CN101350361B - Electro-luminescence device and electronic apparatus - Google Patents
Electro-luminescence device and electronic apparatus Download PDFInfo
- Publication number
- CN101350361B CN101350361B CN2008102148544A CN200810214854A CN101350361B CN 101350361 B CN101350361 B CN 101350361B CN 2008102148544 A CN2008102148544 A CN 2008102148544A CN 200810214854 A CN200810214854 A CN 200810214854A CN 101350361 B CN101350361 B CN 101350361B
- Authority
- CN
- China
- Prior art keywords
- pixel
- light
- layer
- electrode
- refractive index
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000005401 electroluminescence Methods 0.000 title 1
- 239000012212 insulator Substances 0.000 claims abstract description 112
- 238000002347 injection Methods 0.000 claims description 69
- 239000007924 injection Substances 0.000 claims description 69
- 238000002310 reflectometry Methods 0.000 claims description 5
- 238000004519 manufacturing process Methods 0.000 abstract description 8
- 239000010410 layer Substances 0.000 description 587
- 239000010408 film Substances 0.000 description 117
- 239000011229 interlayer Substances 0.000 description 49
- 239000000758 substrate Substances 0.000 description 37
- 239000000463 material Substances 0.000 description 23
- 238000000034 method Methods 0.000 description 22
- 239000004065 semiconductor Substances 0.000 description 18
- 230000000903 blocking effect Effects 0.000 description 16
- 239000010409 thin film Substances 0.000 description 13
- 230000008033 biological extinction Effects 0.000 description 12
- 230000003287 optical effect Effects 0.000 description 12
- 238000010586 diagram Methods 0.000 description 10
- 229910004298 SiO 2 Inorganic materials 0.000 description 9
- 239000012071 phase Substances 0.000 description 9
- 230000000052 comparative effect Effects 0.000 description 8
- 230000000694 effects Effects 0.000 description 8
- 239000003086 colorant Substances 0.000 description 7
- 238000004020 luminiscence type Methods 0.000 description 7
- 239000011159 matrix material Substances 0.000 description 7
- 238000000985 reflectance spectrum Methods 0.000 description 7
- 230000014509 gene expression Effects 0.000 description 6
- 238000003475 lamination Methods 0.000 description 6
- 239000000203 mixture Substances 0.000 description 6
- 238000001228 spectrum Methods 0.000 description 6
- 238000005530 etching Methods 0.000 description 5
- 239000011521 glass Substances 0.000 description 5
- 239000005001 laminate film Substances 0.000 description 5
- 239000007788 liquid Substances 0.000 description 5
- 229910004205 SiNX Inorganic materials 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- 239000003990 capacitor Substances 0.000 description 4
- 238000013461 design Methods 0.000 description 4
- 239000011344 liquid material Substances 0.000 description 4
- 238000000206 photolithography Methods 0.000 description 4
- 229920000642 polymer Polymers 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 229910052782 aluminium Inorganic materials 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 230000002238 attenuated effect Effects 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 239000004020 conductor Substances 0.000 description 3
- 230000010365 information processing Effects 0.000 description 3
- 239000007791 liquid phase Substances 0.000 description 3
- 239000002904 solvent Substances 0.000 description 3
- 239000004925 Acrylic resin Substances 0.000 description 2
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 2
- 229910010413 TiO 2 Inorganic materials 0.000 description 2
- 229910052791 calcium Inorganic materials 0.000 description 2
- 239000011575 calcium Substances 0.000 description 2
- 229910052681 coesite Inorganic materials 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 229910052906 cristobalite Inorganic materials 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 229910010272 inorganic material Inorganic materials 0.000 description 2
- 239000011147 inorganic material Substances 0.000 description 2
- 230000031700 light absorption Effects 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 238000005457 optimization Methods 0.000 description 2
- 238000005192 partition Methods 0.000 description 2
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 2
- 229920005591 polysilicon Polymers 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 235000012239 silicon dioxide Nutrition 0.000 description 2
- 238000004088 simulation Methods 0.000 description 2
- 125000006850 spacer group Chemical group 0.000 description 2
- 238000004544 sputter deposition Methods 0.000 description 2
- 229910052682 stishovite Inorganic materials 0.000 description 2
- 238000002834 transmittance Methods 0.000 description 2
- 229910052905 tridymite Inorganic materials 0.000 description 2
- 238000007740 vapor deposition Methods 0.000 description 2
- AGBXYHCHUYARJY-UHFFFAOYSA-N 2-phenylethenesulfonic acid Chemical compound OS(=O)(=O)C=CC1=CC=CC=C1 AGBXYHCHUYARJY-UHFFFAOYSA-N 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 239000002985 plastic film Substances 0.000 description 1
- 229920006255 plastic film Polymers 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
- 238000007639 printing Methods 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000004528 spin coating Methods 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- ODHXBMXNKOYIBV-UHFFFAOYSA-N triphenylamine Chemical compound C1=CC=CC=C1N(C=1C=CC=CC=1)C1=CC=CC=C1 ODHXBMXNKOYIBV-UHFFFAOYSA-N 0.000 description 1
- 238000001771 vacuum deposition Methods 0.000 description 1
- 238000007738 vacuum evaporation Methods 0.000 description 1
Images
Landscapes
- Electroluminescent Light Sources (AREA)
Abstract
EL装置,具有R象素、G象素及B象素,各象素至少具有一对电极和发光层,电极中的一方是透光性电极。在透光性电极中的与发光层相反一侧的面上形成有绝缘体层叠膜,该膜具有由透光性绝缘体所形成的多个低折射率层和多个高折射率层;这些低折射率层与高折射率层交替层叠。多个低折射率层的每一个,跨R、G和B象素的发光区域全区形成,即使在与R、G和B象素中的任意一个重叠的区域中也具有一样的厚度;多个高折射率层的每一个,跨R、G和B象素的发光区域全区形成,即使在与R、G和B象素中的任意一个重叠的区域中也具有一样的厚度。多个低折射率层彼此厚度不同;多个高折射率层彼此厚度不同。能提高输出的光的色纯度,而且结构简单、制造容易。
The EL device has R pixels, G pixels, and B pixels. Each pixel has at least a pair of electrodes and a light-emitting layer, and one of the electrodes is a light-transmitting electrode. An insulator laminated film having a plurality of low-refractive-index layers and a plurality of high-refractive-index layers formed of a light-transmitting insulator is formed on the surface of the light-transmitting electrode opposite to the light-emitting layer; High-refractive-index layers and high-refractive-index layers are stacked alternately. Each of the plurality of low-refractive-index layers is formed across the entire light-emitting area of the R, G, and B pixels, and has the same thickness even in an area overlapping with any one of the R, G, and B pixels; Each of the two high-refractive index layers is formed across the entire light-emitting area of the R, G, and B pixels, and has the same thickness even in an area overlapping with any one of the R, G, and B pixels. The multiple low refractive index layers have different thicknesses from each other; the multiple high refractive index layers have different thicknesses from each other. The color purity of the output light can be improved, and the structure is simple and the manufacture is easy.
Description
本申请是申请号为200510124893.1(申请日:2005年11月22日)的同名申请的分案申请。This application is a divisional application of the application with the same name with application number 200510124893.1 (application date: November 22, 2005).
技术领域technical field
本发明涉及EL装置和电子机器。The present invention relates to EL devices and electronic equipment.
背景技术Background technique
近年,在笔记本电脑、移动电话、电子记事本等电子机器中,作为显示信息的部件,提出具有多个场致发光(以下称作EL)元件的EL装置。在EL元件中,在相对的一对电极之间配置有EL层(发光层)。In recent years, EL devices having a plurality of electroluminescent (hereinafter referred to as EL) elements have been proposed as components for displaying information in electronic devices such as notebook computers, mobile phones, and electronic notebooks. In the EL element, an EL layer (light emitting layer) is disposed between a pair of opposing electrodes.
在EL装置的领域中,一般使用交替层叠具有不同折射率的层的多层膜,使特定波长的光共振。例如在专利文献1中,提出具有形成在玻璃衬底全面上的由介质构成的半透明反射膜、形成在其上的由SiO2构成的隔离块、形成在其上的透明阳极、形成在其上的空穴注入层、形成在其上的发光层、以及形成在其上的阴极的EL装置。该发光层无论在哪个象素中都由共同的材料形成,发白光,但是为了使作为目的的输出颜色不同,透明阳极和空穴注入层和发光层的光学距离的和或SiO2的隔离块的厚度根据作为目的的输出颜色而不同。因此,即使由相同的白色发光材料形成发光层,也能取得R(红色)、G(绿色)、B(蓝色)的输出颜色。In the field of EL devices, generally, a multilayer film in which layers having different refractive indices are alternately stacked is used to resonate light of a specific wavelength. For example, in
此外,在专利文献2中,提出具有关于R、G、B象素分别由不同的材料形成的发光层、与全部发光层重叠的半透明的反射层群的EL装置。半透明的反射层群对于全部发光层是相同的构造,但是以提高输出颜色的色纯度为目的,具有适合于R光的共振的半反射层、适合于G光的共振的半反射层、适合于B光的共振的半反射层。这些半反射层分别具有多个低折射率层(例如SiO2层)多个高折射率层(例如TiO2层),这些低折射率层和高折射率层交替层跌。在各半反射层中,高折射率层的折射率n1、其厚度d1、低折射率层的折射率n2、其厚度d2设定为满足表达式1。In addition,
n1·d1=n2·d2=(1/4+m/2)·λ……(1)n1·d1=n2·d2=(1/4+m/2)·λ...(1)
这里,λ是应该反射,共振的光的波长,m为0以上的任意整数。因此,在各半反射层中,低折射率层具有彼此相同的厚度d2,高折射率层具有彼此相同的厚度d1。Here, λ is the wavelength of light to be reflected and resonated, and m is an arbitrary integer of 0 or more. Therefore, in the respective semi-reflective layers, the low-refractive-index layers have the same thickness d2 as each other, and the high-refractive-index layers have the same thickness d1 as each other.
[专利文献1]日本专利第2797883号公报[Patent Document 1] Japanese Patent No. 2797883
[专利文献2]特表2003-528421号公报[Patent Document 2] Special Publication No. 2003-528421
可是,在专利文献1的EL装置中,即使能从白色发光输出不同的颜色,也难以提高输出的光的色纯度。此外,对于R、G、B的全部波长区域,具有某程度的发光强度的白色发光材料受限制。However, in the EL device of
此外,在专利文献2的EL装置中,实际上例如R象素的红色发光由适合于G、或B的光的层大量反射。因此,无论哪个颜色的发光在通过半透明的反射层群时大幅度衰减,无法取得所需的共振效果。此外,由发光层发出的光在各界面反射或透射,在输出之前透过各种路线,所以不能说依据表达式1决定低折射率层和高折射率层的厚度与显著的共振效果密切相关。半透明的反射层群具有适合于R光的共振的半反射层、适合于G光的共振的半反射层、适合于B光的共振的半反射层,所以层的数量必然多,难以制造。In addition, in the EL device of
发明内容Contents of the invention
因此,本发明提供能提高输出的光的色纯度,而且结构简单、制造容易的EL装置。Therefore, the present invention provides an EL device capable of improving the color purity of output light and having a simple structure and easy manufacture.
