CN101349810B - Optical axis positioning device for liquid lens - Google Patents
Optical axis positioning device for liquid lens Download PDFInfo
- Publication number
- CN101349810B CN101349810B CN2007101391799A CN200710139179A CN101349810B CN 101349810 B CN101349810 B CN 101349810B CN 2007101391799 A CN2007101391799 A CN 2007101391799A CN 200710139179 A CN200710139179 A CN 200710139179A CN 101349810 B CN101349810 B CN 101349810B
- Authority
- CN
- China
- Prior art keywords
- liquid
- lens
- optical axis
- axis positioning
- encapsulation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Mechanical Light Control Or Optical Switches (AREA)
- Lens Barrels (AREA)
Abstract
Description
技术领域technical field
本发明涉及一种光轴定位装置,特别涉及一种用于一液体透镜的光轴定位装置(optical axis orientating device)。The present invention relates to an optical axis orientating device, in particular to an optical axis orientating device for a liquid lens.
背景技术Background technique
一般而言,液体透镜指可以调变焦距(focal length)的透镜。在光学系统中,可变焦的镜头大致区分为机械式变焦和电子式变焦两种。机械式变焦的镜头利用镜头本身前后伸缩的变化来达到变焦的目的。由于对越来越轻薄短小的数字相机或具拍照功能的手机来说,机械式变焦的镜头太厚、体积太大,许多轻薄型相机采用电子式变焦的镜头。Generally speaking, a liquid lens refers to a lens whose focal length can be adjusted. In the optical system, zoom lenses are roughly divided into two types: mechanical zoom and electronic zoom. The mechanical zoom lens uses the change of the front and rear expansion and contraction of the lens itself to achieve the purpose of zooming. Because the lens of mechanical zoom is too thick and bulky for increasingly thinner and smaller digital cameras or mobile phones with camera functions, many thin and light cameras use electronic zoom lenses.
在现有技术中,电子式变焦技术能够以液珠(droplet)为镜片,并利用电湿润效应(electro-wetting)等机制控制液珠的形状和曲率,借此改变液珠的焦距。然而,若未将液珠的位置加以固定,液珠的光轴(optical axis)可能会左右偏移,造成该透镜无法准确对焦。In the prior art, the electronic zoom technology can use the droplet as a lens, and use mechanisms such as electro-wetting to control the shape and curvature of the droplet, thereby changing the focal length of the droplet. However, if the position of the liquid bead is not fixed, the optical axis of the liquid bead may shift left and right, causing the lens to fail to focus accurately.
现有的用以固定液珠的方法之一,如同图1所示,将液珠12放置在钟型立体结构14的凹陷处,令液珠12不能滚动。另一种固定液珠的方法,则如图2所示,将液珠22放置在一液体舱(fluid chamber)20中,再置入另一种用以辅助固定液珠22的液体24。由于两种液体不会互相混合,表面张力平衡后即达到如图2所示的弧面交界。One of the existing methods for fixing the liquid beads, as shown in FIG. 1 , is to place the
上述现有技术的缺点都是在于硬件的制作方式太复杂、制作费用太昂贵。The disadvantages of the above-mentioned prior art are that the manufacturing method of the hardware is too complicated and the manufacturing cost is too expensive.
发明内容Contents of the invention
本发明的目的是提供一种用于一液体透镜的光轴定位装置,以解决上述问题。该液体透镜包含一封装液(sealing liquid)以及一透镜液(lens liquid)。在本发明的一较佳实施例中,该光轴定位装置包含一透明的基材(substrate)、一对称的电极结构(electrode structure)以及一透明的绝缘层(insulating layer)。The object of the present invention is to provide an optical axis positioning device for a liquid lens to solve the above problems. The liquid lens includes a sealing liquid and a lens liquid. In a preferred embodiment of the present invention, the optical axis positioning device includes a transparent substrate, a symmetrical electrode structure and a transparent insulating layer.
