CN101342496B - Preparation method of zirconium silicon molecular sieve catalytic active film - Google Patents
Preparation method of zirconium silicon molecular sieve catalytic active film Download PDFInfo
- Publication number
- CN101342496B CN101342496B CN2008101507164A CN200810150716A CN101342496B CN 101342496 B CN101342496 B CN 101342496B CN 2008101507164 A CN2008101507164 A CN 2008101507164A CN 200810150716 A CN200810150716 A CN 200810150716A CN 101342496 B CN101342496 B CN 101342496B
- Authority
- CN
- China
- Prior art keywords
- molecular sieve
- zirconium
- preparation
- silicon molecular
- catalytic active
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000002808 molecular sieve Substances 0.000 title claims abstract description 116
- URGAHOPLAPQHLN-UHFFFAOYSA-N sodium aluminosilicate Chemical compound [Na+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O URGAHOPLAPQHLN-UHFFFAOYSA-N 0.000 title claims abstract description 116
- 230000003197 catalytic effect Effects 0.000 title claims abstract description 46
- 238000002360 preparation method Methods 0.000 title claims abstract description 26
- UVGLBOPDEUYYCS-UHFFFAOYSA-N silicon zirconium Chemical compound [Si].[Zr] UVGLBOPDEUYYCS-UHFFFAOYSA-N 0.000 title claims description 64
- 238000000034 method Methods 0.000 claims abstract description 33
- 239000002243 precursor Substances 0.000 claims abstract description 22
- 238000005216 hydrothermal crystallization Methods 0.000 claims abstract description 12
- 239000012528 membrane Substances 0.000 claims description 95
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 26
- KZHJGOXRZJKJNY-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Si]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O KZHJGOXRZJKJNY-UHFFFAOYSA-N 0.000 claims description 23
- 229910052863 mullite Inorganic materials 0.000 claims description 23
- 238000001035 drying Methods 0.000 claims description 14
- LPSKDVINWQNWFE-UHFFFAOYSA-M tetrapropylazanium;hydroxide Chemical compound [OH-].CCC[N+](CCC)(CCC)CCC LPSKDVINWQNWFE-UHFFFAOYSA-M 0.000 claims description 13
- 238000005485 electric heating Methods 0.000 claims description 11
- -1 tetraethyl orthosilicate ester Chemical class 0.000 claims description 10
- 238000002425 crystallisation Methods 0.000 claims description 9
- 230000008025 crystallization Effects 0.000 claims description 9
- 239000011148 porous material Substances 0.000 claims description 8
- 230000003068 static effect Effects 0.000 claims description 8
- 239000003795 chemical substances by application Substances 0.000 claims description 6
- 238000012545 processing Methods 0.000 claims description 5
- 238000003756 stirring Methods 0.000 claims description 5
- 238000003618 dip coating Methods 0.000 claims description 3
- 238000001816 cooling Methods 0.000 claims description 2
- 230000015572 biosynthetic process Effects 0.000 claims 4
- 238000003786 synthesis reaction Methods 0.000 claims 4
- 206010013786 Dry skin Diseases 0.000 claims 3
- BSDOQSMQCZQLDV-UHFFFAOYSA-N butan-1-olate;zirconium(4+) Chemical compound [Zr+4].CCCC[O-].CCCC[O-].CCCC[O-].CCCC[O-] BSDOQSMQCZQLDV-UHFFFAOYSA-N 0.000 claims 3
- 239000004809 Teflon Substances 0.000 claims 2
- 229920006362 Teflon® Polymers 0.000 claims 2
- 239000004576 sand Substances 0.000 claims 2
- 238000002156 mixing Methods 0.000 claims 1
- 238000010792 warming Methods 0.000 claims 1
- 238000005406 washing Methods 0.000 claims 1
- 238000006243 chemical reaction Methods 0.000 abstract description 51
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 abstract description 16
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 abstract description 16
- 238000007254 oxidation reaction Methods 0.000 abstract description 14
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 abstract description 9
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical compound ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 abstract description 8
- 150000001336 alkenes Chemical class 0.000 abstract description 8
- 229910052726 zirconium Inorganic materials 0.000 abstract description 8
- 238000006735 epoxidation reaction Methods 0.000 abstract description 5
- 230000004907 flux Effects 0.000 abstract description 5
- 238000006555 catalytic reaction Methods 0.000 abstract description 4
- 230000003647 oxidation Effects 0.000 abstract description 4
- 229910052799 carbon Inorganic materials 0.000 abstract description 3
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 abstract description 3
- 238000002474 experimental method Methods 0.000 abstract description 2
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 abstract 1
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 21
- 239000003054 catalyst Substances 0.000 description 12
- 238000001027 hydrothermal synthesis Methods 0.000 description 12
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 description 10
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 9
- SKFIUGUKJUULEM-UHFFFAOYSA-N butan-1-ol;zirconium Chemical compound [Zr].CCCCO SKFIUGUKJUULEM-UHFFFAOYSA-N 0.000 description 8
- 239000000047 product Substances 0.000 description 8
- 239000000243 solution Substances 0.000 description 8
- 239000000919 ceramic Substances 0.000 description 7
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 7
- 239000004810 polytetrafluoroethylene Substances 0.000 description 7
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 6
- 239000000376 reactant Substances 0.000 description 6
- 238000012360 testing method Methods 0.000 description 6
- 101100204059 Caenorhabditis elegans trap-2 gene Proteins 0.000 description 5
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 5
- 238000002441 X-ray diffraction Methods 0.000 description 5
- 239000013078 crystal Substances 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 5
- 238000005373 pervaporation Methods 0.000 description 5
- 239000000843 powder Substances 0.000 description 5
- 239000002994 raw material Substances 0.000 description 5
- 238000005886 esterification reaction Methods 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- 239000000203 mixture Substances 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 238000000926 separation method Methods 0.000 description 3