本发明的EL装置的一个形态是一种EL装置,具有能发出相当于红色的光的R象素、能发出相当于绿色的光的G象素、能发出相当于蓝色的光的B象素,其特征在于:所述各象素至少具有一对电极、夹在这些电极之间并且通过被提供电能而发光的发光层,所述电极中的一方是透光性电极;在所述透光性电极中与所述发光层相反一侧的面上形成绝缘体层叠膜;所述绝缘体层叠膜具有由透光性绝缘体形成的多个低折射率层、由具有比所述低折射率层还高的折射率的透光性绝缘体形成的多个高折射率层,这些低折射率层和高折射率层交替层叠;各低折射率层跨所述R象素、所述G象素和所述B象素的发光区域全区形成,在与所述R象素、所述G象素和所述B象素中的任意一个重叠的区域中具有一样的厚度;所述高折射率层跨所述R象素、所述G象素和所述B象素的发光区域全区形成,在与所述R象素、所述G象素和所述B象素中的任意一个重叠的区域中具有一样的厚度;多个所述低折射率层具有彼此不同的厚度;多个所述高折射率层具有彼此不同的厚度;决定所述低折射率层和所述高折射率层的厚度,从而如果所述发光层发光,则至少由于在所述透光性电极和所述绝缘体层叠膜之间的界面以及所述低折射率层和所述高折射率层之间的界面的反射,在所述R象素、所述G象素和所述B象素中的任意一个发光峰值波长,从所述绝缘体层叠膜发出比没有所述绝缘体层叠膜时强度还高的光。One aspect of the EL device of the present invention is an EL device having an R pixel capable of emitting light corresponding to red, a G pixel capable of emitting light corresponding to green, and a B pixel capable of emitting light corresponding to blue. The pixel is characterized in that each pixel has at least a pair of electrodes and a light-emitting layer sandwiched between these electrodes and is supplied with electric energy to emit light, one of the electrodes is a light-transmitting electrode; An insulator laminated film is formed on the surface of the photoelectrode opposite to the light-emitting layer; the insulator laminated film has a plurality of low refractive index layers formed of a light-transmitting insulator, and has A plurality of high-refractive-index layers formed by a light-transmitting insulator with a high refractive index, these low-refractive-index layers and high-refractive-index layers are stacked alternately; The entire area of the light-emitting area of the B pixel is formed, and has the same thickness in the area overlapping with any one of the R pixel, the G pixel, and the B pixel; the high refractive index layer spans The light-emitting areas of the R pixel, the G pixel, and the B pixel are all formed in an area overlapping with any one of the R pixel, the G pixel, and the B pixel have the same thickness; a plurality of the low refractive index layers have different thicknesses from each other; a plurality of the high refractive index layers have different thicknesses from each other; determine the thickness of the low refractive index layer and the high refractive index layer , so that if the light-emitting layer emits light, at least due to reflection at the interface between the light-transmitting electrode and the insulator laminated film and the interface between the low-refractive index layer and the high-refractive index layer, At any one of the emission peak wavelengths of the R pixel, the G pixel, and the B pixel, light with higher intensity is emitted from the insulator multilayer film than without the insulator multilayer film.
在该形态的EL装置中,在透光性电极的与发光层相反一侧配置交替层叠多个低折射率层和多个高折射率层的绝缘体层叠膜。通过适当决定低折射率层和高折射率层的厚度,如果发光层发光,至少由于透光性电极和绝缘体层叠膜之间的界面以及低折射率层和高折射率层之间的界面的反射,在R象素、G象素、B象素中的任意一个发光峰值波长,从绝缘体层叠膜发出比没有绝缘体层叠膜时强度还高的光。“发光峰值波长”是从象素的发光层发出的光的波长中强度最高的波长。在本发明中,无论在R象素的发光峰值波长,还是G象素的发光峰值波长,还是B象素的发光峰值波长,都由于绝缘体层叠膜,发出高强度的光。因此,能提高输出的光的色纯度。多个低折射率层具有彼此不同的厚度,但是各低折射率层在与R象素、G象素、B象素的任意一个重叠的区域中具有一样的厚度,多个高折射率层具有彼此不同的厚度,但是各高折射率层在与R象素、G象素、B象素的任意一个重叠的区域中具有一样的厚度,所以没必要按照象素使厚度变化。即与R象素、G象素、B象素重叠的绝缘体层叠膜具有公共的构造。此外,没必要分别设计适合于R光的共振的层、适合于G光的共振的层、适合于B光的共振的层。In the EL device of this aspect, an insulator laminate film in which a plurality of low-refractive-index layers and a plurality of high-refractive-index layers are alternately laminated is disposed on the side of the light-transmitting electrode opposite to the light-emitting layer. By appropriately determining the thicknesses of the low-refractive-index layer and the high-refractive-index layer, if the light-emitting layer emits light, at least due to reflection at the interface between the light-transmitting electrode and the insulator laminated film and the interface between the low-refractive index layer and the high-refractive index layer , at any one of the emission peak wavelengths of the R pixel, the G pixel, and the B pixel, light with a higher intensity is emitted from the insulator laminated film than when there is no insulator laminated film. "Emission peak wavelength" is the wavelength with the highest intensity among the wavelengths of light emitted from the light emitting layer of the pixel. In the present invention, regardless of the peak emission wavelength of the R pixel, the peak emission wavelength of the G pixel, or the peak emission wavelength of the B pixel, high-intensity light is emitted due to the insulator laminated film. Therefore, the color purity of output light can be improved. The plurality of low-refractive-index layers have different thicknesses from each other, but each low-refractive-index layer has the same thickness in an area overlapping with any one of the R pixel, the G pixel, and the B pixel, and the plurality of high-refractive-index layers have the same thickness. Although the thicknesses are different from each other, each high-refractive index layer has the same thickness in a region overlapping with any of the R pixel, G pixel, and B pixel, so there is no need to change the thickness for each pixel. That is, the insulator laminated films overlapping the R pixel, the G pixel, and the B pixel have a common structure. In addition, it is not necessary to separately design a layer suitable for resonance of R light, a layer suitable for resonance of G light, and a layer suitable for resonance of B light.
本发明的EL装置的其他形态是一种EL装置,具有能发出相当于红色的光的R象素、能发出相当于绿色的光的G象素、能发出相当于蓝色的光的B象素,其特征在于:所述各象素至少具有一对电极、夹在这些电极之间并且通过被提供电能而发光的发光层,所述电极中的一方是透光性电极;在所述透光性电极中与所述发光层相反一侧的面上形成绝缘体层叠膜;所述绝缘体层叠膜具有由透光性绝缘体形成的低折射率层、由具有比所述低折射率层还高的折射率的透光性绝缘体形成的高折射率层;所述低折射率层跨所述R象素、所述G象素和所述B象素的发光区域全区形成,在与所述R象素、所述G象素和所述B象素中的任意一个重叠的区域中具有一样的厚度;所述高折射率层跨所述R象素、所述G象素和所述B象素的发光区域全区形成,在与所述R象素、所述G象素和所述B象素中的任意一个重叠的区域中具有一样的厚度;决定所述低折射率层和所述高折射率层的厚度,从而当光从所述绝缘体层叠膜向所述透光性电极以及所述发光层入射时,至少由于在所述透光性电极和所述绝缘体层叠膜之间的界面以及所述低折射率层和所述高折射率层之间的界面的反射,所述R象素、所述G象素和所述B象素的在各发光峰值波长的±20nm内的波长的反射率比各在各发光峰值波长的±50nm内的其他波长的反射率还低。Another form of the EL device of the present invention is an EL device having an R pixel capable of emitting light corresponding to red, a G pixel capable of emitting light corresponding to green, and a B pixel capable of emitting light corresponding to blue. The pixel is characterized in that each pixel has at least a pair of electrodes and a light-emitting layer sandwiched between these electrodes and is supplied with electric energy to emit light, one of the electrodes is a light-transmitting electrode; An insulator laminated film is formed on the surface of the photoelectrode opposite to the light-emitting layer; the insulator laminated film has a low refractive index layer formed of a light-transmitting insulator, and has an A high-refractive-index layer formed by a light-transmitting insulator of refractive index; the low-refractive-index layer is formed across the entire light-emitting area of the R pixel, the G pixel, and the B pixel, and the R The pixel, the G pixel and the B pixel have the same thickness in any overlapping region; the high refractive index layer spans the R pixel, the G pixel and the B pixel The entire area of the light-emitting area of the pixel is formed, and has the same thickness in the area overlapping with any one of the R pixel, the G pixel, and the B pixel; determine the low refractive index layer and the The thickness of the high refractive index layer, so that when light is incident from the insulator laminated film to the light-transmitting electrode and the light-emitting layer, at least due to the interface between the light-transmitting electrode and the insulator laminated film and the reflection of the interface between the low-refractive-index layer and the high-refractive-index layer, the wavelengths of the R pixel, the G pixel, and the B pixel within ±20 nm of each luminescence peak wavelength The reflectance is lower than the reflectance of other wavelengths within ±50nm of each emission peak wavelength.
在该形态的EL装置中,在透光性电极的与发光层相反一侧配置具有低折射率层和高折射率层的绝缘体层叠膜。通过适当决定低折射率层和高折射率层的厚度,当光从发光层一侧向透光性电极以及绝缘体层叠膜入射时,至少由于在透光性电极和绝缘体层叠膜之间的界面以及低折射率层和高折射率层之间的界面的反射,在各发光峰值波长的±20nm内的波长的反射率比在各发光峰值波长的±50nm内的其他波长的反射率还低。例如,在R象素的发光峰值波长的±50nm内,在R象素的发光峰值波长的±20nm内的一个波长的反射率成为最低。据此,能提高输出的光的色纯度。在本说明书中,“±20nm内”包含发光峰值波长的+20nm的波长和-20nm的波长,“±50nm内”包含发光峰值波长的+50nm的波长和-50nm的波长。低折射率层在与R象素、G象素、B象素中的任意一个重叠的区域中具有一样的厚度,高折射率层在与R象素、G象素、B象素中的任意一个重叠的区域中具有一样的厚度,所以没必要按照象素使厚度变化。即与R象素、G象素、B象素重叠的绝缘体层叠膜具有公共的构造。此外,没必要分别设计适合于R光的共振的层、适合于G光的共振的层、适合于B光的共振的层。因此,该EL装置的结构简单,容易制造。In the EL device of this aspect, an insulator laminated film having a low-refractive-index layer and a high-refractive-index layer is disposed on the side opposite to the light-emitting layer of the light-transmitting electrode. By appropriately determining the thicknesses of the low-refractive-index layer and the high-refractive-index layer, when light enters the light-transmitting electrode and the insulator laminated film from the light-emitting layer side, at least the interface between the light-transmitting electrode and the insulator laminated film and the Reflection at the interface between the low-refractive-index layer and the high-refractive-index layer is lower at wavelengths within ±20 nm of each emission peak wavelength than at other wavelengths within ±50 nm of each emission peak wavelength. For example, within ±50 nm of the emission peak wavelength of the R pixel, the reflectance of one wavelength within ±20 nm of the emission peak wavelength of the R pixel becomes the lowest. Accordingly, the color purity of output light can be improved. In this specification, "within ±20 nm" includes wavelengths of +20 nm and -20 nm of the emission peak wavelength, and "within ±50 nm" includes wavelengths of +50 nm and -50 nm of the emission peak wavelength. The low-refractive index layer has the same thickness in a region overlapping with any one of the R pixel, G pixel, and B pixel, and the high-refractive index layer has the same thickness as any one of the R pixel, G pixel, and B pixel. An overlapping area has the same thickness, so there is no need to change the thickness by pixel. That is, the insulator laminated films overlapping the R pixel, the G pixel, and the B pixel have a common structure. In addition, it is not necessary to separately design a layer suitable for resonance of R light, a layer suitable for resonance of G light, and a layer suitable for resonance of B light. Therefore, the EL device has a simple structure and is easy to manufacture.