该透明的基材具有一上表面。该电极结构形成于该基材的该上表面上。该电极结构能够供应一电场并且其本身定义一电极中心轴(central axis)。该绝缘层形成于该基材的该上表面上并且覆盖该电极结构。进一步,该绝缘层其本身提供一光轴定位结构,该光轴定位结构环绕地对称于该电极中心轴。其中,该透镜液安置在该光轴定位结构上。此外,该封装液填满该液体透镜并且包覆该透镜液。借此,在该电极结构没有提供该电场的情况下,该液体透镜的一光轴与该电极中心轴大致共轴。The transparent substrate has an upper surface. The electrode structure is formed on the upper surface of the substrate. The electrode structure is capable of supplying an electric field and itself defines an electrode central axis. The insulating layer is formed on the upper surface of the substrate and covers the electrode structure. Further, the insulating layer itself provides an optical axis positioning structure, and the optical axis positioning structure is circumferentially symmetrical to the central axis of the electrode. Wherein, the lens liquid is placed on the optical axis positioning structure. In addition, the encapsulation fluid fills the liquid lens and coats the lens fluid. Thereby, when the electrode structure does not provide the electric field, an optical axis of the liquid lens is substantially coaxial with the central axis of the electrode.
本发明的另一较佳实施例为一液体透镜。该液体透镜包含一舱体(chamber)、一对称的电极结构、一透明的绝缘层、一透镜液,以及一封装液。该舱体包含具有一上表面的一透明的基材,该基材位于该舱体内。该电极结构形成于该基材的该上表面上。该电极结构能够供应一电场并且其本身定义一电极中心轴。该绝缘层形成于该基材的该上表面上并且覆盖该电极结构。进一步,该绝缘层其本身提供一光轴定位结构,该光轴定位结构环绕地对称于该电极中心轴。该透镜液安置在该光轴定位结构上。该封装液填满该舱体并且包覆该透镜液。借此,在该电极结构没有提供该电场的情况下,该液体透镜的一光轴与该电极中心轴大致共轴。此外,通过该电极结构所提供的该电场,该透镜液的一曲率能够被调整。Another preferred embodiment of the present invention is a liquid lens. The liquid lens includes a chamber, a symmetrical electrode structure, a transparent insulating layer, a lens liquid, and an encapsulation liquid. The cabin includes a transparent base material with an upper surface, and the base material is located in the cabin. The electrode structure is formed on the upper surface of the substrate. The electrode structure is capable of supplying an electric field and itself defines an electrode central axis. The insulating layer is formed on the upper surface of the substrate and covers the electrode structure. Further, the insulating layer itself provides an optical axis positioning structure, and the optical axis positioning structure is circumferentially symmetrical to the central axis of the electrode. The lens liquid is arranged on the optical axis positioning structure. The encapsulating liquid fills the capsule and covers the lens liquid. Thereby, when the electrode structure does not provide the electric field, an optical axis of the liquid lens is substantially coaxial with the central axis of the electrode. In addition, through the electric field provided by the electrode structure, a curvature of the lens fluid can be adjusted.
相较于现有技术,本发明的用于一液体透镜内的光轴定位装置能够有效地定位光轴。由于本发明的光轴定位装置及液体透镜的架构及实现方式都较现有技术简单,因此可节省制作硬件的成本。此外,从技术上的观点来看,本发明的光轴定位装置还可以应用在其它不同操作原理的液体透镜。Compared with the prior art, the optical axis positioning device used in a liquid lens of the present invention can effectively position the optical axis. Since the structure and implementation of the optical axis positioning device and the liquid lens of the present invention are simpler than those of the prior art, the cost of manufacturing hardware can be saved. In addition, from a technical point of view, the optical axis positioning device of the present invention can also be applied to other liquid lenses with different operating principles.
附图说明Description of drawings
为了让本发明的上述和其它目的、特征和优点能更明显易懂,下面将结合附图对本发明的较佳实施例详细说明:In order to make the above-mentioned and other purposes, features and advantages of the present invention more obvious and understandable, preferred embodiments of the present invention will be described in detail below in conjunction with the accompanying drawings:
图1与图2分别是现有技术中用以固定液珠的方法;Fig. 1 and Fig. 2 are respectively the method for fixing liquid beads in the prior art;
图3是本发明的一较佳实施例的液体透镜的示意图,并且图中的光轴定位结构是一平台;Fig. 3 is a schematic diagram of a liquid lens in a preferred embodiment of the present invention, and the optical axis positioning structure in the figure is a platform;
图4A至图4D是可能的光轴定位结构的上视图;4A to 4D are top views of possible optical axis positioning structures;
图5是本发明的另一较佳实施例的液体透镜的示意图,并且图中的光轴定位结构是一凹陷区域;以及5 is a schematic diagram of a liquid lens according to another preferred embodiment of the present invention, and the optical axis positioning structure in the figure is a concave region; and
图6是本发明的一较佳实施例的液体透镜及不具有光轴定位结构的液体透镜,进行光轴偏移角度测试所得的图形。FIG. 6 is a graph obtained by performing an optical axis deviation angle test on a liquid lens and a liquid lens without an optical axis positioning structure according to a preferred embodiment of the present invention.