- WRIDQFICGBMAFQ-UHFFFAOYSA-N (E)-8-Octadecenoic acid Natural products CCCCCCCCCC=CCCCCCCC(O)=O WRIDQFICGBMAFQ-UHFFFAOYSA-N 0.000 description 2
- LQJBNNIYVWPHFW-UHFFFAOYSA-N 20:1omega9c fatty acid Natural products CCCCCCCCCCC=CCCCCCCCC(O)=O LQJBNNIYVWPHFW-UHFFFAOYSA-N 0.000 description 2
- QSBYPNXLFMSGKH-UHFFFAOYSA-N 9-Heptadecensaeure Natural products CCCCCCCC=CCCCCCCCC(O)=O QSBYPNXLFMSGKH-UHFFFAOYSA-N 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- LCGLNKUTAGEVQW-UHFFFAOYSA-N Dimethyl ether Chemical compound COC LCGLNKUTAGEVQW-UHFFFAOYSA-N 0.000 description 2
- 239000005642 Oleic acid Substances 0.000 description 2
- ZQPPMHVWECSIRJ-UHFFFAOYSA-N Oleic acid Natural products CCCCCCCCC=CCCCCCCCC(O)=O ZQPPMHVWECSIRJ-UHFFFAOYSA-N 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 150000001298 alcohols Chemical class 0.000 description 2
- 239000007810 chemical reaction solvent Substances 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 208000012839 conversion disease Diseases 0.000 description 2
- XUCNUKMRBVNAPB-UHFFFAOYSA-N fluoroethene Chemical compound FC=C XUCNUKMRBVNAPB-UHFFFAOYSA-N 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 238000002329 infrared spectrum Methods 0.000 description 2
- 239000013067 intermediate product Substances 0.000 description 2
- QXJSBBXBKPUZAA-UHFFFAOYSA-N isooleic acid Natural products CCCCCCCC=CCCCCCCCCC(O)=O QXJSBBXBKPUZAA-UHFFFAOYSA-N 0.000 description 2
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- IJDNQMDRQITEOD-UHFFFAOYSA-N n-butane Chemical compound CCCC IJDNQMDRQITEOD-UHFFFAOYSA-N 0.000 description 2
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(O)=O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 description 2
- 239000007800 oxidant agent Substances 0.000 description 2
- 230000001590 oxidative effect Effects 0.000 description 2
- 238000004806 packaging method and process Methods 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 238000001878 scanning electron micrograph Methods 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 238000005033 Fourier transform infrared spectroscopy Methods 0.000 description 1
- 229910003849 O-Si Inorganic materials 0.000 description 1
- 229910003872 O—Si Inorganic materials 0.000 description 1
- 229910021536 Zeolite Inorganic materials 0.000 description 1
- 239000003463 adsorbent Substances 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 238000007605 air drying Methods 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 229910052593 corundum Inorganic materials 0.000 description 1
- 230000009849 deactivation Effects 0.000 description 1
- 238000006356 dehydrogenation reaction Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000012847 fine chemical Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000004817 gas chromatography Methods 0.000 description 1
- XLYOFNOQVPJJNP-ZSJDYOACSA-N heavy water Substances [2H]O[2H] XLYOFNOQVPJJNP-ZSJDYOACSA-N 0.000 description 1
- 239000002815 homogeneous catalyst Substances 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 239000004310 lactic acid Substances 0.000 description 1
- 235000014655 lactic acid Nutrition 0.000 description 1
- FPYJFEHAWHCUMM-UHFFFAOYSA-N maleic anhydride Chemical compound O=C1OC(=O)C=C1 FPYJFEHAWHCUMM-UHFFFAOYSA-N 0.000 description 1
- 239000003345 natural gas Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000012188 paraffin wax Substances 0.000 description 1
- 239000012466 permeate Substances 0.000 description 1
- 238000010992 reflux Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
- 229910001845 yogo sapphire Inorganic materials 0.000 description 1
- 239000010457 zeolite Substances 0.000 description 1
- GFQYVLUOOAAOGM-UHFFFAOYSA-N zirconium(iv) silicate Chemical compound [Zr+4].[O-][Si]([O-])([O-])[O-] GFQYVLUOOAAOGM-UHFFFAOYSA-N 0.000 description 1
Images
Landscapes
- Catalysts (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
- Silicates, Zeolites, And Molecular Sieves (AREA)
Abstract
Description
技术领域technical field
本发明属于无机膜材料技术领域,具体涉及到锆硅分子筛膜。The invention belongs to the technical field of inorganic membrane materials, and in particular relates to zirconium-silicon molecular sieve membranes.
背景技术Background technique
分子筛具有规整的孔道结构、较大的比表面积和孔体积,已被作为催化材料、气体分离与吸附剂、离子交换剂等,广泛用于石油与天然气加工、精细化工、环保与核废料处理等领域。与均相催化剂相比,分子筛固体作催化剂,催化效率高,水热稳定性好,可回收重复利用。但是,由于分子筛催化剂尺寸很小,多是纳米级粉末,存在难回收、易失活和聚集等缺点,在实际应用中由于过高的压降,沸石分子筛粉体在催化反应中应用时不适用于固定床反应器,需要加入粘结剂成型制成具有一定机械强度和形状的颗粒以适应各种应用。另外,对于有些连锁反应,要得到中间产物,反应比较难以控制。而将纳米级分子筛催化剂固定在多孔管状或多孔平板上制成致密的晶体膜,不但可以解决催化剂回收的问题,还可以避免深度反应,而且可结合膜分离的特点,对产物和反应物进行分离。从而极大地降低了生产成本,简化了生产工艺。目前,膜反应器比传统的填充床反应器具有产品收率高、选择性好和副产物少的特点。Molecular sieves have a regular pore structure, large specific surface area and pore volume, and have been used as catalytic materials, gas separation and adsorbents, ion exchangers, etc., and are widely used in oil and natural gas processing, fine chemicals, environmental protection and nuclear waste treatment, etc. field. Compared with homogeneous catalysts, molecular sieve solids are used as catalysts, which have high catalytic efficiency, good hydrothermal stability, and can be recycled and reused. However, due to the small size of molecular sieve catalysts, most of which are nano-scale powders, there are disadvantages such as difficult recovery, easy deactivation and aggregation. In practical applications, due to the high pressure drop, zeolite molecular sieve powders are not suitable for catalytic reactions. In a fixed bed reactor, it is necessary to add a binder to form particles with a certain mechanical strength and shape to suit various applications. In addition, for some chain reactions, it is difficult to control the reaction to obtain intermediate products. However, fixing nano-scale molecular sieve catalysts on porous tubular or porous plates to form dense crystal membranes can not only solve the problem of catalyst recovery, but also avoid deep reactions, and can combine the characteristics of membrane separation to separate products and reactants. . Therefore, the production cost is greatly reduced and the production process is simplified. At present, membrane reactors have the characteristics of higher product yield, better selectivity and less by-products than traditional packed bed reactors.
