),洗去未结合的ssDNA,再加洗脱缓冲液(20mmol/L Tris-HCl,4mol/L异硫氰酸胍,1mmol/L DDT,pH8.3)于80℃作用10min,洗脱下与C蛋白结合的ssDNA,经酚-氯仿抽提、乙醇沉淀,将ssDNA溶解于20μl TE缓冲液中。将ssDNA用标记生物素的引物经PCR扩增成一端带生物素的dsDNA,经生物素-链亲和素磁珠分离ssDNA,用作下一轮筛选的ssDNA文库。重复上述操作循环富集-分离最后得到与孔雀石绿特异结合的ssDNA。The MG-OVA protein was coated on the enzyme-linked plate, overnight at 4°C, the coating solution was 0.05mol/L NaHCO 3 , buffer solution of pH 9.6, and a blank control was set at the same time. Protein C coated wells and blank control wells were blocked with 3% BSA at 37°C for 2h. The random ssDNA library and a certain amount of tRNA were mixed with 3% BSA in the binding buffer SHCMK solution (20mmol/L Hepes pH 7.35, 120mmol/L NaCl, 5mmol/L KCl, 1mmol/L CaCl 2 , 1mmol/L MgCl 2 ) The blocked blank control wells were combined at 37°C for 40min. Wash with buffer washing solution (SHAMK solution + 0.05% Tween 20) 6 times), wash off unbound ssDNA, and then add elution buffer (20mmol/L Tris-HCl, 4mol/L guanidine isothiocyanate, 1mmol /L DDT, pH 8.3) at 80°C for 10 min, the ssDNA bound to protein C was eluted, extracted with phenol-chloroform, precipitated with ethanol, and dissolved in 20 μl TE buffer. The ssDNA was amplified by PCR with biotin-labeled primers into dsDNA with biotin at one end, the ssDNA was separated by biotin-streptavidin magnetic beads, and used as the ssDNA library for the next round of screening. Repeat the above operation cycle enrichment-separation to obtain ssDNA specifically combined with malachite green.
也可以利用高效毛细管电泳方法从扩增后的ssDNA文库中进行SELEX筛选,得到与孔雀石绿特异结合的ssDNA即孔雀石绿适配子。High-efficiency capillary electrophoresis can also be used to perform SELEX screening from the amplified ssDNA library to obtain ssDNA that specifically binds to malachite green, that is, the malachite green aptamer.
高效毛细管电泳方法操作过程为:The operation process of high performance capillary electrophoresis method is as follows:
将一定量的PCR扩增、纯化的ssDNA文库与孔雀石绿孵育后,通过高效毛细管电泳将未结合序列与孔雀石绿结合复合物分离,收集结合序列可用于下一轮筛选。After incubating a certain amount of PCR-amplified and purified ssDNA library with malachite green, the unbound sequence was separated from the malachite green-bound complex by high-performance capillary electrophoresis, and the bound sequence was collected for the next round of screening.
进行SELEX筛选得到时孔雀石绿适配子使用的相关试剂在詹林盛的文章“随机单链DNA文库SELEX筛选寡核苷酸适配子方法的建立”(《生物化学与生物物理进展》2003 30卷(1)151~155)中均有公开。Reagents used for malachite green aptamers obtained by SELEX screening are in Zhan Linsheng's article "Establishment of SELEX Screening Oligonucleotide Aptamer Method for Random Single-Stranded DNA Libraries" ("Progress in Biochemistry and Biophysics" 2003 Volume 30 (1) 151 to 155) are disclosed.