所述透光性电极和包含所述发光层的从所述透光性电极到所述发光层的层厚度的组合根据所述象素的发光颜色不同。据此,即使与R象素、G象素、B象素重叠的绝缘体层叠膜具有公共的构造,从透光性电极到所述发光层的层厚度的组合根据象素的发光颜色而不同,所以能容易取得与各发光颜色相应的适当的反射特性。A combination of the light-transmitting electrode and the layer thickness from the light-transmitting electrode to the light-emitting layer including the light-emitting layer differs depending on the light emission color of the pixel. According to this, even if the insulator laminated film overlapping the R pixel, G pixel, and B pixel has a common structure, the combination of the layer thickness from the light-transmitting electrode to the light-emitting layer is different depending on the light-emitting color of the pixel, Therefore, it is possible to easily obtain appropriate reflection characteristics corresponding to the respective luminescent colors.
此外,本发明的EL装置是有机EL装置,在所述发光层和所述透光性电极之间配置减少空穴或电极从所述发光层向所述透光性电极漏出的中间层。据此,与没有中间层时相比,发光层内的厚度方向的发光位置不同。例如与在发光层的两面没有发光层和电极之间的这样的中间层(空穴阻挡层和电子阻挡层)时相比,在发光层和透光性电极之间设置中间层时,发光层内的发光位置向中间层进而向透光性电极一方变位,根据中间层的材料和/或厚度,有时在发光层和中间层的界面发光。因此,通过设置中间层,选择其材料和/或厚度,能调整发光层内的厚度方向的发光位置,进而调整光从发光位置到绝缘体层叠膜前进的光学距离。Furthermore, the EL device of the present invention is an organic EL device, wherein an intermediate layer for reducing leakage of holes or electrodes from the light emitting layer to the light transmitting electrode is disposed between the light emitting layer and the light transmitting electrode. Accordingly, the position of light emission in the thickness direction within the light emitting layer is different from that without the intermediate layer. For example, compared with when there is no such intermediate layer (hole blocking layer and electron blocking layer) between the light emitting layer and the electrode on both sides of the light emitting layer, when an intermediate layer is provided between the light emitting layer and the translucent electrode, the light emitting layer The light-emitting position in the center shifts toward the intermediate layer and further toward the light-transmitting electrode, and depending on the material and/or thickness of the intermediate layer, light may be emitted at the interface between the light-emitting layer and the intermediate layer. Therefore, by providing an intermediate layer and selecting its material and/or thickness, it is possible to adjust the light-emitting position in the thickness direction in the light-emitting layer, and further adjust the optical distance from the light-emitting position to the insulator multilayer film.
所述绝缘体层叠膜具有多个低折射率层和多个高折射率层,这些低折射率层和高折射率层交替层叠;多个所述低折射率层具有彼此不同的厚度;多个所述高折射率层具有彼此不同的厚度。The insulator laminated film has a plurality of low-refractive-index layers and a plurality of high-refractive-index layers which are alternately laminated; the plurality of low-refractive-index layers have different thicknesses from each other; The high refractive index layers have different thicknesses from each other.
以往,在用交替层叠多个低折射率层和多个高折射率层的绝缘体层叠膜使光共振的构造中,一般根据所述表达式1,低折射率层具有彼此相同的厚度,高折射率层具有彼此相同的厚度,但是本发明的发明者已经发现在这样的构造中,并不一定能取得显著的共振效果。多个低折射率层具有彼此不同的厚度,多个高折射率层具有彼此不同的厚度时,R、G、B的任意的光都共振,能以高能量发光。Conventionally, in a structure in which light is resonated with an insulator laminated film in which a plurality of low-refractive-index layers and a plurality of high-refractive-index layers are alternately stacked, in general, the low-refractive-index layers have the same thickness as each other, and the high-refractive index The frequency layers have the same thickness as each other, but the inventors of the present invention have found that in such a configuration, it is not necessarily possible to obtain a significant resonance effect. When the plurality of low-refractive index layers have different thicknesses and the plurality of high-refractive index layers have different thicknesses, any light of R, G, and B can resonate and emit light with high energy.
此外,在所述绝缘体层叠膜的光射出一侧配置滤色器。通过这样设置滤色器,能提高对比度和色纯度。In addition, a color filter is disposed on the light emitting side of the insulator laminated film. By providing the color filter in this way, contrast and color purity can be improved.
本发明的电子机器的特征在于:具有本发明所述的EL装置作为显示部。根据这样的电子机器,能实现输出的光的色纯度高的显示。An electronic device according to the present invention is characterized in that it includes the EL device according to the present invention as a display unit. According to such an electronic device, a display with high color purity of output light can be realized.
附图说明Description of drawings
图1是表示本发明的滤色器发光型的有机EL装置的配置构造的图。FIG. 1 is a diagram showing an arrangement structure of a color filter emission type organic EL device according to the present invention.
图2是图1的有机EL装置的剖视图。FIG. 2 is a cross-sectional view of the organic EL device of FIG. 1 .
图3是表示本发明的有机EL装置的各层的特性的表。Fig. 3 is a table showing characteristics of each layer of the organic EL device of the present invention.
图4是表示由本发明的有机EL装置的象素发出的光的前进路线的例子的模式图。Fig. 4 is a schematic diagram showing an example of the path of light emitted from pixels of the organic EL device of the present invention.
图5是表示从与本发明的有机EL装置的各象素重叠的区域发出的光的频谱的曲线图。Fig. 5 is a graph showing the spectrum of light emitted from a region overlapping with each pixel of the organic EL device of the present invention.
图6是表示从与比较例的有机EL装置的各象素重叠的区域发出的光的频谱的曲线图。6 is a graph showing the spectrum of light emitted from a region overlapping with each pixel of an organic EL device of a comparative example.
图7(a)是表示本发明的有机EL装置的制造的一个步骤的剖视图,(b)是表示(a)之后的步骤的剖视图,(c)是表示(a)之后的步骤的剖视图。7( a ) is a cross-sectional view showing one step of manufacturing the organic EL device of the present invention, ( b ) is a cross-sectional view showing a step after ( a ), and ( c ) is a cross-sectional view showing a step after ( a ).
图8(a)表示图7(c)之后的步骤的剖视图,(b)是表示(a)之后的步骤的剖视图,(c)是表示(a)之后的步骤的剖视图。8( a ) is a cross-sectional view showing a step after FIG. 7( c ), (b) is a cross-sectional view showing a step after (a), and (c) is a cross-sectional view showing a step after (a).
图9是表示本发明的有机EL装置的垂直入射光引起的光的路线的例子的模式图。FIG. 9 is a schematic view showing an example of a path of light caused by vertically incident light in the organic EL device of the present invention.
图10是表示关于与本发明的有机EL装置中的R象素重叠的区域的对于从外部向有机EL装置垂直入射的光的反射率频谱的图。FIG. 10 is a diagram showing a reflectance spectrum for light perpendicularly incident on the organic EL device from the outside in a region overlapping with an R pixel in the organic EL device of the present invention.
图11是表示关于与本发明的有机EL装置中的G象素重叠的区域的对于从外部向有机EL装置垂直入射的光的反射率频谱的图。FIG. 11 is a graph showing a reflectance spectrum for light perpendicularly incident on the organic EL device from the outside in a region overlapping with a G pixel in the organic EL device of the present invention.
图12是表示关于与本发明的有机EL装置中的B象素重叠的区域的对于从外部向有机EL装置垂直入射的光的反射率频谱的图。FIG. 12 is a diagram showing a reflectance spectrum for light perpendicularly incident on the organic EL device from the outside in a region overlapping with a B pixel in the organic EL device of the present invention.
图13是表示本发明的其他有机EL装置的各层特性的表。Fig. 13 is a table showing the characteristics of each layer of another organic EL device of the present invention.
图14是表示本发明的其他有机EL装置的各层特性的表。Fig. 14 is a table showing the characteristics of each layer of another organic EL device of the present invention.
图15是表示本发明的其他有机EL装置的各层特性的表。Fig. 15 is a table showing the characteristics of each layer of another organic EL device of the present invention.
图16是本发明的全彩色发光型的有机EL装置的实施例3的剖视图。Fig. 16 is a cross-sectional view of Example 3 of the full-color light-emitting organic EL device of the present invention.
图17是表示本发明的实施例4的全彩色发光型的无机EL装置的一部分的剖视图。17 is a cross-sectional view showing part of a full-color light-emitting inorganic EL device according to Example 4 of the present invention.
图18(a)是表示本发明的电子机器的图,(b)是表示本发明的其他电子机器的图,(c)是表示本发明的电子机器的图。Fig. 18(a) is a diagram showing an electronic device of the present invention, (b) is a diagram showing another electronic device of the present invention, and (c) is a diagram showing an electronic device of the present invention.
图中:4—象素电极(阳极、透光性电极);7—发光层;9—对置电极(阴极);16a、16b、16c—第二层间绝缘层(高折射率层);17a、17b、17c—第二层间绝缘层(低折射率层);18—绝缘体层叠膜;100—有机EL装置(EL装置);202—透光性电极;204—发光层;206—背面电极;207—绝缘体层叠膜;208—低折射率层;209—高折射率层。In the figure: 4—pixel electrode (anode, light-transmitting electrode); 7—luminescent layer; 9—counter electrode (cathode); 16a, 16b, 16c—second interlayer insulating layer (high refractive index layer); 17a, 17b, 17c—second interlayer insulating layer (low refractive index layer); 18—insulator laminated film; 100—organic EL device (EL device); 202—light-transmitting electrode; 204—light-emitting layer; 206—back surface Electrode; 207—insulator laminated film; 208—low refractive index layer; 209—high refractive index layer.
具体实施方式Detailed ways
下面,参照附图说明本发明的各种实施例。在这些附图中,各层或各构件的尺寸的比率与实际情况适当不同。Various embodiments of the present invention will be described below with reference to the drawings. In these drawings, the dimensional ratio of each layer or each member is suitably different from the actual one.