分子筛膜反应器的种类很多,按分子筛膜在反应中所起的作用来分,可分为催化惰性膜反应器和催化活性膜反应器。目前,研究较多的是催化惰性膜反应器。在这种反应器中,催化剂与分子筛膜是分开的,分子筛膜只有分离功能。此类膜反应器多用于酯化反应和脱氢反应。如,利用膜的高亲水性将酯化反应产生的水选择性除去,从而使这一平衡反应向右进行,提高反应物的转化率。NaA分子筛膜就可有效去除乙醇和油酸,甲醇和油酸,乳酸和乙醇的酯化反应中生成的水。惰性分子筛膜反应器也常用于部分氧化反应中,其主要作用是控制反应物的量。例如,MFI分子筛膜反应器用于正丁烷部分氧化成顺丁烯二酸酐反应中,(VO)2P2O7作催化剂,通过MFI分子筛膜来控制氧气和正丁烷的进样量,大幅提高了反应的转化率和选择性。There are many types of molecular sieve membrane reactors, which can be divided into catalytically inert membrane reactors and catalytically active membrane reactors according to the role played by molecular sieve membranes in the reaction. At present, more researches are on catalytic inert membrane reactors. In this reactor, the catalyst is separated from the molecular sieve membrane, and the molecular sieve membrane has only the separation function. This kind of membrane reactor is mostly used for esterification reaction and dehydrogenation reaction. For example, the high hydrophilicity of the membrane is used to selectively remove the water produced by the esterification reaction, so that this equilibrium reaction can proceed to the right, and the conversion rate of the reactant can be increased. NaA molecular sieve membrane can effectively remove the water generated in the esterification reaction of ethanol and oleic acid, methanol and oleic acid, lactic acid and ethanol. Inert molecular sieve membrane reactors are also commonly used in partial oxidation reactions, where their main role is to control the amount of reactants. For example, the MFI molecular sieve membrane reactor is used in the partial oxidation of n-butane to maleic anhydride, (VO) 2 P 2 O 7 is used as a catalyst, and the injection amount of oxygen and n-butane is controlled through the MFI molecular sieve membrane, which greatly improves conversion and selectivity of the reaction.
由于有些分子筛本身具有催化活性,所制备得分子筛膜可以作为分子筛催化活性膜反应器用于各类催化反应中。近年来,ZSM-5分子筛催化活性膜作为膜反应器被成功应用于甲醇制备烯烃的反应。由于甲醇在ZSM-5分子筛催化剂的催化下,发生的是连锁反应,甲醇→二甲醚→烯烃→石蜡+芳香烃。倘若用传统的ZSM-5分子筛催化剂填充床反应器,由于分子可以反复扩散进催化剂颗粒并与活性中心接触,促使反应一直进行下去,中间产物烯烃的产率低,选择性差。而用ZSM-5分子筛催化活性膜反应器,在膜两侧压力差的驱动下,甲醇在膜层中发生反应,随着膜层深度的不同,生成产物也不同。通过有效调节分子在膜层中的扩散速率,可以高选择性地得到烯烃。在膜的透过侧,烯烃的选择性高达80%~90%,同时甲醇的转化率也高达60%~98%。另一个成功应用分子筛催化活性膜作膜反应器的例子是H-ZSM-5分子筛催化活性膜。H-ZSM-5分子筛催化活性膜被应用于乙醇和乙酸的酯化反应。当乙醇和乙酸分子穿过膜层时,H-ZSM-5分子筛作为催化剂催化此反应快速进行,同时由于H-ZSM-5分子筛膜具有很强的亲水性,可以选择性地将反应中生成的水除去,从而极大地提高了反应的转化率。与传统的H-ZSM-5分子筛填充床反应器和H-ZSM-5分子筛粉末催化剂相比,在H-ZSM-5分子筛膜反应器中乙醇和乙酸的转化率要高得多。Because some molecular sieves have catalytic activity, the prepared molecular sieve membrane can be used as a molecular sieve catalytically active membrane reactor for various catalytic reactions. In recent years, ZSM-5 molecular sieve catalytically active membrane has been successfully used as a membrane reactor in the reaction of methanol to olefins. Because methanol is catalyzed by ZSM-5 molecular sieve catalyst, a chain reaction occurs, methanol → dimethyl ether → olefin → paraffin + aromatic hydrocarbon. If a traditional ZSM-5 molecular sieve catalyst is used in a packed bed reactor, since the molecules can repeatedly diffuse into the catalyst particles and contact the active center, the reaction will continue continuously, and the yield of the intermediate product olefins is low and the selectivity is poor. However, with ZSM-5 molecular sieve catalytic active membrane reactor, under the drive of the pressure difference on both sides of the membrane, methanol reacts in the membrane layer, and the products produced are different with the depth of the membrane layer. Alkenes can be obtained with high selectivity by effectively adjusting the diffusion rate of molecules in the membrane layer. On the permeation side of the membrane, the selectivity of olefins is as high as 80% to 90%, and the conversion rate of methanol is also as high as 60% to 98%. Another example of successfully applying molecular sieve catalytically active membranes as membrane reactors is H-ZSM-5 molecular sieve catalytically active membranes. H-ZSM-5 molecular sieve catalytically active membrane was applied to the esterification reaction of ethanol and acetic acid. When ethanol and acetic acid molecules pass through the membrane layer, H-ZSM-5 molecular sieve acts as a catalyst to catalyze the reaction to proceed rapidly. At the same time, due to the strong hydrophilicity of the H-ZSM-5 molecular sieve membrane, it can selectively generate The water is removed, thereby greatly improving the conversion rate of the reaction. Compared with traditional H-ZSM-5 molecular sieve packed bed reactor and H-ZSM-5 molecular sieve powder catalyst, the conversion rate of ethanol and acetic acid in H-ZSM-5 molecular sieve membrane reactor is much higher.