经过以上步骤的筛选和测序,得到了以下几个高特异结合序列(即孔雀石绿适配子):After the screening and sequencing of the above steps, the following highly specific binding sequences (ie malachite green aptamers) were obtained:
5’-GTACAAAAAAGTTGGCCTTTAAGACAATCGTTGTGAA-3’5'-GTACAAAAAAGTTGGCCTTTAAGACAATCGTTGTGAA-3'
5’-CTGAAAGAAACTAAAATCTCATGGCGACGACGTCGAC-3’5'-CTGAAAGAAACTAAAATCTCATGGCGACGACGTCGAC-3'
5’-ATTAGAAAATGGCAGAACAGAAACAAATGGAAGTGGT-3’5'-ATTAGAAAATGGCAGAACAGAAACAAATGGAAGTGGT-3'
检测水产品中孔雀石绿的试剂盒Kit for detecting malachite green in aquatic products
将孔雀石绿适配子包被于测试片基上时,可将连接序列5’端(3’-ACTCATCTGTGA-5’)与孔雀石绿适配子序列3’端连接合成孔雀石绿适配子-连接序列;设计合成与连接序列互补的固定序列(3’-ATGAGTAGACACT-5’),将固定化基团(如生物素)标记在固定序列的3’端,这样可通过固定化序列与互补的连接序列将孔雀石绿适配子包被于测试片基上。When the malachite green aptamer is coated on the test substrate, the 5' end of the linking sequence (3'-ACTCATCTGTGA-5') can be connected to the 3' end of the malachite green aptamer sequence to synthesize the malachite green aptamer Sub-connection sequence; design and synthesize a fixed sequence (3'-ATGAGTAGACACT-5') complementary to the connection sequence, and label the immobilization group (such as biotin) at the 3' end of the fixed sequence, so that the immobilized sequence and Complementary linker sequences coat the malachite green aptamer on the test substrate.
水产品中孔雀石绿的检测Detection of Malachite Green in Aquatic Products
50pmol 5’端标记[γ-32P]ATP的孔雀石绿适配子与1μmol/L孔雀石绿(标样)在结合缓冲液中37℃作用40min后,抽滤于硝酸纤维膜上,用5ml结合缓冲液冲洗后,将膜烤干,取下至于闪烁杯中,加PPO-POPOP-二甲苯液3ml,用Beckman LS液体闪烁仪测定其放射性,经计算孔雀石绿适配子与孔雀石绿结合百分率为90%。解离常数在50pmol/L。50pmol malachite green aptamer labeled with [γ-32P]ATP at the 5' end and 1μmol/L malachite green (standard sample) reacted in the binding buffer at 37°C for 40min, then suction filtered on the nitrocellulose membrane, and used 5ml After rinsing with binding buffer, dry the membrane, remove it and place it in a scintillation cup, add 3ml of PPO-POPOP-xylene solution, measure its radioactivity with a Beckman LS liquid scintillation instrument, and calculate the malachite green aptamer and malachite green The percent binding was 90%. The dissociation constant is 50pmol/L.
将水产品(检测样品)先经过匀质后用乙酸乙酯和环己烷进行提取,调节pH值后稀释后与50pmol 5’端标记[γ-32P]ATP的孔雀石绿适配子在结合缓冲液中37℃作用40min后,抽滤于硝酸纤维膜上,用5ml结合缓冲液冲洗后,将膜烤干,取下至于闪烁杯中,加PPO-POPOP-二甲苯液3ml,用Beckman LS液体闪烁仪测定其放射性,乘以系数90%(通过上步孔雀石绿适配子与孔雀石绿标样的结合测得)即得到该样品种的孔雀石绿含量。图2,和图3示意了孔雀石绿适配子竞争检测的原理。图2中总共有四段序列,上部3’端的部分是经过SELEX技术筛选过的同孔雀石绿具有特异性结合能力的适配子序列,其两端据有回文互补结构;上部5’端是设计合成的连接序列;下部3’端是跟连接序列互补的固定化序列,这部分序列的碱基已经被生物素化,可固定在96孔板或硝酸纤维膜上;下部5’端的序列是报告序列,该序列是酶联修饰的,负责报告显色。在没有孔雀石绿的状态下,这部分序列的5’端是跟适配子的5’端回文互补序列互补结合的。在图3所示的状态下,环境中有了孔雀石绿,适配子因结合了孔雀石绿,构象为之改变,3’与5’端回文互补序列自结合,同报告序列形成竞争,报告序列随之脱落。经过洗脱,显色的步骤,通过与对照的对比就可以看出,待测物中孔雀石绿的含量。The aquatic product (test sample) was first homogenized and then extracted with ethyl acetate and cyclohexane. After adjusting the pH value, it was diluted and then combined with 50 pmol 5' end-labeled [γ-32P]ATP malachite green aptamer After acting in the buffer solution at 37°C for 40 minutes, filter it on a nitrocellulose membrane, wash it with 5ml of binding buffer, dry the membrane, remove it and place it in a scintillation cup, add 3ml of PPO-POPOP-xylene solution, and use Beckman LS The radioactivity was measured by a liquid scintillation instrument, and multiplied by a factor of 90% (measured by the combination of the malachite green aptamer and the malachite green standard sample in the previous step) to obtain the malachite green content of the sample species. Figure 2 and Figure 3 illustrate the principle of malachite green aptamer competition detection. There are a total of four sequences in Figure 2. The upper 3' end is an aptamer sequence that has specific binding ability to malachite green screened by SELEX technology, and its two ends have palindromic complementary structures; the upper 5' end It is the connection sequence designed and synthesized; the lower 3' end is an immobilized sequence complementary to the connection sequence, the bases of this part of the sequence have been biotinylated and can be fixed on a 96-well plate or nitrocellulose membrane; the