具体实施方式Detailed ways
请参阅图3,图3是本发明的一较佳实施例的用于一液体透镜300内的一光轴定位装置302的示意图。该液体透镜300包含一封装液308以及一透镜液306。Please refer to FIG. 3 . FIG. 3 is a schematic diagram of an optical
在一实施例中,该封装液308以及该透镜液306可以是不互溶的(immiscible)且不具导电性,并且该透镜液306的一密度大致上与该封装液308的一密度相等,以忽□液体间重□的影响,而成功地达到液体透镜的定型。In one embodiment, the
该封装液308可以是一第一介电液体,并且该透镜液306可以是一第二介电液体。举例而言,该第一介电液体可以是一光学油(optical oil),并且该第二介电液体可以是数种多元醇(polyhydric alcohols)的一混合物。由于封装液308(即光学油)的折射率较大,故这种组合的液体透镜300能作为一凹透镜。或者,该第一介电液体可以是数种多元醇的一混合物,并且该第二介电液体可以是该光学油。由于封装液308(即数种多元醇的一混合物)的折射率较小,故这种组合的液体透镜300能作为一凸透镜。The
在另一实施例中,该封装液308及该透镜液306其中之一可以具有导电性。同样地,该封装液308以及该透镜液306不互溶,并且该透镜液306的一密度与该封装液308的一密度大致相等。In another embodiment, one of the
如图3所示,该光轴定位装置302包含一透明的基材3020、一对称的电极结构3022以及一透明的绝缘层3024。该透明的基材3020具有一上表面。该电极结构3022形成于该基材3020的该上表面上。该电极结构3022能够供应一电场并且其本身定义一电极中心轴302A,该透明的绝缘层3024也以该电极中心轴302A作为其中心轴。As shown in FIG. 3 , the optical
在一实施例中,该电极结构3022可以形成数个同心圆的一形式。In one embodiment, the
该绝缘层3024形成于该基材3020的该上表面上并且覆盖该电极结构3022。进一步,该绝缘层3024其本身提供一光轴定位结构,该光轴定位结构环绕地对称于该电极中心轴302A。在实际应用中,该光轴定位结构可以为一平台(platform)或一凹陷区域,并且该光轴定位结构的形态(morphology)可以呈现一圆形或一椭圆形。The insulating
图4A至图4D是可能的光轴定位结构的上视图。如图4A及图4B所示,该平台40的形态可以为一圆形或一椭圆形;如图4C及图4D所示,其中的点状区指该凹陷区域42,而该凹陷区域42的形态也可以为一圆形或一椭圆形。4A to 4D are top views of possible optical axis positioning structures. As shown in Figure 4A and Figure 4B, the shape of the
该透镜液306安置在该光轴定位结构上。此外,该封装液308填满该液体透镜300并且包覆该透镜液306。借此,在该电极结构3022没有提供该电场的情况下,该液体透镜300的一光轴(未图示)与该电极中心轴302A大致共轴。换句话说,该绝缘层3024具有一特定图样(即光轴定位结构),使得该液体透镜300的该光轴与该电极中心轴302A间的一偏移角度或一位移可被忽略。The
请再参阅图3,图3是本发明的另一较佳实施例的一液体透镜的示意图。该液体透镜300包含一透明的基材3020、一对称的电极结构3022、一透明的绝缘层3024、一舱体304、一透镜液306,以及一封装液308。该舱体304包含具有一上表面的一透明的基材3020,该基材3020位于该舱体304内。Please refer to FIG. 3 again. FIG. 3 is a schematic diagram of a liquid lens according to another preferred embodiment of the present invention. The
在一实施例中,该封装液308以及该透镜液306可以是不互溶的(immiscible)且不具导电性,并且该透镜液306的一密度大致上与该封装液308的一密度相等,以忽□液体间重□的影响,而成功地达到液体透镜的定型。In one embodiment, the
该封装液308可以是一第一介电液体,并且该透镜液306可以是一第二介电液体。举例而言,该第一介电液体可以是一光学油(optical oil),并且该第二介电液体可以是数种多元醇(polyhydric alcohols)的一混合物。由于封装液308(即光学油)的折射率较大,故这种组合的液体透镜300能作为一凹透镜。或者,该第一介电液体可以是数种多元醇的一混合物,并且该第二介电液体可以是该光学油。由于封装液308(即数种多元醇的一混合物)的折射率较小,故这种组合的液体透镜300能作为一凸透镜。The
在另一实施例中,该封装液308及该透镜液306其中之一可以具有导电性。同样地,该封装液308以及该透镜液306不互溶,并且该透镜液306的一密度与该封装液308的一密度大致相等。In another embodiment, one of the encapsulating
该电极结构3022形成于该基材3020的该上表面上。该电极结构3022能够供应一电场并且其本身定义一电极中心轴302A,该透明的绝缘层3024也以该电极中心轴302A作为其中心轴。The
在一实施例中,该电极结构3022可以形成数个同心圆的一形式。In one embodiment, the