锆硅分子筛粉末是一种良好的催化剂,可用于选择性催化氧化反应中,然而锆硅分子筛催化活性膜作为膜反应器的应用却未见报道。Zirconium-silicon molecular sieve powder is a good catalyst and can be used in selective catalytic oxidation reactions. However, the application of zirconium-silicon molecular sieve catalytic active membranes as membrane reactors has not been reported.
发明内容Contents of the invention
本发明所要解决的技术问题在于提供一种方法简便、产品成本低、转换率高的锆硅分子筛催化活性膜的制备方法。The technical problem to be solved by the present invention is to provide a method for preparing a zirconium-silicon molecular sieve catalytically active membrane with simple method, low product cost and high conversion rate.
解决上述技术问题所采用的技术方案是它包括下述步骤:The technical solution adopted to solve the problems of the technologies described above is that it comprises the following steps:
一种锆硅分子筛催化活性膜的制备方法,其特征在于它包括下述步骤:A method for preparing a zirconium-silicon molecular sieve catalytically active membrane, characterized in that it comprises the following steps:
(1)载体处理(1) Carrier treatment
将莫来石管或α-Al2O3管载体经砂纸打磨,用功率为200W的超声波频率为40Hz的超声波清洗10分钟,置于1800W的电热恒温鼓风干燥箱中100℃干燥4小时,降至室温,从电热恒温鼓风干燥箱中取出,固定于含有聚四氟乙烯衬里的高压水热合成反应釜中,莫来石管或α-Al2O3管载体的两端用聚四氟乙烯带密封;Grind the mullite tube or α-Al 2 O 3 tube carrier with sandpaper, clean it for 10 minutes with an ultrasonic wave with a power of 200W and a frequency of 40Hz, and place it in a 1800W electric heating constant temperature blast drying oven at 100°C for 4 hours. Cool down to room temperature, take it out of the electric constant temperature blast drying oven, and fix it in a high-pressure hydrothermal synthesis reaction kettle with a polytetrafluoroethylene liner . Vinyl fluoride tape seal;
上述的莫来石管或α-Al2O3管的平均孔径为7μm、孔隙率为50%、外径为12.5mm,壁厚为2mm;The above-mentioned mullite tube or α-Al 2 O 3 tube has an average pore diameter of 7 μm, a porosity of 50%, an outer diameter of 12.5 mm, and a wall thickness of 2 mm;
(2)制备分子筛前体溶胶(2) Preparation of molecular sieve precursor sol
在700转/分钟的转速搅拌下将四乙基正硅酸酯、四丁氧基锆、四丙基氢氧化铵、水按摩尔比为1∶0.01~0.02∶0.20~0.35∶25~55充分混合,制成锆硅分子筛的前体溶胶;Under stirring at a speed of 700 rpm, tetraethylorthosilicate, tetrabutoxyzirconium, tetrapropylammonium hydroxide, and water are mixed in a molar ratio of 1:0.01~0.02:0.20~0.35:25~55 Mix to make the precursor sol of zirconium silicon molecular sieve;
(3)水热晶化(3) Hydrothermal crystallization
将前体溶胶倒入装有莫来石管或α-Al2O3管载体的高压水热合成反应釜后密封,置于预设好温度的电热恒温鼓风干燥箱中静态水热晶化,静态水热晶化的温度为150℃度,晶化时间为80小时;Pour the precursor sol into a high-pressure hydrothermal synthesis reactor equipped with a mullite tube or α-Al 2 O 3 tube carrier, seal it, and place it in an electric constant temperature blast drying oven with a preset temperature for static hydrothermal crystallization , the static hydrothermal crystallization temperature is 150°C, and the crystallization time is 80 hours;
(4)制备锆硅分子筛催化活性膜(4) Preparation of zirconium silicon molecular sieve catalytic active membrane
取出高压水热合成反应釜,自然冷却或用水冷却至室温,取出含模板剂的分子筛膜,用二次水100℃洗涤1小时,放入1800W的电热恒温鼓风干燥箱100℃干燥12小时,置于5000W的马弗炉中,以0.5℃/分钟升温至550℃,焙烧5~6小时除去模板剂,以0.5℃/分钟降温至室温,制备成锆硅分子筛膜。Take out the high-pressure hydrothermal synthesis reaction kettle, cool naturally or with water to room temperature, take out the molecular sieve membrane containing the template agent, wash it with secondary water at 100°C for 1 hour, put it in a 1800W electric constant temperature blast drying oven at 100°C for 12 hours, Place in a 5000W muffle furnace, heat up to 550°C at 0.5°C/min, bake for 5-6 hours to remove the template agent, cool down to room temperature at 0.5°C/min, and prepare a zirconium-silicon molecular sieve membrane.
2、按照权利要求1所说的锆硅分子筛催化活性膜的制备方法,其特征在于:在制备分子筛前体溶胶工艺步骤(2)中,所说的四乙基正硅酸酯与四丁氧基锆、四丙基氢氧化铵、水的摩尔比为1∶0.012~0.017∶0.27~0.32∶30~50。2, according to the preparation method of the said zirconium silicon molecular sieve catalytic active film of
3、按照权利要求1所说的锆硅分子筛催化活性膜的制备方法,其特征在于:在制备分子筛前体溶胶工艺步骤(2)中,所说的四乙基正硅酸酯与四丁氧基锆、四丙基氢氧化铵、水的摩尔比为1∶0.015∶0.30∶40。3. According to the preparation method of the said zirconium silicon molecular sieve catalytically active membrane of
4、按照权利要求1所述的锆硅分子筛催化活性膜的制备方法,其特征在于所说的载体处理工艺步骤(1)为:将莫来石管或α-Al2O3管载体经砂纸打磨,用功率为200W频率为40Hz的超声波清洗10分钟,置于1800W的电热恒温鼓风干燥箱中100℃干燥4小时,降至室温,取出,用手涂法或浸涂法进行种结晶处理,固定于含有聚四氟乙烯衬里的高压水热合成反应釜中,莫来石管或α-Al2O3管载体的两端用聚四氟乙烯带密封。4. According to the preparation method of the zirconium-silicon molecular sieve catalytically active membrane according to
5、包装5. Packaging
用卫生纸包好,将其置于干燥器中。Wrap it in toilet paper and place it in a desiccator.