<实施例1><Example 1>
说明本发明实施例1的全彩色发光型的有机EL装置。图1是表示有机EL装置100的布线构造的图,图2是有机EL装置100的剖视图。A full-color light-emitting organic EL device according to Example 1 of the present invention will be described. FIG. 1 is a diagram showing a wiring structure of an
如图1所示,有机EL装置100具有多条扫描线101、在对于扫描线101交叉的方向延伸的多条信号线102、与信号线102并列延伸的多条电源线103。在扫描线101和信号线102的各交叉点附近,象素区形成矩阵状。As shown in FIG. 1 , an
在信号线102上连接具有移位寄存器、电平移动器、视频线和模拟开关的数据一侧驱动电路104。此外,在扫描线101上连接具有移位寄存器、电平移动器的扫描一侧驱动电路105。A data-
在各象素区A中设置通过扫描线101对栅极供给扫描信号的第一薄膜晶体管122、保持通过该第一薄膜晶体管122从信号线102供给的象素信号的电容器cap、把由电容器cap保持的象素信号提供给栅极的第二薄膜晶体管2。此外,在象素区A中设置由第二薄膜晶体管2对电源线103通电时驱动电流从所述电源线103流入的象素电极4、配置在该象素电极4和对置电极(阴极)9之间的发光层7。由象素电极4、对置电极9和发光层7构成有机EL元件。In each pixel region A, a first
根据这样的结构,如果驱动扫描线101,第一薄膜晶体管122导通,则这时的信号线102的电位由电容器cap保持,按照所述电容器cap的状态,决定第二薄膜晶体管2的导通和断开状态。而且,电流通过第二薄膜晶体管2的沟道从电源线103流到象素电极4,电流再通过发光层7流向对置电极9。发光层7按照流过它的电流量发光。According to such a structure, when the
如图2所示,有机EL装置100具有由玻璃等透光性材料形成的透明衬底1、在该透明衬底1上配置为矩阵状的多个有机EL元件7a。具体而言,有机EL元件7a具有层叠在透明衬底1上的薄膜晶体管(TFT)2、透明的象素电极(透明阳极)4、发光层7、对置电极(阴极)9。As shown in FIG. 2 , the
作为透明衬底1,除了玻璃衬底,还能使用硅衬底、陶瓷衬底、金属衬底、塑料衬底、塑料薄膜衬底等公开的各种衬底。在透明衬底1的图的上表面,把作为发光区的多个象素区A排列为矩阵状。具体而言,为了进行彩色显示,排列与红色(R)、绿色(G)、蓝色(B)等各色对应的象素区。在各象素区A中配置象素电极4,在其附近配置信号线、电源线、扫描线。在本说明书中,把能发红色(R)光的象素区A称作R象素,把能发绿色(G)光的象素区A称作G象素,把能发蓝色(B)光的象素区A称作B象素。As the
此外,在透明衬底1上形成分别电连接在象素区A的象素电极(透明阳极)4上的多个薄膜晶体管2。薄膜晶体管2分别具有在透明衬底1上配置为岛状的半导体层13、与半导体层13的漏区重叠但是从半导体层13分开的栅极12、连接在半导体层13的一端的栅区上的栅极12、连接在半导体层13的另一端的源区上的源极11。半导体层13由多晶硅膜形成,电极10、11、12例如由铝形成。如公开的技术所述,通过设置栅绝缘层30、第一层间绝缘层31、第二层间绝缘层16a~16c、17a~17c,半导体层13、电极10、11、12配置为彼此不同的高度。具体而言,半导体层13由栅绝缘层30覆盖,配置在栅绝缘层30上的栅极12由第一层间绝缘层31覆盖,配置在第一层间绝缘层31上的源极11由第二层间绝缘层16a覆盖,漏极10配置在第二层间绝缘层17c之上。In addition, a plurality of
虽然未图示,但是如公开的技术所述,在绝缘层30、31之间配置连接在栅极12上的栅线,在绝缘层31、16a之间配置连接在源极11上的源线,在绝缘层30、31、16a~16c、17a~17c的任意层间配置图1所示的各种线。在绝缘层30、31上形成用于电连接源极11和半导体层13的源区的接触孔23。在绝缘层30、31、16a~16c、17a~17c上形成用于连接漏极10和半导体层13的漏区的接触孔24。Although not shown in the figure, a gate line connected to the
绝缘体层叠膜18具有由透光性绝缘体形成的多个低折射率层、由具有比低折射率层还高的折射率的透光性绝缘体形成的高折射率层,这些低折射率层和高折射率层交替层跌。第二层间绝缘层16a~16c是高折射率层,例如由SiNx或TiO2形成。第二层间绝缘层17a~17c是低折射率层,例如由SiO2形成。第二层间绝缘层16a~16c、17a~17c跨透明衬底1上表面全体以一样的厚度形成,因此,跨R象素、G象素、B象素的发光区全部区域延伸,在与R象素、G象素、B象素的任意一个重叠的区域中具有一样的厚度。如后所述,多个第二层间绝缘层16a~16c具有彼此不同的厚度,多个第二层间绝缘层17a~17c具有彼此不同的厚度。The insulator laminated
栅绝缘层30和第一层间绝缘层31例如由SiO2形成。栅绝缘层30和第一层间绝缘层31分别是决定TFT2的特性的要素,具有一样的厚度。The
各象素区A的象素电极4形成在绝缘体层叠膜18的最上层的第二层间绝缘层17c上,与对应的TFT2的漏极10电连接。象素电极4例如由ITO(铟锡氧化物)等透光性导电材料形成。在象素电极4上形成空穴注入/输送层28,在空穴注入/输送层28上形成中间层29,在中间层29上形成发光层7。在全部发光层7上形成电子注入层8,在其上形成对置电极9。即电子注入层8和对置电极9在全部象素中是公共的,跨R象素、G象素、B象素的发光区全部区域延伸。这样,象素电极4隔着发光层7与对置电极9相对,与发光层7以及对置电极9一起构成有机EL元件(发光元件)7a。The
空穴注入/输送层28、中间层29和发光层7形成在由围堰部51、52划分的凹部内。第一围堰部51由SiO2等无机材料构成,第二围堰部52由丙烯酸素质或聚酰亚胺等有机材料或SiO2等无机材料构成。第一围堰部51是第二层间绝缘层17c,局部覆盖象素电极4的外缘,在内部具有用于配置发光层7的开口部。第二围堰部52配置在第一围堰部51上,具有比第一围堰部51的开口部还大的开口部。The hole injecting/transporting
空穴注入/输送层28配置在各象素区A中,但是关于全部象素,由相同的材料例如3、4-聚乙烯氧噻吩(PEDOT)和苯乙烯磺酸(PSS)的混合物(以下称作“PEDOT/PSS”)形成。中间层29也配置在各象素区A中,但是关于全部象素,由相同的材料形成。该中间层29是减少来自阴极的电子从发光层7向象素电极(阳极)4漏出的电子阻挡层,例如由空穴注入性良好的三苯胺类聚合物或TFB(poly(2,7-(9,9-di-n-octylfluorene)-(1,4-phenylene-(4-secbutyphenyl)imino)-1,4-phenylene))形成。The hole injection/
在发光层7中存在通过流过电极4、9之间的电流,发红色(R)光的红色发光层7R、发绿色(G)光的绿色发光层7G、发蓝色(B)光的蓝色发光层7B。发光层7由按各色不同的有机EL材料形成。In the
如上所述,电子注入层8和对置电极9是全部象素公共的。电子注入层8例如由LiF形成,在与R象素、G象素、B象素的任意一个重叠的区域中具有一样的厚度。对置电极(阴极)9虽然未详细图示,但是由钙层和铝层构成。接近电子注入层8的一方是钙制的极薄的第二对置电极层,远离电子注入层8的一方是铝制,是更厚的第一对置电极层。第一对置电极层和第二对置电极层分别在与R象素、G象素、B象素的任意一个重叠的区域中具有一样的厚度。As described above, the
本实施例的各发光元件的结构如上所述,但是作为本发明中能利用的发光元件的变形,也可以是没有电子注入层8的类型、在电子注入层8和发光层7之间设置电子输入层的类型等具有其他层的类型。例如当使用低分子类的发光层7时,一般利用具有阴极、电子输入层、发光层、空穴输送层、空穴注入层和阳极的类型,关于高分子类的发光层7,常常利用具有阳极、发光层、空穴注入层和阳极的类型,可以在这些类型中利用本发明。The structure of each light-emitting element of this embodiment is as described above, but as a modification of the light-emitting element that can be used in the present invention, a type without the
此外,在本实施例中,阳极透明,阴极是反射性,来自发光层7的光通过象素电极4以及绝缘体层叠膜18向外部放出,但是也可以在阳极为反射性,阴极为透明,在透明阴极一侧配置绝缘体层叠膜18,来自发光层7的光通过透明阴极和绝缘体层叠膜向外部放出的类型中利用本发明。此外,本实施例的有机EL装置100是来自发光层7的光通过衬底1向外部放出的底发光类型。也可以在来自发光层7的光向与衬底相反一侧放出的顶发光类型中利用本发明。In addition, in this embodiment, the anode is transparent, the cathode is reflective, and the light from the
如上所述,中间层29是电子阻挡层。与没有中间层29时相比,如果有中间层29,则在发光层内的厚度方向,向中间层29进而向象素电极4(透明阳极)一方变位,根据由中间层29的材料和/或厚度决定的电子阻挡性能,有时在发光层7和中间层29的界面发光。在本实施例中,在发光层7和透明阳极4之间配置作为电子阻挡层的中间层29,但是在阳极为反射性,阴极为透明的类型中,在发光层和透明阴极之间配置作为空穴阻挡层的中间层。空穴阻挡层是减少来自阳极的空穴从发光层7向对置电极(阴极)9漏出的层。如果有空穴阻挡层,则在发光层内的厚度方向,向空穴阻挡层进而向阴极一方变位,根据由空穴阻挡层的材料和/或厚度决定的空穴阻挡性能,有时在发光层和空穴阻挡层的界面发光。如果在发光层7的两侧设置中间层,即设置空穴阻挡层和电子阻挡层双方时,发光层内的厚度方向的发光位置接近空穴阻挡层和电子阻挡层中阻挡性能大的一方。因此,至少设置一方的中间层,通过选择材料和/或厚度,能调整发光层内的厚度方向的发光位置,进而能调整光从发光位置前进到绝缘体层叠膜的光学距离。As described above, the
图3是表示本实施例的有机EL装置100的各层特性的表。在图3中,之所以使用相同材料而根据重叠的象素的颜色,折射率不同,是因为折射率中存在波长依存性。图3所示的折射率以R象素发出620nm的光,G象素发出540nm的光,B象素发出470nm的光为前提。图3的各层的光学距离是层的厚度和折射率的积。如图3所示,绝缘体层叠膜18内的第二层间绝缘层16a~16c、17a~17c分别在与R象素、G象素、B象素的任意一个重叠的区域中具有一样的厚度。此外,多个第二层间绝缘层16a~16c具有彼此不同的厚度,多个第二层间绝缘层17a~17c具有彼此不同的厚度。FIG. 3 is a table showing the characteristics of each layer of the
绝缘体层叠膜18关于全部象素,为相同的结构,是相同的厚度,而从象素电极4到发光层7的层(包含象素电极4和发光层7)的组合根据象素的发光颜色而不同。在与R象素重叠的区域中,象素电极4的厚度为95nm,但是在与G象素、B象素重叠的区域中,象素电极4的厚度为50nm。在与R象素、G象素重叠的区域中,空穴注入/输送层28的厚度为70nm,但是在与B象素重叠的区域中,空穴注入/输送层28的厚度为30nm。发光层7的厚度根据象素的发光颜色而不同。The insulator laminated
图4是表示由本实施例的有机EL装置100的象素发出的光的前进路线的例子的模式图。在图4中,实线表示层间的界面,单点划线表示光的前进路线。图示的光的前进路线是代表的例子,虽然此外也存在多个光的前进路线,但是为了使图简明,省略。此外,图的单点划线的角度未正确表示光的前进角度,描写为容易区别多个前进路线。FIG. 4 is a schematic diagram showing an example of the path of light emitted from the pixels of the
图4以在发光层7和中间层29之间的界面BO发光为前提。从发光位置向全方位发光,但是在反射性的对置电极9和电子注入层8之间的界面,未被对置电极9吸收的全部光向图的右方反射。此外,光在透过的2个层之间的界面发生反射和折射。即光的一部分在界面反射,另一部分折射,前进。须指出的是,当光从折射率高的物质(例如第二层间绝缘层16a~16c)向低的物质(例如第二层间绝缘层17a~17c)前进时,如果入射角超过某角度(临界角),就发生光在该界面全部反射的现象即全反射,但是光从折射率高的物质向低的物质前进时,入射角小于临界角时(近似垂直入射时),光在界面只反射一部分,剩下的折射,前进。FIG. 4 presupposes that the interface BO between the light-emitting
根据以上的结构,如果发光层7发光,则由于中间层29和空穴注入/输送层28之间的界面、空穴注入/输送层28和象素电极4之间的界面、象素电极4和绝缘体层叠膜19之间的界面、低折射率的第二层间绝缘层17a~17c和高折射率的第二层间绝缘层16a~16c之间的界面的反射,发生共振作用,在R象素、G象素、B象素的任意发光峰值波长,比没有绝缘体层叠膜时强度高的光从绝缘体层叠膜18向外侧(对于绝缘体层叠膜18,发光层7的相反一侧即透明衬底1一侧)放出。“发光峰值波长”是从象素的发光层7放出的光的波长中强度最高的波长。在本发明中,无论在R象素的发光峰值波长(620nm),还是G象素的发光峰值波长(540nm),还是B象素的发光峰值波长(470nm),通过绝缘体层叠膜18放出高强度的光。因此,能提高输出的光的色纯度。According to the above structure, if the light-emitting
换言之,在本实施例中,决定高折射率层(第二层间绝缘层16a~16c)和低折射率层(第二层间绝缘层17a~17c)的厚度,从而如果发光层7发光,则由于所述界面的反射,在R象素、G象素、B象素的任意发光峰值波长,比没有绝缘体层叠膜时强度高的光从绝缘体层叠膜18向外侧放出。In other words, in this embodiment, the thicknesses of the high refractive index layer (second
首先,说明以下说明的各层的厚度的决定步骤的前提。垂直入射的两个层的界面的反射率R、透射率T、反射的相位变化φr及透过的相位变化φt由以下的表达式(2)~(5)求出。可是,n1是入射一侧的媒体的折射率,n2是出射一侧的媒体的折射率,k2是出射一侧的媒体的消光系数,折射率和消光系数依存于光的波长。First, the premise of the step of determining the thickness of each layer described below will be described. The reflectance R, the transmittance T, the reflection phase change φr, and the transmission phase change φt of the interface between the two layers at normal incidence are obtained by the following expressions (2) to (5). However, n1 is the refractive index of the medium on the incident side, n2 is the refractive index of the medium on the outgoing side, and k2 is the extinction coefficient of the medium on the outgoing side, and the refractive index and extinction coefficient depend on the wavelength of light.