sequence at the lower 5' end is the reporter sequence, which is enzyme-linked and responsible for the color development of the reporter. In the absence of malachite green, the 5' end of this part of the sequence is complementary to the palindromic complementary sequence at the 5' end of the aptamer. In the state shown in Figure 3, there is malachite green in the environment, and the conformation of the aptamer is changed due to the combination of malachite green, and the palindromic complementary sequences at the 3' and 5' ends are self-associated and compete with the reporter sequence , the reporter sequence drops off. After the steps of elution and color development, the content of malachite green in the test object can be seen by comparing with the control.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNA2007100703810A CN101358963A (en) | 2007-08-01 | 2007-08-01 | A method for rapid detection of malachite green in aquatic products using aptamers |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNA2007100703810A CN101358963A (en) | 2007-08-01 | 2007-08-01 | A method for rapid detection of malachite green in aquatic products using aptamers |
Publications (1)
Publication Number | Publication Date |
---|---|
CN101358963A true CN101358963A (en) | 2009-02-04 |
Family
ID=40331467
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNA2007100703810A Pending CN101358963A (en) | 2007-08-01 | 2007-08-01 | A method for rapid detection of malachite green in aquatic products using aptamers |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101358963A (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101915830A (en) * | 2010-07-19 | 2010-12-15 | 江南大学 | A kind of ochratoxin A fluorescence detection test strip and its application |
CN101949846A (en) * | 2010-08-11 | 2011-01-19 | 昆明理工大学 | Leucomalachite green detection method |
CN102181430A (en) * | 2011-02-28 | 2011-09-14 | 新乡医学院 | Method for preparing target deoxyribonucleic acid (DNA) fragment with cohesive terminuses of restriction enzyme at both ends |
CN102645430A (en) * | 2011-02-17 | 2012-08-22 | 中国人民解放军第三军医大学第一附属医院 | Method and biosensor for detecting target microbe |
CN102661946A (en) * | 2012-04-11 | 2012-09-12 | 广州万联生物科技有限公司 | Malachite chemiluminescence ELISA detection method and kit |
TWI395949B (en) * | 2009-10-16 | 2013-05-11 | ||
KR101545228B1 (en) * | 2013-06-28 | 2015-08-19 | 호서대학교 산학협력단 | Nucleic acid aptamer specifically binding to malachite green |
CN105018461A (en) * | 2014-04-29 | 2015-11-04 | 中国科学技术大学 | Method for rapid screening of nucleic acid aptamer |
CN108715847A (en) * | 2018-05-31 | 2018-10-30 | 江南大学 | A kind of fast detection method and its application enhancing malachite green fluorescence based on DNA |
CN109507126A (en) * | 2018-12-07 | 2019-03-22 | 集美大学 | A kind of Determination of Malachite Green in Aquatic Products |
TWI655426B (en) * | 2018-03-31 | 2019-04-01 | 國立交通大學 | Structure and manufacturing method of fast screening wafer, and detection method of malachite green concentration using the fast screening wafer |
-
2007
- 2007-08-01 CN CNA2007100703810A patent/CN101358963A/en active Pending
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI395949B (en) * | 2009-10-16 | 2013-05-11 | ||
CN101915830A (en) * | 2010-07-19 | 2010-12-15 | 江南大学 | A kind of ochratoxin A fluorescence detection test strip and its application |
CN101949846A (en) * | 2010-08-11 | 2011-01-19 | 昆明理工大学 | Leucomalachite green detection method |
CN101949846B (en) * | 2010-08-11 | 2013-08-28 | 昆明理工大学 | Leucomalachite green detection method |
CN102645430B (en) * | 2011-02-17 | 2014-10-15 | 中国人民解放军第三军医大学第一附属医院 | Method and biosensor for detecting target microbe |
CN102645430A (en) * | 2011-02-17 | 2012-08-22 | 中国人民解放军第三军医大学第一附属医院 | Method and biosensor for detecting target microbe |
CN102181430A (en) * | 2011-02-28 | 2011-09-14 | 新乡医学院 | Method for preparing target deoxyribonucleic acid (DNA) fragment with cohesive terminuses of restriction enzyme at both ends |