在本发明的制备分子筛前体溶胶工艺步骤2中,四乙基正硅酸酯与四丁氧基锆、四丙基氢氧化铵、水的优选摩尔比为1∶0.012~0.017∶0.27~0.32∶30~50。In
在本发明的制备分子筛前体溶胶工艺步骤2中,四乙基正硅酸酯与四丁氧基锆、四丙基氢氧化铵、水的最佳摩尔比为1∶0.015∶0.30∶40。In
采用本发明制备的锆硅分子筛催化活性膜进行催化异丙醇的选择性氧化和小分子烯烃的环氧化反应,实验结果表明,进料侧异丙醇质量浓度为10%时,通量为0.16kg/m2·h,催化氧化反应转化率为63%,对于氯乙烯反应体系,氯乙烯的转化率也可达62%。本发明制备的催化活性锆硅分子筛膜,具有很好的催化活性,可用于醇和低碳烯烃的选择性催化氧化反应。The zirconium-silicon molecular sieve catalytic active membrane prepared by the present invention is used to catalyze the selective oxidation of isopropanol and the epoxidation reaction of small molecular olefins. The experimental results show that when the feed side isopropanol mass concentration is 10%, the flux is 0.16kg/m 2 ·h, the catalytic oxidation reaction conversion rate is 63%, and for the vinyl chloride reaction system, the conversion rate of vinyl chloride can also reach 62%. The catalytically active zirconium-silicon molecular sieve membrane prepared by the invention has good catalytic activity and can be used for the selective catalytic oxidation reaction of alcohols and low-carbon olefins.
附图说明Description of drawings
图1是采用本发明实施例1制备的锆硅分子筛催化活性膜的X-射线衍射曲线。Fig. 1 is an X-ray diffraction curve of a zirconium-silicon molecular sieve catalytically active membrane prepared in Example 1 of the present invention.
图2是采用本发明实施例1制备的锆硅分子筛催化活性膜的红外光谱曲线。Fig. 2 is the infrared spectrum curve of the zirconium-silicon molecular sieve catalytically active membrane prepared in Example 1 of the present invention.
图3是采用本发明实施例1制备的锆硅分子筛催化活性膜表面的扫描电子显微镜照片。Fig. 3 is a scanning electron micrograph of the surface of the catalytically active membrane of zirconium-silicon molecular sieve prepared in Example 1 of the present invention.
图4是采用本发明实施例1制备的锆硅分子筛催化活性膜断面的扫描电子显微镜照片。Fig. 4 is a scanning electron micrograph of a cross-section of a zirconium-silicon molecular sieve catalytically active membrane prepared in Example 1 of the present invention.
图5是锆硅分子筛催化活性膜催化反应实验装置的结构示意图。Fig. 5 is a structural schematic diagram of an experimental device for catalytic reaction of a zirconium-silicon molecular sieve catalytic active membrane.
具体实施方式Detailed ways
下面结合附图和实施例对本发明进一步详细说明,但本发明不限于这些实施例。The present invention will be described in further detail below in conjunction with the accompanying drawings and embodiments, but the present invention is not limited to these embodiments.
实施例1Example 1
以制备锆硅分子筛催化活性膜所用原料总量320g为例,其制备方法如下:Taking the total amount of raw materials used to prepare the zirconium-silicon molecular sieve catalytically active membrane as an example, the preparation method is as follows:
1、载体处理1. Carrier processing
本实施例的多孔陶瓷管采用莫来石管为载体,莫来石管的平均孔径为7μm,孔隙率为50%,外径为12.5mm,壁厚为2mm。将莫来石管经600目的砂纸打磨,用功率为200W频率为40Hz的超声波清洗10分钟,置于1800W的电热恒温鼓风干燥箱中100℃干燥4小时,降至室温,从电热恒温鼓风干燥箱中取出,固定于含有聚四氟乙烯衬里的高压水热合成反应釜中,多孔陶瓷管载体的两端用聚四氟乙烯带密封。The porous ceramic tube of this embodiment uses a mullite tube as a carrier. The average pore diameter of the mullite tube is 7 μm, the porosity is 50%, the outer diameter is 12.5 mm, and the wall thickness is 2 mm. Grind the mullite tube with 600-mesh sandpaper, clean it with a 200W ultrasonic wave at a frequency of 40Hz for 10 minutes, place it in a 1800W electric heating constant temperature blast drying oven and dry it at 100°C for 4 hours, then cool it down to room temperature. Take it out from the drying oven, and fix it in a high-pressure hydrothermal synthesis reaction kettle with a polytetrafluoroethylene liner, and the two ends of the porous ceramic tube carrier are sealed with polytetrafluoroethylene tapes.
2、制备分子筛前体溶胶2. Preparation of molecular sieve precursor sol
取质量浓度为98%的四乙基正硅酸酯68.381g、质量浓度为80%的四丁氧基锆2.31g、质量浓度为20.9%的四丙基氢氧化铵93.838g、水155.471g加入烧瓶中,四丁氧基锆与四乙基正硅酸酯、四丙基氢氧化铵、水的摩尔比为1∶0.015∶0.30∶40,在700转/分钟的转速搅拌下将充分混合,制成锆硅分子筛的前体溶胶。Take 68.381g of tetraethylorthosilicate with a mass concentration of 98%, 2.31g of tetrabutoxyzirconium with a mass concentration of 80%, 93.838g of tetrapropylammonium hydroxide with a mass concentration of 20.9%, and 155.471g of water. In the flask, the molar ratio of tetrabutoxy zirconium and tetraethyl orthosilicate, tetrapropyl ammonium hydroxide, water is 1: 0.015: 0.30: 40, will be fully mixed under the stirring speed of 700 rpm, The precursor sol of zirconium silicate molecular sieve is made.
3、水热晶化3. Hydrothermal crystallization
将前体溶胶倒入装有多孔陶瓷管载体的高压水热合成反应釜后密封,置于预设好温度的电热恒温鼓风干燥箱中静态水热晶化,静态水热晶化的温度为150℃,晶化时间为80小时。Pour the precursor sol into a high-pressure hydrothermal synthesis reaction kettle equipped with a porous ceramic tube carrier, seal it, and place it in an electric constant temperature blast drying oven with a preset temperature for static hydrothermal crystallization. The temperature of static hydrothermal crystallization is 150°C, the crystallization time is 80 hours.