R={(n1—n2)2+k2 2}/{(n1+n2)2+k2 2} ……(2)R={(n 1 —n 2 ) 2 +k 2 2 }/{(n 1 +n 2 ) 2 +k 2 2 } ……(2)
T=4n1n2/{(n1+n2)2+k2 2} ……(3)T=4n 1 n 2 /{(n 1 +n 2 ) 2 +k 2 2 } ……(3)
Φr=tan-1{2n1k2/(n1 2—n2 2—k2 2)} ……(4)Φr=tan -1 {2n 1 k 2 /(n 1 2 —n 2 2 —k 2 2 )} ……(4)
Φt=tan-1{k2/(n1+n2)} ……(5)Φt=tan -1 {k 2 /(n 1 +n 2 )} ……(5)
使用表达式(2)~(5)以及各层的厚度,求出垂直入射的各界面的反射光的强度(振幅)和相位、透过光的强度(振幅)和相位,推测从绝缘体层叠膜18向外侧放出的合计的光(输出光)的强度(或振幅)。而且,一边改变各层的厚度,一边重复推测从绝缘体层叠膜18向外侧放出的合计的光的发光峰值波长下的强度(或振幅),求出各层的最佳厚度。在强度的推测时,把从发光到最多3次反射的光合计。比3次更多反射的光由于层内的光的吸收,大幅度衰减。Using the expressions (2) to (5) and the thickness of each layer, the intensity (amplitude) and phase of the reflected light and the intensity (amplitude) and phase of the transmitted light at each interface perpendicularly incident are obtained, and the insulator multilayer film is estimated to be 18 Intensity (or amplitude) of total light (output light) emitted outward. Then, while changing the thickness of each layer, the intensity (or amplitude) at the emission peak wavelength of the total light emitted from the
作为条件,在现实的厚度范围内使象素电极4、空穴注入/输送层28以及发光层7的厚度变化。具体而言,假定对象素电极4的材料使用ITO,把厚度的范围限定在40nm~100nm。假定空穴注入/输送层28的材料使用PEDOT/PSS,把厚度的范围限定在20nm~100nm。发光层7的厚度范围限定在60nm~100nm。此外,以在发光层7和中间层29之间的界面BO发光为前提(参照图4)。As a condition, the thicknesses of the
使用软件,通过仿真推测向外侧放出的合计的光的发光峰值波长下的强度。具体而言,使用在2005年8月能从日本东京的赛霸耐特系统株式会社(Cybernet Systems Co.,Ltd)以“OPTAS-FILM”的商品名取得的软件。The intensity at the emission peak wavelength of the total light emitted outward is estimated by simulation using software. Specifically, software available under the trade name "OPTAS-FILM" from Cybernet Systems Co., Ltd. in Tokyo, Japan in August 2005 was used.
(步骤1)虽然其目的在于最终,关于与R象素、G象素、B象素重叠的区域的任意一个,尽可能增大向外侧放出的合计的光的发光峰值波长的强度,但是绝缘体层叠膜18的高折射率层(第二层间绝缘层16a、16b、16c)以及低折射率层(第二层间绝缘层17a、17b、17c)的厚度在任意区域中都是公共的,所以首先在与具有可见光区域的几乎中心波长约540nm的发光峰值波长的G象素重叠的区域中,把高折射率层16a、低折射率层17a、高折射率层16b、低折射率层17b、高折射率层16c、低折射率层17c、象素电极4G、空穴注入/输送层28G、中间层29G、发光层7G的厚度最优化。具体而言,一边改变各层的厚度,一边重复推测从绝缘体层叠膜18向外侧放出的合计的光的发光峰值波长的强度,把放出在发光峰值波长最高强度的光的厚度组合作为最佳的厚度组合选择。折射率和消光系数依存于光的波长,所以在该阶段,使用关于绿波长(540nm)的光学常数(折射率和消光系数)。这样取得的是关于与图3的G象素重叠的区域的各层的厚度。(Step 1) Although the purpose is to finally increase the intensity of the light emission peak wavelength of the total light emitted to the outside as much as possible for any of the regions overlapping with the R pixel, G pixel, and B pixel, the insulator The thicknesses of the high refractive index layers (second
(步骤2)接着关于与R象素(发光峰值波长约620nm)重叠的区域,把高折射率层16a、16b、16c和低折射率层17a、17b、17c的厚度固定在步骤1中求出的值,把象素电极4R、空穴注入/输送层28R、中间层29R、发光层7R的厚度最优化。具体而言,以高折射率层16a、16b、16c和低折射率层17a、17b、17c的厚度为确定条件,一边改变象素电极4R、空穴注入/输送层28R、中间层29R、发光层7R的厚度,一边重复推测从绝缘体层叠膜18向外侧放出的合计的光的发光峰值波长的强度,把放出在发光峰值波长最高强度的光的厚度组合作为最佳的厚度组合选择。在该阶段,使用关于红波长(620nm)的光学常数(折射率和消光系数)。这样取得的是关于与图3的R象素重叠的区域的各层的厚度。(Step 2) Next, regarding the region overlapping with the R pixel (emission peak wavelength is about 620nm), fix the thicknesses of the high
(步骤3)接着,关于与B象素(发光峰值波长约470nm)重叠的区域,把高折射率层16a、16b、16c和低折射率层17a、17b、17c的厚度固定在步骤1中求出的值,把象素电极4R、空穴注入/输送层28R、中间层29R、发光层7R的厚度最优化。具体而言,以高折射率层16a、16b、16c和低折射率层17a、17b、17c的厚度为确定条件,一边改变象素电极4R、空穴注入/输送层28R、中间层29R、发光层7R的厚度,一边重复推测从绝缘体层叠膜18向外侧放出的合计的光的发光峰值波长的强度,把放出在发光峰值波长最高强度的光的厚度组合作为最佳的厚度组合选择。在该阶段,使用关于蓝波长(470nm)的光学常数(折射率和消光系数)。这样取得的是关于与图3的B象素重叠的区域的各层的厚度。(Step 3) Next, regarding the region overlapping with the B pixel (emission peak wavelength is about 470nm), the thicknesses of the high
如上所述,首先关于与G象素重叠的区域,决定包含绝缘体层叠膜18的高折射率层16a、16b、16c和低折射率层17a、17b、17c的各层厚度,然后关于与其它象素重叠的区域,固定绝缘体层叠膜18的这些层,决定其他层的厚度。可是,在高折射率层16a、16b、16c和低折射率层17a、17b、17c的最优化步骤(步骤1)中,可以把与R、G、B的任意象素重叠的区域作为厚度决定的基准。可是,如果象本实施例那样,把与可见光的几乎中心波长的G象素重叠的区域作为基准,则容易决定象素电极4R、空穴注入/输送层28R、中间层29R、发光层7R的厚度,从而关于与R象素、G象素、B象素重叠的区域的任意一个,都向外侧放出高强度的光。As described above, first, the thicknesses of the high-refractive-
图5是表示从与本实施例的有机EL装置100的各象素重叠的区域经过透明衬底1放出的光的频谱的曲线图。图6是从与比较例的有机EL装置的各象素重叠的区域经过透明衬底放出的光的频谱的曲线图。在这些图中,由红、绿、蓝区别的曲线分别表示从与R象素、G象素、B象素重叠的区域放出的光的频率。虽然未图示,但是比较例的有机EL装置具有玻璃制的透明衬底、形成在其上的厚度600nm的SiNx制的单一层间绝缘层、形成在其上的R、G、B的有机EL元件。比较例的各有机EL元件具有形成在层间绝缘层上的厚度50nm的ITO制的象素电极(透明阳极)、形成在其上的PEDOT/PSS制的空穴注入/输送层、形成在其上的中间层(电子阻挡层)、形成在其上的发光层、形成在其上的反射性的金属制的阴极。关于任意颜色的有机EL元件,象素电极、空穴注入/输送层、中间层以及发光层的厚度是公共的。FIG. 5 is a graph showing the spectrum of light emitted through the
在图5中,相对强度是用虽然没有绝缘体层叠膜18,但是从其他条件与本实施例相同的有机EL装置的与R象素、G象素、B象素重叠的区域放出的光的频率的最大强度除以本实施例的有机EL装置100的放出光的强度而取得的。在图6中,相对强度是用虽然没有层间绝缘层,但是从其他条件与比较例相同的有机EL装置的与R象素、G象素、B象素重叠的区域放出的光的频率的最大强度除以比较例的有机EL装置的放出光的强度而取得的。从图5和图6可知,根据本实施例,与比较例即以往技术的有机EL装置相比,各色的强度大,频谱半值宽度窄。因此,根据本实施例,能提高输出的光的色纯度。In FIG. 5, the relative intensity is the frequency of light emitted from the region overlapping with the R pixel, the G pixel, and the B pixel of the organic EL device whose other conditions are the same as those of the present embodiment although there is no insulator laminated
如上所述,根据本实施例,无论R象素的发光峰值波长,G象素的发光峰值波长,B象素的发光峰值波长,通过绝缘体层叠膜18,能防止高强度的光。因此,能提高输出的光的色纯度。绝缘体层叠膜18内的多个低折射率层17a、17b、17c具有彼此不同的厚度,但是低折射率层17a、17b、17c分别在与R象素、G象素、B象素的任意一个重叠的区域中具有一样的厚度,所以没必要按照象素使厚度变化。即与R象素、G象素、B象素重叠的绝缘体层叠膜18具有公共的构造。此外,没必要分别设计适合于R光的共振、G光的共振、B光的共振的层。因此,有机EL装置100的结构是简单的,容易制造。As described above, according to this embodiment, regardless of the peak emission wavelength of the R pixel, the peak emission wavelength of the G pixel, and the peak emission wavelength of the B pixel, high intensity light can be prevented by the insulator laminated
以往,在用交替层叠多个低折射率层和多个高折射率层的绝缘体层叠膜使光共振的构造中,根据所述表达式1,一般低折射率层具有彼此相同的厚度,高折射率层具有彼此相同的厚度,但是本发明者已经发现用这样的构造不一定能取得显著的共振效果。象本实施例那样,多个低折射率层17a、17b、17c具有彼此不同的厚度,多个高折射率层16a、16b、16c具有彼此不同的厚度时,R、G、B的任意光共振,能以高强度放出。Conventionally, in a structure in which light is resonated with an insulator laminated film in which a plurality of low-refractive-index layers and a plurality of high-refractive-index layers are alternately laminated, generally the low-refractive-index layers have the same thickness as each other, and the high-refractive index The frequency layers have the same thickness as each other, but the inventors have found that it is not necessarily possible to obtain a significant resonance effect with such a configuration. When the plurality of low-refractive-
此外,根据本实施例,从象素电极4(透光性电极)到发光层7的层(包含象素电极4和发光层7)的层的组合按照象素的发光色不同,所以与R象素、G象素、B象素重叠的绝缘体层叠膜18即使具有公共的构造,也容易取得与各发光色对应的适当的反射特性。虽然根据区域而形成不同厚度的薄膜是困难的,或常常变得复杂,但是在使用高分子类的发光层7时,在形成空穴注入/输送层28和发光层7时,能采用喷墨法那样滴下液体材料的方法,所以通过适当调整液体材料的滴下量,容易控制空穴注入/输送层28以及发光层7的厚度。In addition, according to this embodiment, the combination of layers from the pixel electrode 4 (light-transmitting electrode) to the light-emitting layer 7 (including the
在该实施例中,在发光层7和空穴注入/输送层28之间设置作为电子阻挡层的中间层29,在输出光的强度推定上,以在发光层7和中间层29之间的界面BO(参照图4)发光为前提。可是,可以不设置这样的中间层。当没有中间层29时,在发光位置由空穴注入/输送层28、发光层7和电子注入层8的特性决定的电子和空穴的平衡位置发光。例如没有中间层,使用PEDOT/PSS作为空穴注入/输送层28,使用LiF作为电子注入层8时,关于任意的象素,都不是在界面BO,而在发光层7内发光。在R象素中,在离界面BO约30nm的位置发光。当没有中间层时,使用这些发光位置,按照所述方法,能计算输出光的强度。In this embodiment, an
下面说明所述有机EL装置的制造方法的一例。An example of a method of manufacturing the organic EL device will be described below.