该绝缘层3024形成于该基材3020的该上表面上并且覆盖该电极结构3022。进一步,该绝缘层3024其本身提供一光轴定位结构,该光轴定位结构环绕地对称于该电极中心轴302A。在实际应用中,该光轴定位结构可以为一平台或一凹陷区域并且该光轴定位结构的形态可以呈现一圆形或一椭圆形。The insulating
图4A至图4D是可能的光轴定位结构的上视图。如图4A及图4B所示,该平台40的形态可以为一圆形或一椭圆形;如图4C及图4D所示,其中的点状区指该凹陷区域42,而该凹陷区域42的形态也可以为一圆形或一椭圆形。4A to 4D are top views of possible optical axis positioning structures. As shown in Figure 4A and Figure 4B, the shape of the
该透镜液306安置在该光轴定位结构上。该封装液308填满该舱体304并且包覆该透镜液306。借此,在该电极结构3022没有提供该电场的情况下,该液体透镜300的一光轴与该电极中心轴302A大致共轴。并且,通过该电极结构3022所提供的该电场,该透镜液306的一曲率能够被调整。换句话说,该透镜液306的一接触角(contact angle)为可调整的,以达到改变该液体透镜300的焦距的效果。The
图5是本发明的另一较佳实施例的一液体透镜的示意图,其与图3大体上相同,故在此不再赘述,只是此处的光轴定位结构的形态呈现一凹陷区域。FIG. 5 is a schematic diagram of a liquid lens according to another preferred embodiment of the present invention, which is substantially the same as FIG. 3 , so it will not be repeated here, except that the shape of the optical axis positioning structure here presents a concave region.
请参阅图6,图6是本发明的一较佳实施例的液体透镜及不具有光轴定位结构的液体透镜,进行光轴偏移角度测试所得的图形。图中的横轴代表施加至该电极结构的外加电压,致使该电极结构能够供应一电场;纵轴代表液体透镜的光轴的偏移角度。菱形标记的曲线代表无光轴定位结构的液体透镜,而三角标记及圆形标记的曲线则分别代表本发明的具有一圆形平台的光轴定位结构及具有一圆形凹陷区域的光轴定位结构的液体透镜。如图6所示,在供应的电压范围内,本发明的液体透镜都具有一较小的光轴偏移角度。特别地,在该电极结构没有提供该电场的情况下,本发明的液体透镜的一光轴与该电极中心轴间的一偏移角度或一位移可被忽略。换句话说,该液体透镜的该光轴与该电极中心轴大致上共轴。Please refer to FIG. 6 . FIG. 6 is a graph obtained by testing an optical axis deviation angle of a liquid lens according to a preferred embodiment of the present invention and a liquid lens without an optical axis positioning structure. The horizontal axis in the figure represents the external voltage applied to the electrode structure, so that the electrode structure can supply an electric field; the vertical axis represents the deviation angle of the optical axis of the liquid lens. The curve of rhombus mark represents the liquid lens without optical axis positioning structure, while the curve of triangular mark and circular mark represents the optical axis positioning structure with a circular platform and the optical axis positioning with a circular concave area of the present invention respectively. Structured liquid lenses. As shown in FIG. 6, within the range of supplied voltage, the liquid lens of the present invention has a small optical axis deviation angle. In particular, in the case where the electrode structure does not provide the electric field, an offset angle or a displacement between an optical axis of the liquid lens of the present invention and the central axis of the electrode can be ignored. In other words, the optical axis of the liquid lens is substantially coaxial with the central axis of the electrode.