4、制备锆硅分子筛催化活性膜4. Preparation of zirconium silicon molecular sieve catalytic active membrane
取出高压水热合成反应釜,自然冷却或用水冷却至室温,取出含模板剂的分子筛膜,用二次水100℃洗涤1小时,放入1800W的电热恒温鼓风干燥箱100℃干燥12小时,置于5000W的马弗炉中,以0.5℃/分钟升温至550℃,焙烧5.5小时除去模板剂,以0.5℃/分钟降温至室温,制备成锆硅分子筛催化活性膜Take out the high-pressure hydrothermal synthesis reaction kettle, cool naturally or with water to room temperature, take out the molecular sieve membrane containing the template agent, wash it with secondary water at 100°C for 1 hour, put it in a 1800W electric constant temperature blast drying oven at 100°C for 12 hours, Place in a 5000W muffle furnace, heat up to 550°C at 0.5°C/min, bake for 5.5 hours to remove the template agent, cool down to room temperature at 0.5°C/min, and prepare a zirconium-silicon molecular sieve catalytic active membrane
5、包装5. Packaging
用卫生纸包好,将其置于干燥器中。Wrap it in toilet paper and place it in a desiccator.
实施例2Example 2
以制备锆硅分子筛催化活性膜所用原料总量320g为例,其制备方法如下:Taking the total amount of raw materials used to prepare the zirconium-silicon molecular sieve catalytically active membrane as an example, the preparation method is as follows:
在载体处理工艺步骤1中,本实施例的多孔陶瓷管采用莫来石管为载体,莫来石管的平均孔径为0.1μm,孔隙率为30%,外径为10mm,壁厚为1mm。该工艺步骤中的其它步骤与实施例1相同。在制备锆硅分子筛前体溶胶工艺步骤2中,取质量浓度为98%的四乙基正硅酸酯96.813g、质量浓度为80%的四丁氧基锆2.181g、质量浓度为20.9%的四丙基氢氧化铵88.569g、水132.437g加入烧瓶中,700转/分钟的转速搅拌下充分混合,四乙基正硅酸酯与四丁氧基锆、四丙基氢氧化铵、水的摩尔比为1∶0.01∶0.2∶25,制备成锆硅分子筛前体溶胶。在晶化工艺步骤3中,将锆硅分子筛前体溶胶倒入装有莫来石管载体的高压水热合成反应釜中,密封高压水热合成反应釜,置于1800W的电热恒温鼓风干燥箱中静态水热晶化,140℃晶化100小时,制备成含模板剂的分子筛膜。在制备锆硅分子筛催化活性膜工艺步骤4中,含模板剂的分子筛膜,置于5000W的马弗炉中,以0.5℃/分钟升温至550℃,焙烧5小时除去模板剂,该工艺步骤中的其它步骤与实施例1相同。其它工艺步骤与实施例1相同,制备成锆硅分子筛催化活性膜。In
实施例3Example 3
以制备锆硅催化活性分子筛膜所用原料总量320g为例,其制备方法如下:Taking the total amount of raw materials used to prepare zirconium-silicon catalytically active molecular sieve membranes as 320g as an example, the preparation method is as follows:
在载体处理工艺步骤1中,本实施例的多孔陶瓷管采用莫来石管为载体,莫来石管的平均孔径为10μm,孔隙率为60%,外径为13mm,壁厚为3mm。该工艺步骤中的其它步骤与实施例1相同。在制备锆硅分子筛前体溶胶工艺步骤2中,取质量浓度为98%的四乙基正硅酸酯53.279g、质量浓度为80%的四丁氧基锆2.400g、质量浓度为20.9%的四丙基氢氧化铵48.742g、水215.579g加入烧瓶中,700转/分钟的转速搅拌下充分混合,四乙基正硅酸酯与四丁氧基锆、四丙基氢氧化铵,水按摩尔比为1∶0.02∶0.35∶55,制备成锆硅分子筛前体溶胶。在水热晶化工艺步骤3中,将锆硅分子筛前体溶胶倒入装有莫来石管载体的高压水热合成反应釜中,密封高压水热合成反应釜,置于1800W的电热恒温鼓风干燥箱中静态水热晶化,160℃晶化72小时,制备成含模板剂的分子筛膜。在制备催化活性锆硅分子筛膜4中,含模板剂的分子筛膜,置于5000W的马弗炉中,以0.5℃/分钟升温至550℃,焙烧6小时除去模板剂,该工艺步骤中的其它步骤与实施例1相同。其它工艺步骤与实施例1相同,制备成锆硅分子筛催化活性膜。In
实施例4Example 4
以制备锆硅分子筛催化活性膜所用原料总量320g为例,其制备方法如下:Taking the total amount of raw materials used to prepare the zirconium-silicon molecular sieve catalytically active membrane as an example, the preparation method is as follows:
在以上实施例1~3的载体处理工艺步骤1中,所用的多孔陶瓷管采用α-Al2O3管,α-Al2O3管的几何形状与相应的实施例中的莫来石管相同,该工艺步骤中的其它步骤与相应的实施例相同。其它工艺步骤与相应的实施例相同,制备成催化活性锆硅分子筛膜。In the carrier
实施例5Example 5
以制备锆硅分子筛催化活性膜所用原料总量320g为例,其制备方法如下:Taking the total amount of raw materials used to prepare the zirconium-silicon molecular sieve catalytically active membrane as an example, the preparation method is as follows:
在以上实施例1~4的载体处理工艺步骤1中,将多孔陶瓷管载体经砂纸打磨,用功率为200W频率为40Hz的超声波清洗10分钟,置于1800W的电热恒温鼓风干燥箱中100℃干燥4小时,降至室温,取出,用手涂法或浸涂法进行种结晶处理,固定于含有聚四氟乙烯衬里的高压水热合成反应釜中,多孔陶瓷管载体的两端用聚四氟乙烯带密封。其它工艺步骤与相应的实施例相同,制备成锆硅分子筛催化活性膜。In the carrier
为了验证本发明的有益效果,发明人采用本发明实施例1制备的锆硅分子筛催化活性膜进行了试验,各种试验如下:In order to verify the beneficial effect of the present invention, the contriver adopts the zirconium-silicon molecular sieve catalytic active membrane prepared by the embodiment of the
试验仪器:X射线衍射仪,型号为Rigaku D/Max2550VB+/PC,由日本Rigalcu生产:傅立叶变换红外光谱仪,型号为EQUINX,由德国Brucher公司生产;扫描电子显微镜,型号为Quanta 200,由FEI公司生产。Test instrument: X-ray diffractometer, model is Rigaku D/Max2550VB+/PC, produced by Rigalcu, Japan; Fourier transform infrared spectrometer, model is EQUINX, produced by German Brucher Company; scanning electron microscope, model is Quanta 200, produced by FEI company .