首先,如图7(a)所示,在预先准备的透明衬底1之上形成岛状的半导体层13。这里,把多晶硅膜通过光刻法,在各象素区A(参照图2)一对一形成半导体层13。First, as shown in FIG. 7( a ), an island-shaped
接着覆盖半导体层13在透明衬底1上形成栅绝缘膜30。具体而言,通过CVD法或其他蒸镀法把SiO2形成膜厚75nm。然后,在所述栅绝缘膜30上,即在半导体层13的与沟道区重叠的区域上形成岛状的栅极12。具体而言,通过溅射法形成A膜,用光刻法把它构图。Next, a
接着如图7(b)所示,形成第一层间绝缘层31。具体而言,通过CVD法或其他蒸镀法把把SiO2形成膜厚800nm。接着形成连接在半导体层13的源区上的接触孔23。具体而言,通过对于栅绝缘膜30和第一层间绝缘层31的掩模蚀刻,形成到达半导体层13的源区的通孔,通过在该通孔中填充Al等导电材料,形成接触孔23。然后,在第一层间绝缘层31上形成连接在接触孔23上的源极11,再覆盖源极11在第一层间绝缘层31上形成第二层间绝缘层16a、16b、17a、17b、16c、17c。Next, as shown in FIG. 7(b), a first
接着,在第二层间绝缘层16a~17c上形成连接在半导体层13的漏区上的接触孔24。具体而言,通过对第二层间绝缘层16a~17c的掩模蚀刻,形成到达半导体层13的漏区的通孔,通过在该通孔中填充Al等导电材料,形成接触孔24。然后,在第二层间绝缘层17c上形成连接在接触孔24上的象素电极4。具体而言,通过溅射法把ITO形成给定图案。具体而言,象素电极4按各颜色形成上述的最佳膜厚。具体而言,R象素的象素电极4R形成95nm的厚度,G象素的象素电极4G形成50nm的厚度,B象素的象素电极4B形成50nm的厚度。Next, a
接着,如图8(a)所示形成具有与各象素区A(参照图2)对应的开口部51a的SiO2制的第一围堰部51。具体而言,进行SiO2薄膜形成步骤、光刻步骤和蚀刻步骤。形成第一围堰部51,从而开口部51a的周缘部与象素电极4的外缘部重叠。在第一围堰部51上形成具有与各象素区A对应的开口部52a的第二围堰部(隔壁)52。该第二围堰部52是聚丙烯酸树脂,通过包含聚丙烯酸树脂的溶液的涂敷步骤、涂敷的膜的干燥步骤、光刻步骤、蚀刻步骤,形成。Next, as shown in FIG. 8( a ), a
接着,如图8(b)所示,在由各围堰部51、52形成的开口部51a、52a内的象素电极4上配置液状组成物61。这里,作为液状组成物61的配置方法,采用公开的液相法(湿工艺、湿式涂敷法),例如使用旋转涂敷法、喷墨(液滴喷出)法、裂缝涂敷法、浸渍涂敷法、喷涂成膜法、印刷法。这样的液相法是适合于把高分子材料成膜的方法,与气相法相比,不是用真空装置等高价的设备,就能廉价制造有机EL装置。通过使用这样的液相法,在各开口部5内的象素电极4上形成液状组成物61。Next, as shown in FIG. 8( b ), the
液状组成物61是把用于形成空穴注入/输送层28的材料溶解或分散到溶剂中、把用于形成中间层29的材料溶解或分散到溶剂中、把用于形成发光层(有机EL层)7的材料溶解或分散到溶剂中。即在形成空穴注入/输送层28、中间层29发光层7时,进行成为各层的材料的液状组成物61的配置,干燥。如图8(C)所示,形成空穴注入/输送层28后,形成中间层29,然后形成各色的发光层7R、7G、7B。The
空穴注入/输送层28按各色形成上述的最佳膜厚,具体而言,R象素的空穴注入/输送层28R为70nm,G象素的空穴注入/输送层28G为70nm,B象素的空穴注入/输送层28G为30nm。此外,中间层29按各色形成上述的最佳膜厚,具体而言,R象素的中间层29R为8nm,G象素的中间层29G为8nm,B象素的中间层29B为8nm。此外,发光层7按各色形成上述的最佳膜厚,具体而言,R象素的发光层7R为96nm,G象素的发光层7G为90nm,B象素的发光层7B为70nm。The hole injection/
接着,在透明衬底1上的整个面(即相当于象素区的开口部5内的发光层7上和第二隔壁52上)通过真空蒸镀法形成由LiF构成的电子注入层8,再在电子注入层8上通过真空蒸镀法形成由Al构成的对置电极(阴极)9,从而具有图2所示的结构的有机EL装置100。Next, an
<实施例2><Example 2>
下面,说明决定具有与实施例1相同的构造的有机EL装置100的各层厚度的其他步骤。在本方法中,假定从外部相有机EL装置100,从透明衬底1和绝缘体层叠膜18向着象素电极4和发光层7,把等能量的白色光垂直入射,R、G、B的象素在各发光峰值波长的反射光强度成为最小地决定各层厚度。可是,从外部相有机EL装置100垂直入射的光没必要限定于等能量白色光,如果着眼于反射率,则决定本实施例的厚度的方法与R象素、G象素、B象素在各发光峰值波长的反射率成为最小地决定各层厚度的方法是等价的。这里所说的“反射光强度”是从绝缘体层叠膜18向象素电极4和发光层7的入射光的反射光即从象素电极4向绝缘体层叠膜18的方向的合计的输出光的强度,“反射率”是反射光即从象素电极4向绝缘体层叠膜18的方向的合计的输出光的强度对于从绝缘体层叠膜18向象素电极4和发光层7的入射光强度的比。根据决定方法,取得与实施例1同样厚度的组合(图3所示),能提高输出的光的色纯度。Next, another procedure for determining the thickness of each layer of the
因此,在取得的有机EL装置100中,如果发光层7发光,则通过中间层29和空穴注入/输送层28之间的界面、空穴注入/输送层28和象素电极4之间的界面、象素电极4和绝缘体层叠膜18之间的界面以及低折射率的第二层间绝缘层17a~17c和高折射率的第二层间绝缘层16a~16c之间的界面的反射,发生共振作用,在R象素、G象素、B象素的任意发光峰值波长,比没有绝缘体层叠膜18时还高强度的光从绝缘体层叠膜18向外侧(对于绝缘体层叠膜18,发光层7的相反一侧,即透明衬底1一侧)放出。此外,在相同的有机EL装置100中,光从绝缘体层叠膜18一侧向象素电极4(透光性电极)4和发光层7垂直入射时,通过中间层29和空穴注入/输送层28之间的界面、空穴注入/输送层28和象素电极4之间的界面、象素电极4和绝缘体层叠膜18之间的界面以及低折射率的第二层间绝缘层17a~17c和高折射率的第二层间绝缘层16a~16c之间的界面的反射,位于R象素、G象素、B象素的各发光峰值波长±20nm内的一个波长的反射率比该发光峰值波长±50nm内的其他波长的反射率还低。例如,当光从外部向有机EL装置100垂直入射时,在R象素的发光峰值波长(620nm)±50nm内的范围内,位于R象素的发光峰值波长±20nm内的一个波长的反射率成为最低。Therefore, in the obtained
图9是表示本实施例的有机EL装置100的垂直入射光IL引起的光的前进路线例子的模式图。在图9中,实线表示层间的界面,单点划线表示光的前进路线。图示的光的前进路线是代表的例子,此外存在多个光的前进路线,但是为了使图简明,省略。此外,图的单点划线的角度未正确表示光的前进角度,描写为容易区别多个前进路线。从图9可知,在反射性的对置电极9和电子注入层8之间的界面,未被对置电极9吸收的全部光向图的右方反射。此外,光在透过的2个层之间的界面发生反射和折射。结果,从象素电极4向绝缘体层叠膜18的反射光从绝缘体层叠膜18向图的右侧出射。使用这些反射光的合计或对于入射光的反射光的合计的比即反射率,在本实施例中,决定各层的厚度。FIG. 9 is a schematic diagram showing an example of a path of light caused by vertically incident light IL in the
首先,说明以下说明的各层厚度的决定步骤的前提。垂直入射的两个层在界面的反射率R、透射率T、反射的相位变化φr和透射的相位变化φt由以下的表达式(2)~(5)求出。可是,n1是入射一侧的媒体的折射率,n2是出射一侧的媒体的折射率,k2是出射一侧的媒体的消光系数,折射率和消光系数依存于光的波长。First, the premise of the step of determining the thickness of each layer described below will be described. The reflectance R, transmittance T, reflection phase change φr, and transmission phase change φt of the two layers at normal incidence at the interface are obtained by the following expressions (2) to (5). However, n1 is the refractive index of the medium on the incident side, n2 is the refractive index of the medium on the outgoing side, and k2 is the extinction coefficient of the medium on the outgoing side, and the refractive index and extinction coefficient depend on the wavelength of light.