CN102661946A (en) * | 2012-04-11 | 2012-09-12 | 广州万联生物科技有限公司 | Malachite chemiluminescence ELISA detection method and kit |
CN102661946B (en) * | 2012-04-11 | 2014-08-20 | 广州万联生物科技有限公司 | Malachite chemiluminescence ELISA detection method and kit |
KR101545228B1 (en) * | 2013-06-28 | 2015-08-19 | 호서대학교 산학협력단 | Nucleic acid aptamer specifically binding to malachite green |
CN105018461A (en) * | 2014-04-29 | 2015-11-04 | 中国科学技术大学 | Method for rapid screening of nucleic acid aptamer |
CN105018461B (en) * | 2014-04-29 | 2018-05-01 | 中国科学技术大学 | A kind of rapid screening method of aptamer |
TWI655426B (en) * | 2018-03-31 | 2019-04-01 | 國立交通大學 | Structure and manufacturing method of fast screening wafer, and detection method of malachite green concentration using the fast screening wafer |
CN108715847A (en) * | 2018-05-31 | 2018-10-30 | 江南大学 | A kind of fast detection method and its application enhancing malachite green fluorescence based on DNA |
CN109507126A (en) * | 2018-12-07 | 2019-03-22 | 集美大学 | A kind of Determination of Malachite Green in Aquatic Products |
CN109507126B (en) * | 2018-12-07 | 2021-01-01 | 集美大学 | A kind of detection method of malachite green in aquatic products |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101358963A (en) | A method for rapid detection of malachite green in aquatic products using aptamers | |
Wang et al. | Development of nucleic acid aptamer-based lateral flow assays: A robust platform for cost-effective point-of-care diagnosis | |
US11148145B2 (en) | Methods for conducting multiplexed assays | |
Sun et al. | Label-free fluorescent sensor based on aptamer and thiazole orange for the detection of tetracycline | |
Yao et al. | Development of a chemiluminescent aptasensor for ultrasensitive and selective detection of aflatoxin B1 in peanut and milk | |
CN102703453B (en) | DNA aptamer specifically recognizing streptomycin and application of DNA aptamer | |
CN101144814A (en) | Method for detecting, identifying and/or quantifying compounds using aptamer-type reagents | |
CN111118120B (en) | A liquid chromatography method for simultaneous detection of multiple microRNAs based on DSN cyclic amplification technology | |
CN107119054B (en) | Biosensor probe kit for specifically detecting sulfadiazine based on aptamer and application thereof | |
WO2017181339A1 (en) | Method and kit for simultaneous detection of protein ligand and gene | |
CN101208437A (en) | Biosensors for detection of macromolecules and other analytes | |
CN110257383B (en) | Nucleic acid aptamer specifically recognizing bis(2-ethyl)hexyl phthalate and its screening method and application | |
CN111122847A (en) | An aptamer-based method for rapid on-site detection of aflatoxin B1 | |
McKeague et al. | Development of a DNA aptamer for direct and selective homocysteine detection in human serum | |
EP3995575A1 (en) | Aptamer selection method and immunity analysis method using aptamer | |
CN108152258A (en) | A kind of method for detecting the content of aminoglycoside antibiotics in solution to be measured | |
CN104450725A (en) | Aptamer of enrofloxacin and preparation method and application thereof | |
CN117969854A (en) | Kit for detecting cytokine protein concentration and application thereof | |
WO2020014883A1 (en) | Single-stranded dna aptamer specifically recognizing tobramycin and application thereof | |
CN113340863B (en) | Enzyme-free circulating amplification aptamer sensor and preparation method and application thereof | |
CN117487813B (en) | Single-stranded DNA aptamer sequence for specifically recognizing azithromycin and application thereof | |
CN113227378B (en) | DNA aptamer specifically bound with dengue virus EDIII and application thereof | |
CN101012483B (en) | Detection reagent containing nucleic acid aptamer and its preparation method and use | |
CA3123768A1 (en) | Aptamer against irinotecan | |
JP2022509310A (en) | Aptamer for imatinib |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
WD01 | Invention patent application deemed withdrawn after publication |
Open date: 20090204 |