1、锆硅分子筛催化活性膜的表征1. Characterization of Zirconium Silica Molecular Sieve Catalytic Active Membrane
采用本发明实施例1制备的锆硅分子筛催化活性膜的X-射线衍射曲线见图1,红外光谱曲线见图2,扫描电子显微镜照片见图3、图4。The X-ray diffraction curve of the zirconium-silicon molecular sieve catalytically active membrane prepared in Example 1 of the present invention is shown in Figure 1, the infrared spectrum curve is shown in Figure 2, and the scanning electron microscope photos are shown in Figures 3 and 4.
在图1中,曲线a为锆硅分子筛催化活性膜的X-射线衍射谱图,曲线b为伴生的分子筛晶体的X-射线衍射谱图,曲线c为莫来石管载体的X-射线衍射谱图。由图1可见,在8.5°和24.4°的特征峰,明显证明所得的锆硅分子筛膜及其伴生的粉末都具有MFI结构。由图2可见,在960cm-1处的肩峰说明锆原子进入到MFI结构骨架中,形成了Zr-O-Si结构。由图3可见,莫来石管载体表面被催化活性的锆硅分子筛晶体所覆盖,晶体的尺寸较小,平均粒径为1~2μm。由图4可见,锆硅分子筛催化活性膜的厚度非常薄,几乎无法测量,并且大多数晶体生长在载体的孔洞里。In Fig. 1, curve a is the X-ray diffraction spectrum of zirconium-silicon molecular sieve catalytic active membrane, curve b is the X-ray diffraction spectrum of accompanying molecular sieve crystal, and curve c is the X-ray diffraction of mullite tube carrier spectrogram. It can be seen from Fig. 1 that the characteristic peaks at 8.5° and 24.4° clearly prove that the obtained zirconium-silicon molecular sieve membrane and its accompanying powder all have MFI structure. It can be seen from Figure 2 that the shoulder peak at 960cm -1 indicates that zirconium atoms have entered into the framework of the MFI structure, forming a Zr-O-Si structure. It can be seen from Fig. 3 that the surface of the mullite tube carrier is covered by catalytically active zirconium-silicon molecular sieve crystals, the crystals are small in size and the average particle size is 1-2 μm. It can be seen from Figure 4 that the thickness of the catalytically active film of zirconium-silicon molecular sieve is very thin and can hardly be measured, and most of the crystals grow in the pores of the carrier.
2、用锆硅分子筛催化活性膜催化异丙醇的选择性氧化和小分子烯烃的环氧化反应2. Catalyzing the selective oxidation of isopropanol and the epoxidation of small molecular olefins with zirconium-silicon molecular sieve catalytic active membrane
将反应体系溶液装在带有回流冷凝管1的玻璃容器5中,然后将其置于固定在磁力搅拌器6上的水浴槽4中。锆硅分子筛催化活性膜8的一端与外径为12mm、长为2cm的聚四氟乙烯棒7连接堵口,锆硅分子筛催化活性膜8的另一端通过一个外径为12mm、长为3~4cm的玻璃管与真空系统3相联。锆硅分子筛催化活性膜8的外侧与反应体系溶液接触、内侧抽真空为25~45Pa。当反应物分子从反应体系溶液穿过锆硅分子筛催化活性膜8时发生催化氧化反应,反应产物和未反应物通过渗透蒸汽过程穿过载体层,用液氮冷却收集于冷阱2中,也可采用两个冷阱2交替连续测试。反应体系溶液和收集液中各组分的浓度通过气相色谱分析确定。总通量按下式计算:The reaction system solution is installed in a
Q(kg/m2h)=收集液的总质量/(收集时间×膜的面积)Q(kg/m 2 h)=total mass of collected liquid/(collection time×membrane area)
式中Q为总通量,单位时间单位面积内,通过渗透汽化过程在透过侧所收集质量;收集的总质量通过天平称量冷阱2中收集液体的质量得到。收集时间为渗透汽化过程开始到从冷阱2中采集样品所经过的时间;锆硅分子筛催化活性膜8的面积为渗透汽化过程中与反应体系溶液所接触的膜的面积。本实验中所用锆硅分子筛催化活性膜8的面积为22.6cm2。反应的转化率按下式计算In the formula, Q is the total flux, the mass collected on the permeate side through the pervaporation process per unit time and unit area; the total mass collected is obtained by weighing the mass of the liquid collected in the
C=M产物/(M产物+M未反应物)×100%,C=M product /(M product +M unreacted matter )×100%,
式中C为转化率,M产物为冷阱2中收集的反应生成的产物的摩尔数,M未反应物为冷阱2中收集的未反应物的摩尔数,转化率的大小是评价锆硅分子筛催化活性膜8催化性能好坏的主要参数。In the formula, C is conversion rate, and M product is the mole number of the product that the reaction that collects in
对于异丙醇的氧化反应,反应体系溶液中反应物异丙醇的摩尔浓度为1.667mol/L,氧化剂双氧水的摩尔浓度为1.667mol/L,水作为反应溶剂,反应温度为60℃。当此体系各组分在渗透汽化条件下通过锆硅分子筛催化活性膜8时,发生如下反应:For the oxidation reaction of isopropanol, the molar concentration of reactant isopropanol in the reaction system solution is 1.667mol/L, the molar concentration of oxidant hydrogen peroxide is 1.667mol/L, water is used as the reaction solvent, and the reaction temperature is 60°C. When the components of this system pass through the zirconium-silicon molecular sieve catalytic
CH3CH(OH)CH3+H2O2→CH3COCH3+2H2OCH 3 CH(OH)CH 3 +H 2 O 2 →CH 3 COCH 3 +2H 2 O
试验结果见表1。The test results are shown in Table 1.
表1锆硅分子筛催化活性膜8用于异丙醇催化氧化反应结果Table 1 Zirconium-silicon molecular sieve catalytic
对于氯乙烯的环氧化反应,反应体系溶液中反应物氯乙烯的摩尔浓度为0.667mol/L,氧化剂双氧水的摩尔浓度为0.667mol/L,甲醇作为反应溶剂,反应温度为50℃。当此体系各组分在渗透汽化条件下通过锆硅分子筛催化活性膜5时,发生如下反应:For the epoxidation reaction of vinyl chloride, the molar concentration of reactant vinyl chloride in the reaction system solution is 0.667mol/L, the molar concentration of oxidant hydrogen peroxide is 0.667mol/L, methanol is used as the reaction solvent, and the reaction temperature is 50°C. When the components of this system pass through the zirconium-silicon molecular sieve catalytic
ClCHCH2+H2O2→ClCHOCH+2H2O ClCHCH2 + H2O2 → ClCHOCH + 2H2O
试验结果见表2。The test results are shown in Table 2.
表2锆硅分子筛催化活性膜8用于氯乙烯环氧化反应结果Table 2 Zirconium-silicon molecular sieve catalytic
由表1和表2可见,进料侧异丙醇质量浓度为10%时,通量为0.16kg/m2·h,催化氧化反应转化率为63%,对于氯乙烯反应体系,氯乙烯的转化率也可达62%。本发明制备的锆硅分子筛催化活性膜,具有很好的催化活性,可用于醇和低碳烯烃的选择性催化氧化反应。It can be seen from Table 1 and Table 2 that when the mass concentration of isopropanol on the feed side is 10%, the flux is 0.16kg/m 2 h, and the catalytic oxidation reaction conversion rate is 63%. For the vinyl chloride reaction system, the vinyl chloride The conversion rate can also reach 62%. The zirconium-silicon molecular sieve catalytic active membrane prepared by the invention has good catalytic activity and can be used for the selective catalytic oxidation reaction of alcohols and low-carbon olefins.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2008101507164A CN101342496B (en) | 2008-08-25 | 2008-08-25 | Preparation method of zirconium silicon molecular sieve catalytic active film |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2008101507164A CN101342496B (en) | 2008-08-25 | 2008-08-25 | Preparation method of zirconium silicon molecular sieve catalytic active film |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101342496A CN101342496A (en) | 2009-01-14 |
CN101342496B true CN101342496B (en) | 2010-07-21 |
Family
ID=40244686
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2008101507164A Expired - Fee Related CN101342496B (en) | 2008-08-25 | 2008-08-25 | Preparation method of zirconium silicon molecular sieve catalytic active film |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101342496B (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102172520B (en) * | 2010-12-31 | 2012-10-10 | 陕西师范大学 | Method for preparing silica gel surface periodic zirconium oxide-silicon oxide composite material |
CN102274705B (en) * | 2011-04-29 | 2013-06-12 | 浙江大学 | Method for preparing molecular sieve membrane catalytic reactor taking active carbon as carrier |
CN104959162A (en) * | 2015-06-27 | 2015-10-07 | 湘潭大学 | Preparation method for in-situ zirconium-doped molecular sieve solid superacid |
CN115286495B (en) * | 2022-08-23 | 2024-07-23 | 江西师范大学 | Method for preparing acrolein by catalytic oxidation of glycerol by ZSM-5 molecular sieve membrane |
-
2008
- 2008-08-25 CN CN2008101507164A patent/CN101342496B/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
CN101342496A (en) | 2009-01-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Seijger et al. | In situ synthesis of binderless ZSM-5 zeolitic coatings on ceramic foam supports | |
Louis et al. | Hierarchical pore ZSM-5 zeolite structures: From micro-to macro-engineering of structured catalysts | |
CN107915234B (en) | Preparation method of hierarchical porous TS-1 nano zeolite aggregate molecular sieve | |
JP5087644B2 (en) | Method for producing ZSM-5 type zeolite membrane | |
JP2019513541A (en) | Catalyst and method for producing aromatic hydrocarbons by direct conversion of syngas | |
CN102716762B (en) | Ultrafine molecular sieve structured catalytic material based on porous silicon carbide carrier and preparation thereof | |
CN101342496B (en) | Preparation method of zirconium silicon molecular sieve catalytic active film | |
CN102139188A (en) | Preparation method and application of molecular sieve/organic composite infiltration, vaporization and separation membrane | |
JP2009255014A (en) | Catalyst for producing olefin from methanol | |
You et al. | Binderless nano-HZSM-5 zeolite coatings prepared through combining washcoating and dry-gel conversion (DGC) methods | |
CN113398984B (en) | Application of metal nickel encapsulated hierarchical pore ZSM-5 molecular sieve | |
WO2014047801A1 (en) | Sapo-34 molecular sieve and synthesis method thereof | |
JPWO2016121377A1 (en) | Separation membrane and manufacturing method thereof | |
CN104556109B (en) | A kind of preparation method of titanium silicon molecular sieve and a kind of phenol oxidation method | |
CN107628630B (en) | A kind of hollow B-ZSM-5 molecular sieve and its preparation method and application | |
CN108658087B (en) | A kind of multi-level channel TS-1 zeolite material and preparation method thereof | |
CN113385198B (en) | Ordered mesoporous sulfated zirconium-aluminum composite oxide solid acid material and preparation and application thereof | |
CN102274743B (en) | High intercrystal poriness zeolite coating material on surface of porous silicon carbide carrier and preparation method thereof | |
Zheng et al. | Synthesis of stainless-steel-net supported TS-1 catalyst and its catalytic performance in liquid-phase epoxidation reactions | |
JP4751996B2 (en) | Method for producing ZSM-5 type zeolite membrane | |
CN102614941B (en) | Method for Improving Cohesion Strength and Activity of Molecular Sieve Catalyst Coating Simultaneously | |
CN1147421A (en) | Process for preparation of micro-mesoporous gel | |
Tang et al. | Preparation of Micron-Sized TS-1 spherical membrane catalysts and their performance in the epoxidation of Chloropropene | |
JP3840506B2 (en) | Method for producing mixture separation membrane | |
CN102836742B (en) | Preparation method for Ti-containing zeolite molecular sieve modified palladium catalytic membrane |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C17 | Cessation of patent right | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20100721 Termination date: 20130825 |