R={(n1—n2)2+k2 2}/{(n1+n2)2+k2 2} ……(2)R={(n 1 —n 2 ) 2 +k 2 2 }/{(n 1 +n 2 ) 2 +k 2 2 } ……(2)
T=4n1n2/{(n1+n2)2+k2 2} ……(3)T=4n 1 n 2 /{(n 1 +n 2 ) 2 +k 2 2 } ……(3)
Φr=tan-1{2n1k2/(n1 2—n2 2—k2 2)} ……(4)Φr=tan -1 {2n 1 k 2 /(n 1 2 —n 2 2 —k 2 2 )} ……(4)
Φt=tan-1{k2/(n1+n2)} ……(5)Φt=tan -1 {k 2 /(n 1 +n 2 )} ……(5)
使用表达式(2)~(5)以及各层的厚度,关于垂直入射有机EL装置100的等能量白色光,求出在各界面的反射光的强度(振幅)和相位、透过光的强度(振幅)和相位,推测在内部反射,经过透明衬底1向外部出射的合计的反射光的强度(或振幅)。然后,一边改变各层的厚度,一边重复推测从绝缘体层叠膜18向外侧放出的合计的反射光的强度,求出各层的最佳厚度。在强度的推测时,把从发光到最多3次反射的光合计。比3次更多反射的光由于层内的光的吸收,大幅度衰减。Using the expressions (2) to (5) and the thickness of each layer, the intensity (amplitude) and phase of the reflected light at each interface and the intensity of the transmitted light are obtained for the equal-energy white light that is vertically incident on the organic EL device 100 (amplitude) and phase, estimate the intensity (or amplitude) of the total reflected light that is internally reflected and emitted to the outside through the
作为条件,在现实的厚度范围内使象素电极4、空穴注入/输送层28以及发光层7的厚度变化。具体而言,假定对象素电极4的材料使用ITO,把厚度的范围限定在40nm~100nm。假定对空穴注入/输送层28的材料使用PEDOT/PSS,把该厚度的范围限定在20nm~100nm。把发光层7的厚度范围限定在60nm~100nm。As a condition, the thicknesses of the
使用软件,通过仿真推测向外侧放出的合计的反射光的强度。具体而言,使用在2005年8月能从日本东京的赛霸耐特系统株式会社(CybernetSystems Co.,Ltd)以“OPTAS-FILM”的商品名取得的软件。The intensity of the total reflected light emitted outward is estimated by simulation using software. Specifically, software available under the trade name of "OPTAS-FILM" from Cybernet Systems Co., Ltd. in Tokyo, Japan in August 2005 was used.
(步骤1)虽然其目的在于最终,关于与R象素、G象素、B象素重叠的区域的任意一个,尽可能减小对应的象素的发光峰值波长的反射光强度,但是绝缘体层叠膜18的高折射率层(第二层间绝缘层16a、16b、16c)以及低折射率层(第二层间绝缘层17a、17b、17c)的厚度在任意区域中都是公共的,所以首先在与具有可见光区域的几乎中心波长约540nm的发光峰值波长的G象素重叠的区域中,把高折射率层16a、低折射率层17a、高折射率层16b、低折射率层17b、高折射率层16c、低折射率层17c、象素电极4G、空穴注入/输送层28G、中间层29G、发光层7G的厚度最优化。具体而言,一边改变各层的厚度,一边重复推测从绝缘体层叠膜18向外侧放出的合计的光的发光峰值波长的强度,把放出在发光峰值波长最高强度的光的厚度组合作为最佳的厚度组合选择。折射率和消光系数依存于光的波长,所以在该阶段,使用关于绿波长(540nm)的光学常数(折射率和消光系数)。这样取得关于与图3的G象素重叠的区域的各层厚度相同的厚度。(Step 1) Although the purpose is to finally reduce the intensity of reflected light at the emission peak wavelength of the corresponding pixel as much as possible for any of the regions overlapping with the R pixel, G pixel, and B pixel, the insulator layer The thicknesses of the high refractive index layers (second
(步骤2)接着关于与R象素(发光峰值波长约620nm)重叠的区域,把高折射率层16a、16b、16c和低折射率层17a、17b、17c的厚度固定在步骤1中求出的值,把象素电极4R、空穴注入/输送层28R、中间层29R、发光层7R的厚度最优化。具体而言,以高折射率层16a、16b、16c和低折射率层17a、17b、17c的厚度为确定条件,一边改变象素电极4R、空穴注入/输送层28R、中间层29R、发光层7R的厚度,一边重复推测从绝缘体层叠膜18向外侧放出的合计的反射光的发光峰值波长的强度,把放出在发光峰值波长最低强度反射光的厚度组合作为最佳的厚度组合选择。在该阶段,使用关于红波长(620nm)的光学常数(折射率和消光系数)。这样取得关于与图3的R象素重叠的区域的各层厚度相同的厚度。(Step 2) Next, regarding the region overlapping with the R pixel (emission peak wavelength is about 620nm), fix the thicknesses of the high
(步骤3)接着,关于与B象素(发光峰值波长约470nm)重叠的区域,把高折射率层16a、16b、16c和低折射率层17a、17b、17c的厚度固定在步骤1中求出的值,把象素电极4R、空穴注入/输送层28R、中间层29R、发光层7R的厚度最优化。具体而言,以高折射率层16a、16b、16c和低折射率层17a、17b、17c的厚度为确定条件,一边改变象素电极4R、空穴注入/输送层28R、中间层29R、发光层7R的厚度,一边重复推测从绝缘体层叠膜18向外侧放出的合计的反射光的发光峰值波长的强度,把放出在发光峰值波长最低强度反射光的厚度组合作为最佳的厚度组合选择。在该阶段,使用关于蓝波长(470nm)的光学常数(折射率和消光系数)。这样取得关于与图3的B象素重叠的区域的各层的厚度相同的厚度。(Step 3) Next, regarding the region overlapping with the B pixel (emission peak wavelength is about 470nm), the thicknesses of the high
如上所述,首先关于与G象素重叠的区域,决定包含绝缘体层叠膜18的高折射率层16a、16b、16c和低折射率层17a、17b、17c的各层厚度,然后关于与其它象素重叠的区域,固定绝缘体层叠膜18的这些层,决定其他层的厚度。可是,在高折射率层16a、16b、16c和低折射率层17a、17b、17c的最优化步骤(步骤1)中,可以把与R、G、B的任意象素重叠的区域作为厚度决定的基准。可是,如果象本实施例那样,把与可见光的几乎中心波长的G象素重叠的区域作为基准,就容易决定象素电极4R、空穴注入/输送层28R、中间层29R、发光层7R的厚度,从而关于与R象素、G象素、B象素重叠的区域的任意一个,都向外侧放出高强度的光。As described above, first, the thicknesses of the high-refractive-
图10~图12是表示对于从与本实施例的有机EL装置100的各象素重叠的区域的外部经过透明衬底1向有机EL装置100垂直入射的光的反射率频谱的图。图10表示关于与R象素重叠的区域的反射率频谱,图11表示关于与G象素重叠的区域的反射率频谱,图12表示关于与B象素重叠的区域的反射率频谱。从这些图确认位于R象素、G象素、B象素的各发光峰值波长±20nm内的一个波长的反射率比发光峰值波长±50nm内的其他波长的反射率还低。例如光从外部向有机EL装置100垂直入射时,在R象素的发光峰值波长(620nm)±50nm的范围内,位于R象素的发光峰值波长±20nm内的某一个波长的反射率成为最低。10 to 12 are graphs showing reflectance spectra for light perpendicularly incident on the
根据本实施例的各层厚度的决定方法,取得与实施例1相同的有机EL装置100(图3表示细节)。因此,表示从与由本实施例取得的有机EL装置100的各象素重叠的区域经过透明衬底1放出的光的频谱的曲线图与图5相同。如关于实施例1所述的那样,如果参照图5和关于比较例的图6,则变得清楚,根据本实施流,能提高输出的光的色纯度。According to the method of determining the thickness of each layer in this example, the same
此外,绝缘体层叠膜18内的多个低折射率层17a、17b、17c具有彼此不同的厚度,但是低折射率层17a、17b、17c分别在与R象素、G象素、B象素的任意一个重叠的区域中具有一样的厚度,多个高折射率层16a、16b、16c分别在与R象素、G象素、B象素的任意一个重叠的区域中具有一样的厚度,所以没必要按照象素使厚度变化。即与R象素、G象素、B象素重叠的绝缘体层叠膜18具有公共的构造。此外,没必要分别设计适合于R光的共振、G光的共振、B光的共振的层。此外,第二层间绝缘层16a~16c、17a~17c具有一样的厚度,所以通过蚀刻,能统一形成全部接触孔24。因此,该有机EL装置100的结构简单,制造容易。In addition, the plurality of low-
以往,在用交替层叠多个低折射率层和多个高折射率层的绝缘体层叠膜使光共振的构造中,根据所述表达式1,一般低折射率层具有彼此相同的厚度,高折射率层具有彼此相同的厚度,但是本发明者已经发现用这样的构造不一定能取得显著的共振效果。象本实施例那样,多个低折射率层17a、17b、17c具有彼此不同的厚度,多个高折射率层16a、16b、16c具有彼此不同的厚度时,R、G、B的任意光共振,能以高强度放出。Conventionally, in a structure in which light is resonated with an insulator laminated film in which a plurality of low-refractive-index layers and a plurality of high-refractive-index layers are alternately laminated, generally the low-refractive-index layers have the same thickness as each other, and the high-refractive index The frequency layers have the same thickness as each other, but the inventors have found that it is not necessarily possible to obtain a significant resonance effect with such a configuration. When the plurality of low-refractive-
此外,根据本实施例,从象素电极4(透光性电极)到发光层7的层(包含象素电极4和发光层7)的层的组合按照象素的发光色不同,所以与R象素、G象素、B象素重叠的绝缘体层叠膜18即使具有公共的构造,也容易取得与各发光色对应的适当的反射特性。虽然根据区域而形成不同厚度的薄膜是困难的,或常常变得复杂,但是在使用高分子类的发光层7时,在形成空穴注入/输送层28和发光层7时,能采用喷墨法那样滴下液体材料的方法,所以通过适当调整液体材料的滴下量,容易控制空穴注入/输送层28以及发光层7的厚度。In addition, according to this embodiment, the combination of layers from the pixel electrode 4 (light-transmitting electrode) to the light-emitting layer 7 (including the
<其他厚度的组合><combination of other thicknesses>
如果根据上述的实施例1和实施例计算各层的厚度,则不仅上述的厚度的组合(图3),而且取得其他组合。图13~图15表示这些组合(类型A~类型L)。在图13~图15中,R、G、B分别表示与R象素重叠的区域、与G象素重叠的区域、与B象素重叠的区域。与图3同样,在这些图中,越上面的行,与离第一对置电极越远的层对应。If the thickness of each layer is calculated from the above-mentioned Example 1 and Example, not only the above-mentioned combinations of thicknesses ( FIG. 3 ) but also other combinations are taken. 13 to 15 show these combinations (Type A to Type L). In FIGS. 13 to 15 , R, G, and B denote regions overlapping with R pixels, regions overlapping with G pixels, and regions overlapping with B pixels, respectively. As in FIG. 3 , in these figures, the upper row corresponds to the layer farther from the first counter electrode.
在图13~图15所示的类型A~类型L的有机EL装置中,如果发光层7发光,则通过中间层29和空穴注入/输送层28之间的界面、空穴注入/输送层28和象素电极4之间的界面、象素电极4和绝缘体层叠膜18之间的界面以及低折射率的第二层间绝缘层17a~17c和高折射率的第二层间绝缘层16a~16c之间的界面的反射,发生共振作用,在R象素、G象素、B象素的任意发光峰值波长,比没有绝缘体层叠膜18时还高强度的光从绝缘体层叠膜18向外侧(对于绝缘体层叠膜18,发光层7的相反一侧,即透明衬底1一侧)放出。此外,在相同的有机EL装置100中,光从绝缘体层叠膜18一侧向象素电极4(透光性电极)4和发光层7垂直入射时,通过中间层29和空穴注入/输送层28之间的界面、空穴注入/输送层28和象素电极4之间的界面、象素电极4和绝缘体层叠膜18之间的界面以及低折射率的第二层间绝缘层17a~17c和高折射率的第二层间绝缘层16a~16c之间的界面的反射,位于R象素、G象素、B象素的各发光峰值波长±20nm内的一个波长的反射率比该发光峰值波长±50nm内的其他波长的反射率还低。因此,关于实施例1和实施例2,能取得上述的效果。In the organic EL devices of type A to type L shown in FIGS. 13 to 15 , if the light-emitting
在实施例1和实施例2中,绝缘体层叠膜18内部的层数即高折射率层和低折射率层的合计层数为6。可是,作为图14的类型G,象例示的那样,绝缘体层叠膜18内部的层数可以为8,可以是其他层数例如2、4、10或更大。可是,如果层叠数增加,就存在视角依存性增强的倾向。即存在视场角变窄的倾向。In Example 1 and Example 2, the number of layers inside the insulator laminated
<实施例3><Example 3>
可以把有机EL装置100象图16所示那样变形。在图16所示的实施例3中,在R象素、G象素、B象素中分别重叠滤色器CF。滤色器CF把对应的象素的发光颜色的波长区的光透射,吸收其他波长区的光。例如与R象素重叠的滤色器CF使红波长区(620nm附近)的光透射,吸收其他波长区的光。滤色器CF接合在从象素放出光一侧的透明衬底1上,其周围由黑底矩阵BM包围。在滤色器CF和黑底矩阵BM上重叠保护膜19,在其上设置绝缘体层叠膜18。通过这样在各象素上重叠滤色器CF,能提高对比度和色纯度。即象素发光时的光的色纯度提高,当象素不发光时,该象素看起来更暗。The
<实施例4><Example 4>
图17表示本发明实施例4的无机EL装置。作为本发明的EL装置,以有机EL装置为例进行说明,但是无机EL装置也在本发明的范围内。如图17所示,无机EL装置具有在玻璃制的透明衬底201上由ITO形成的透光性电极202、在其上由SiNx形成的第一绝缘膜203、在其上形成的发光层204、在其上由SiNx形成的第二绝缘膜205、在其上由Al形成的背面电极206。根据本发明,在透明衬底201和透光性电极202之间存在具有由SiNx形成的低折射率层和例如由SiNx形成的高折射率层209的绝缘体层叠膜207,在与R、G、B的象素的任意一个重叠的区域中,低折射率层208和高折射率层209各自的厚度一样,根据象素的发光颜色,透明衬底201、第一绝缘膜203、发光层204的厚度的组合不同。Fig. 17 shows an inorganic EL device according to Example 4 of the present invention. As the EL device of the present invention, an organic EL device will be described as an example, but an inorganic EL device is also within the scope of the present invention. As shown in FIG. 17, the inorganic EL device has a light-transmitting
而且,与实施例1或实施例2同样决定各层的厚度。在取得的无机EL装置中,如果发光层204发光,则由于第一绝缘膜203和透光性电极202之间的界面、透光性电极202和绝缘体层叠膜207之间的界面、低折射率层208和高折射率层209之间的界面的反射,发生共振作用,在R象素、G象素、B象素的任意发光峰值波长,比没有绝缘体层叠膜207时还高强度的光从绝缘体层叠膜207向外侧(对于绝缘体层叠膜207,发光层204的相反一侧,即透明衬底201一侧)放出。此外,在相同的无机EL装置中,光从绝缘体层叠膜207一侧向透光性电极202和发光层204垂直入射时,由于第一绝缘膜203和透光性电极202之间的界面、透光性电极202和绝缘体层叠膜207之间的界面、低折射率层208和高折射率层209之间的界面的反射,位于R象素、G象素、B象素的各发光峰值波长±20nm内的一个波长的反射率比该发光峰值波长±50nm内的其他波长的反射率还低。因此,关于实施例1和实施例2,取得上述的效果。可以没有第一绝缘膜203。Moreover, the thickness of each layer was determined similarly to Example 1 or Example 2. In the obtained inorganic EL device, if the light-emitting
<电子机器><electronic equipment>
下面参照图18说明具有本发明的EL装置的各种电子机器。图18(a)是表示移动电话一例的立体图。在图18(a)中,符号600表示移动电话主体,符号601表示使用所述任意的EL装置的显示部。图18(b)是表示字处理器、个人电脑等便携式信息处理装置的一例的立体图。在图18(b)中,符号700是信息处理装置,符号701表示键盘等输入部,符号703表示信息处理装置主体,符号702表示使用所述任意的EL装置的显示部。在图18(c)中,符号800表示手表主体,符号801表示使用所述任意的EL装置的显示部。Next, various electronic appliances having the EL device of the present invention will be described with reference to FIG. 18. FIG. Fig. 18(a) is a perspective view showing an example of a mobile phone. In FIG. 18( a ),
图18(a)~(c)所示的各电子机器把所述任意的EL装置作为显示部具有,能实现色纯度高的现实。Each electronic device shown in FIGS. 18( a ) to ( c ) has any of the above-mentioned EL devices as a display unit, and can achieve high color purity.
Claims (6)
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004336990 | 2004-11-22 | ||
JP2004-336990 | 2004-11-22 | ||
JP2004336990 | 2004-11-22 | ||
JP2005-257551 | 2005-09-06 | ||
JP2005257551 | 2005-09-06 | ||
JP2005257551A JP4525536B2 (en) | 2004-11-22 | 2005-09-06 | EL device and electronic apparatus |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB2005101248931A Division CN100488331C (en) | 2004-11-22 | 2005-11-22 | Electroluminescent device and electronic apparatus |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101350361A CN101350361A (en) | 2009-01-21 |
CN101350361B true CN101350361B (en) | 2011-06-15 |
Family
ID=36770569
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB2005101248931A Expired - Fee Related CN100488331C (en) | 2004-11-22 | 2005-11-22 | Electroluminescent device and electronic apparatus |
CN2008102148544A Expired - Fee Related CN101350361B (en) | 2004-11-22 | 2005-11-22 | Electro-luminescence device and electronic apparatus |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB2005101248931A Expired - Fee Related CN100488331C (en) | 2004-11-22 | 2005-11-22 | Electroluminescent device and electronic apparatus |
Country Status (1)
Country | Link |
---|---|
CN (2) | CN100488331C (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103839962A (en) * | 2012-11-20 | 2014-06-04 | 三星显示有限公司 | Organic light-emitting display apparatus and manufacturing method thereof |
CN110741428A (en) * | 2018-02-28 | 2020-01-31 | 京瓷株式会社 | Display device, glass substrate, and manufacturing method of glass substrate |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101047463B (en) * | 2006-10-25 | 2012-05-23 | 浙江大学 | Multi-channel wavelength space decomplex film device based on two-end thickness decreasing structure |
US8339033B2 (en) * | 2009-06-11 | 2012-12-25 | Pioneer Corporation | Light emitting element and display device |
CN102693995B (en) * | 2012-06-20 | 2015-06-03 | 中国科学院上海高等研究院 | Image Sensor |
JP2014072120A (en) * | 2012-10-01 | 2014-04-21 | Seiko Epson Corp | Organic el device, method for manufacturing organic el device, and electronic apparatus |
KR102180708B1 (en) * | 2013-12-16 | 2020-11-23 | 삼성디스플레이 주식회사 | Organic electroluminescent display and method of manufacturing the same |
CN104538430B (en) * | 2014-12-30 | 2017-10-13 | 北京维信诺科技有限公司 | A kind of organic light-emitting display device and preparation method thereof |
KR102373436B1 (en) * | 2015-03-30 | 2022-03-14 | 삼성디스플레이 주식회사 | Displya apparatus, manufacturing apparatus for the same and manufacturing method for the same |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1168012A (en) * | 1996-06-07 | 1997-12-17 | 中国科学院上海光学精密机械研究所 | Phase film of femtosecond laser |
CN1270326A (en) * | 1999-04-12 | 2000-10-18 | 松下电器产业株式会社 | Reflective color liquid crystal display unit |
CN1367938A (en) * | 1999-06-02 | 2002-09-04 | 精工爱普生株式会社 | Multiple wavelength light emitting device, electronic apparatus, and interference mirror |
-
2005
- 2005-11-22 CN CNB2005101248931A patent/CN100488331C/en not_active Expired - Fee Related
- 2005-11-22 CN CN2008102148544A patent/CN101350361B/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1168012A (en) * | 1996-06-07 | 1997-12-17 | 中国科学院上海光学精密机械研究所 | Phase film of femtosecond laser |
CN1270326A (en) * | 1999-04-12 | 2000-10-18 | 松下电器产业株式会社 | Reflective color liquid crystal display unit |
CN1367938A (en) * | 1999-06-02 | 2002-09-04 | 精工爱普生株式会社 | Multiple wavelength light emitting device, electronic apparatus, and interference mirror |
Non-Patent Citations (1)
Title |
---|
JP特开平6-132081A 1994.05.13 |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103839962A (en) * | 2012-11-20 | 2014-06-04 | 三星显示有限公司 | Organic light-emitting display apparatus and manufacturing method thereof |
CN103839962B (en) * | 2012-11-20 | 2019-06-21 | 三星显示有限公司 | Organic light-emitting display device and method of manufacturing the same |
CN110741428A (en) * | 2018-02-28 | 2020-01-31 | 京瓷株式会社 | Display device, glass substrate, and manufacturing method of glass substrate |
CN110741428B (en) * | 2018-02-28 | 2021-12-21 | 京瓷株式会社 | Display device, glass substrate, and method for manufacturing glass substrate |
Also Published As
Publication number | Publication date |
---|---|
CN1780511A (en) | 2006-05-31 |
CN101350361A (en) | 2009-01-21 |
CN100488331C (en) | 2009-05-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4525536B2 (en) | EL device and electronic apparatus | |
CN107689423B (en) | Organic light emitting diode display device | |
TWI392128B (en) | Organic light-emitting device, method of fabricating the same, and array comprising a plurality of organic light-emitting devices | |
CN102077386B (en) | Light emitting display apparatus | |
KR101941661B1 (en) | Organic light emitting diode device and manufacturing method thereof | |
JP4431125B2 (en) | Flat panel display device and manufacturing method thereof | |
TWI699022B (en) | Light-emitting device, display apparatus, and illumination apparatus | |
KR20180005772A (en) | Organic light emitting diode display | |
US8188500B2 (en) | Organic light-emitting element and light-emitting device using the same | |
WO2016031679A1 (en) | Organic electroluminesence apparatus, manufacutring method for same, illumination apparatus, and display apparatus | |
KR101754787B1 (en) | Organic light emitting diodes and stereoscopic display device using the same | |
WO2017043242A1 (en) | Organic electroluminescence device, lighting device and display device | |
JP2013077383A (en) | Display device | |
KR20140014682A (en) | Organic light emitting diode device and manufacturing method thereof | |
KR101735885B1 (en) | Light emitting element, display apparatus, and lighting apparatus | |
JP4832781B2 (en) | Organic electroluminescence display device | |
JP2019061927A (en) | Display device | |
CN101350361B (en) | Electro-luminescence device and electronic apparatus | |
KR101591332B1 (en) | Organic electro-luminescence device | |
JP2019536192A (en) | Top emission type OLED display substrate, top emission type OLED display device, and manufacturing method of top emission type OLED display substrate | |
JP2013058446A (en) | Display device | |
JP2008091223A (en) | Display device | |
KR102469294B1 (en) | Organic light emitting display device | |
KR102113609B1 (en) | Organic light emitting display and manufactucring method of the same | |
WO2021176539A1 (en) | Display device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20110615 Termination date: 20151122 |
|
EXPY | Termination of patent right or utility model |