相较于现有技术,本发明的用于一液体透镜内的光轴定位装置能够有效地定位光轴。由于本发明的光轴定位装置及液体透镜的架构及实现方式都较现有技术简单,因此可节省制作硬件的成本。此外,从技术上的观点来看,本发明非光轴定位装置还可以应用在其它不同操作原理的液体透镜,例如应用电湿润效应的液体透镜等。Compared with the prior art, the optical axis positioning device used in a liquid lens of the present invention can effectively position the optical axis. Since the structure and implementation of the optical axis positioning device and the liquid lens of the present invention are simpler than those of the prior art, the cost of manufacturing hardware can be saved. In addition, from a technical point of view, the non-optical axis positioning device of the present invention can also be applied to other liquid lenses with different operating principles, such as liquid lenses using electrowetting effect.
以上已对本发明的较佳实施例进行了具体说明,但本发明并不限于所述实施例,熟悉本领域的技术人员在不违背本发明精神的前提下还可作出种种的等同的变型或替换,这些等同的变型或替换均包含在本申请权利要求所限定的范围内。The preferred embodiments of the present invention have been described in detail above, but the present invention is not limited to the described embodiments, and those skilled in the art can also make various equivalent modifications or replacements without departing from the spirit of the present invention. , these equivalent modifications or replacements are all included within the scope defined by the claims of the present application.
Claims (16)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2007101391799A CN101349810B (en) | 2007-07-20 | 2007-07-20 | Optical axis positioning device for liquid lens |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2007101391799A CN101349810B (en) | 2007-07-20 | 2007-07-20 | Optical axis positioning device for liquid lens |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101349810A CN101349810A (en) | 2009-01-21 |
CN101349810B true CN101349810B (en) | 2011-02-16 |
Family
ID=40268652
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2007101391799A Active CN101349810B (en) | 2007-07-20 | 2007-07-20 | Optical axis positioning device for liquid lens |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101349810B (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI447423B (en) * | 2011-10-17 | 2014-08-01 | Nat Univ Tsing Hua | Liquid combination for dielectric liquid lens |
CN104360474B (en) * | 2014-11-12 | 2017-05-17 | 西南科技大学 | Electrically-controlled non-diffracting beam forming device based on electrowetting effect and control method thereof |
CN110226124B (en) * | 2016-12-09 | 2022-08-02 | Lg伊诺特有限公司 | Camera module, optical device and method of driving liquid lens |
CN108663731A (en) * | 2018-04-24 | 2018-10-16 | 天津大学 | The making of dielectrophoretic force liquid zoom lens and focal-length measurement method |
-
2007
- 2007-07-20 CN CN2007101391799A patent/CN101349810B/en active Active
Also Published As
Publication number | Publication date |
---|---|
CN101349810A (en) | 2009-01-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9523797B2 (en) | Microlens array film and display device including the same | |
Zhou et al. | Fabrication of large-scale microlens arrays based on screen printing for integral imaging 3D display | |
JP4770510B2 (en) | Optical element and manufacturing method thereof | |
KR102062255B1 (en) | Microlens array and method for fabricating thereof | |
JP4746025B2 (en) | Optical axis alignment device for liquid lens | |
TW200912387A (en) | Electrowetting device with polymer electrode | |
US20080144192A1 (en) | Optical component and method of manufacturing the same | |
US20090147372A1 (en) | Liquid lens group | |
KR100847804B1 (en) | Liquid lens and a method for producing the same | |
TWI269889B (en) | Tunable micro-aspheric lens, and manufacturing method thereof | |
CN101349810B (en) | Optical axis positioning device for liquid lens | |
CN101261347A (en) | Camera module group and method of manufacture | |
CN110441903A (en) | Zoom optics element | |
JP2011150329A (en) | Liquid lens | |
KR101239151B1 (en) | Variable liquid lens | |
KR102723001B1 (en) | Liquid lens, camera module and optical device/instrument including the same | |
An et al. | Spherically encapsulated variable liquid lens on coplanar electrodes | |
KR101175929B1 (en) | Variable liquid lens | |
CN111854635B (en) | An Aspheric Surface Detection Method Based on Liquid Lens | |
KR102702928B1 (en) | Liquid lens, camera module and optical device/instrument including the same | |
CN101793985A (en) | deformable lens | |
CN105590938B (en) | Image sensor device having cell layers of different widths and related methods | |
CN114815016A (en) | Liquid lens and preparation method thereof | |
TW202004381A (en) | Electrowetting devices | |
CN114740555B (en) | A multifunctional liquid lens with adjustable surface shape and aperture |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |