CN101335346A - Supercapacitor-battery positive electrode material and preparation method thereof - Google Patents
Supercapacitor-battery positive electrode material and preparation method thereof Download PDFInfo
- Publication number
- CN101335346A CN101335346A CNA2007100352388A CN200710035238A CN101335346A CN 101335346 A CN101335346 A CN 101335346A CN A2007100352388 A CNA2007100352388 A CN A2007100352388A CN 200710035238 A CN200710035238 A CN 200710035238A CN 101335346 A CN101335346 A CN 101335346A
- Authority
- CN
- China
- Prior art keywords
- charcoal
- lithium embedded
- removal lithium
- compound
- porous carbon
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000002360 preparation method Methods 0.000 title claims abstract description 4
- 239000007774 positive electrode material Substances 0.000 title abstract description 4
- 239000000463 material Substances 0.000 claims abstract description 23
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 17
- 239000002131 composite material Substances 0.000 claims abstract description 16
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 claims abstract description 15
- 229910052744 lithium Inorganic materials 0.000 claims abstract description 15
- 239000003575 carbonaceous material Substances 0.000 claims abstract description 10
- 239000003990 capacitor Substances 0.000 claims abstract description 8
- 150000001875 compounds Chemical class 0.000 claims abstract description 8
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 4
- 239000000843 powder Substances 0.000 claims abstract description 3
- 230000004927 fusion Effects 0.000 claims description 12
- 229910010707 LiFePO 4 Inorganic materials 0.000 claims description 7
- 229910014422 LiNi1/3Mn1/3Co1/3O2 Inorganic materials 0.000 claims description 7
- 229910012851 LiCoO 2 Inorganic materials 0.000 claims description 6
- 238000005469 granulation Methods 0.000 claims description 5
- 230000003179 granulation Effects 0.000 claims description 5
- 229910014411 LiNi1/2Mn1/2O2 Inorganic materials 0.000 claims description 3
- 239000002041 carbon nanotube Substances 0.000 claims description 3
- 229910021393 carbon nanotube Inorganic materials 0.000 claims description 3
- 239000002245 particle Substances 0.000 claims description 3
- 239000003610 charcoal Substances 0.000 claims 5
- 229910015645 LiMn Inorganic materials 0.000 claims 2
- 239000004964 aerogel Substances 0.000 claims 2
- 239000000835 fiber Substances 0.000 claims 2
- 239000008187 granular material Substances 0.000 claims 2
- 239000010405 anode material Substances 0.000 claims 1
- 238000012512 characterization method Methods 0.000 claims 1
- 239000002648 laminated material Substances 0.000 claims 1
- 238000007500 overflow downdraw method Methods 0.000 claims 1
- 238000009830 intercalation Methods 0.000 abstract description 6
- 230000002687 intercalation Effects 0.000 abstract description 5
- 239000012798 spherical particle Substances 0.000 abstract description 5
- 239000007772 electrode material Substances 0.000 abstract description 3
- 238000004146 energy storage Methods 0.000 abstract description 3
- 238000000034 method Methods 0.000 abstract description 3
- 150000002642 lithium compounds Chemical class 0.000 abstract 1
- 229910001416 lithium ion Inorganic materials 0.000 description 10
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 10
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 9
- 229920000049 Carbon (fiber) Polymers 0.000 description 5
- 239000004917 carbon fiber Substances 0.000 description 5
- 229910013870 LiPF 6 Inorganic materials 0.000 description 3
- 238000009831 deintercalation Methods 0.000 description 3
- 239000003792 electrolyte Substances 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 239000000178 monomer Substances 0.000 description 3
- 229910015643 LiMn 2 O 4 Inorganic materials 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000001878 scanning electron micrograph Methods 0.000 description 2
- 239000004966 Carbon aerogel Substances 0.000 description 1
- 235000010724 Wisteria floribunda Nutrition 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 239000010406 cathode material Substances 0.000 description 1
- 238000012983 electrochemical energy storage Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000007499 fusion processing Methods 0.000 description 1
- GELKBWJHTRAYNV-UHFFFAOYSA-K lithium iron phosphate Chemical compound [Li+].[Fe+2].[O-]P([O-])([O-])=O GELKBWJHTRAYNV-UHFFFAOYSA-K 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 239000005486 organic electrolyte Substances 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/13—Energy storage using capacitors
Landscapes
- Electric Double-Layer Capacitors Or The Like (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
本发明公开了一种超级电容-电池用正极材料及其制备方法,将纳米级的具有脱嵌锂特性的化合物材料粉末进行机械融合造粒,形成1~15微米的球形颗粒;加入用量为脱嵌锂特性化合物材料重量的10%~100%的多孔炭材料,再进行机械融合,从而得到多孔炭包覆脱嵌锂化合物复合材料。本发明工艺简单,制备得到的材料兼具电池材料的大容量特性和电容材料的高功率特性,其储存容量可达到100mAh/g,10C放电容量可达0.5C放电容量的90%,有望成为电动汽车使用的新型能量存储系统的电极材料。
The invention discloses a positive electrode material for a supercapacitor-battery and a preparation method thereof. Nano-scale compound material powder with lithium intercalation characteristics is mechanically fused and granulated to form spherical particles of 1 to 15 microns; 10% to 100% of the porous carbon material by weight of the lithium-intercalation characteristic compound material is mechanically fused to obtain a porous carbon-coated and deintercalated lithium compound composite material. The process of the invention is simple, and the prepared material has both the large-capacity characteristics of battery materials and the high-power characteristics of capacitor materials. Its storage capacity can reach 100mAh/g, and its 10C discharge capacity can reach 90% of 0.5C discharge capacity. Electrode material for new energy storage systems used in automobiles.
Description
技术领域 technical field
本发明涉及电化学储能系统的电极材料领域,特别涉及用于超级电容-电池的正极材料。The invention relates to the field of electrode materials for electrochemical energy storage systems, in particular to positive electrode materials for supercapacitor-batteries.
背景技术 Background technique
锂离子动力电池正在逐步走向成熟,它具有较高的能量密度,但其大电流放电性能依然不能满足电动工具的需要。超级电容器的功率密度是普通电池的几十倍甚至几百倍,但是它的能量密度却只有锂离子电池的1/10,也无法单独作为车用电源。Lithium-ion power batteries are gradually becoming mature. They have high energy density, but their high-current discharge performance still cannot meet the needs of electric tools. The power density of a supercapacitor is dozens or even hundreds of times that of an ordinary battery, but its energy density is only 1/10 of that of a lithium-ion battery, and it cannot be used alone as a vehicle power supply.
于是,人们提出将锂离子电池和超级电容器组合起来使用,即超级电容-电池系统。目前主要采用的组合方式为一种“外组合”式,即将两者的单体通过电源管理系统组合成一个储能系统,根据不同时段的需要让其中一个单体发挥作用。而更为理想的是通过“内结合”的方式,将两者有机地结合在同一单体中,这样在使用和控制上都会更加方便有效。2004年,日本富士重工提出锂离子电池电容(LIC)技术,称其不仅可得到与电双层电容器相媲美的大电流输出,同时还可像锂离子充电电池那样确保较高的能量密度。夏永姚于2005年(CN 1674347)提出了一种将锂离子嵌入-脱嵌机制与电化学电容器双电层机制协调组合在一起的混合型水性锂离子电池,其中分别是以LiMn2O4等锂离子电池正极材料和活性炭材料作为电极。若能将具有锂离子嵌入-脱嵌机制的材料与具有电化学电容器双电层机制的炭材料按一定的方式复合成一体,并采用有机电解液,将使这一体系同时具有高电压、高能量密度、高功率密度、良好的循环寿命等优点。Therefore, it has been proposed to combine lithium-ion batteries and supercapacitors, that is, supercapacitor-battery systems. At present, the main combination method is an "external combination", that is, the two monomers are combined into an energy storage system through the power management system, and one of the monomers is allowed to play a role according to the needs of different time periods. What is more ideal is to combine the two organically in the same monomer through the "internal combination", which will be more convenient and effective in use and control. In 2004, Japan's Fuji Heavy Industries proposed lithium-ion battery capacitor (LIC) technology, claiming that it can not only obtain a large current output comparable to that of an electric double-layer capacitor, but also ensure a higher energy density like a lithium-ion rechargeable battery. Xia Yongyao in 2005 (CN 1674347) proposed a hybrid aqueous lithium-ion battery that combines the intercalation-deintercalation mechanism of lithium ions and the electric double layer mechanism of electrochemical capacitors, in which LiMn 2 O 4 Such as lithium ion battery cathode material and activated carbon material as electrode. If the material with lithium ion intercalation-deintercalation mechanism and the carbon material with electrochemical capacitor electric double layer mechanism can be combined in a certain way, and the organic electrolyte is used, the system will have high voltage and high voltage at the same time. Energy density, high power density, good cycle life and other advantages.
发明内容 Contents of the invention
本发明的目的在于制备一种超级电容-电池使用的正极材料及其制备方法。这种材料将兼具电池材料大容量特性和电容材料的高功率特性。The object of the present invention is to prepare a positive electrode material used in a supercapacitor-battery and a preparation method thereof. This material will combine the high-capacity characteristics of battery materials and the high-power characteristics of capacitor materials.
本发明的技术方案为:将纳米级的具有脱嵌锂特性的化合物材料粉末放入机械融合设备,进行机械融合造粒,形成1~15微米的球形颗粒;加入用量为脱嵌锂特性化合物材料重量的10%~100%的多孔炭材料,再进行机械融合,将多孔炭材料均匀包覆在脱嵌锂化合物材料颗粒的表面,得到多孔炭包覆脱嵌锂化合物复合材料。所述具有脱嵌锂特性化合物材料选自LiCoO2、LiMn2O4、LiNi1/3Mn1/3Co1/3O2、LiNi1/2Mn1/2O2、LiFePO4中的一种。所述多孔炭材料是指活性炭、中孔炭、炭纳米管、炭纤维、炭气凝胶中的一种或几种。The technical scheme of the present invention is: put the nano-scale compound material powder with the characteristics of lithium intercalation and deintercalation into mechanical fusion equipment, perform mechanical fusion granulation, and form spherical particles of 1 to 15 microns; 10% to 100% of the weight of the porous carbon material is mechanically fused, and the porous carbon material is uniformly coated on the surface of the lithium intercalation compound material particles to obtain a porous carbon coated lithium intercalation compound composite material. The compound material with lithium intercalation characteristics is selected from one of LiCoO 2 , LiMn 2 O 4 , LiNi 1/3 Mn 1/3 Co 1/3 O 2 , LiNi 1/2 Mn 1/2 O 2 , LiFePO 4 kind. The porous carbon material refers to one or more of activated carbon, mesoporous carbon, carbon nanotube, carbon fiber, and carbon aerogel.
本发明采用简单方便、易于控制的机械融合工艺,制备出同时具有电池材料的大容量特性和电容材料的高功率特性的复合材料颗粒,其储存容量可达到100mAh/g,10C放电容量可达0.5C放电容量的90%,将其作为电极材料应用于超级电容-锂离子电池,将有望成为电动汽车使用的新型能量存储系统。The invention adopts a simple, convenient, and easy-to-control mechanical fusion process to prepare composite material particles having both the large-capacity characteristics of battery materials and the high-power characteristics of capacitor materials. The storage capacity can reach 100mAh/g, and the 10C discharge capacity can reach 0.5 90% of the discharge capacity of C, applying it as an electrode material to a supercapacitor-lithium-ion battery will hopefully become a new energy storage system for electric vehicles.
附图说明 Description of drawings
图1.按实施例1制备的LiCoO2/活性炭复合材料的XRD图Fig. 1. XRD pattern of the LiCoO 2 /activated carbon composite material prepared by Example 1
图2.按实施例1制备的LiCoO2/活性炭复合材料的SEM图Figure 2. SEM image of LiCoO 2 /activated carbon composite material prepared according to Example 1
图3.按实施例2制备的LiNi1/3Mn1/3Co1/3O2/中孔炭复合材料的XRD图Fig. 3. XRD figure of LiNi 1/3 Mn 1/3 Co 1/3 O 2 / mesoporous carbon composite material prepared by embodiment 2
图4.按实施例2制备的LiNi1/3Mn1/3Co1/3O2/中孔炭复合材料的SEM图Fig. 4. SEM image of LiNi 1/3 Mn 1/3 Co 1/3 O 2 / mesoporous carbon composite material prepared according to Example 2
图5.实施例2获得的LiNi1/3Mn1/3Co1/3O2/中孔炭复合材料的首次充放电曲线图Figure 5. The initial charge and discharge curves of the LiNi 1/3 Mn 1/3 Co 1/3 O 2 /mesoporous carbon composite obtained in Example 2
图6.实施例3制备的LiFePO4/炭纤维复合材料的第二次充放电曲线图Figure 6. The second charge and discharge curve of the LiFePO 4 /carbon fiber composite material prepared in Example 3
图7.实施例3制备获得的LiFePO4/炭纤维复合材料的放电倍率性能图Figure 7. The discharge rate performance diagram of the LiFePO 4 /carbon fiber composite material prepared in Example 3
图8.实施例3制备获得的LiFePO4/炭纤维复合材料的循环性能图(电流密度1.5A/g)Figure 8. The cycle performance diagram of the LiFePO 4 /carbon fiber composite material prepared in Example 3 (current density 1.5A/g)
具体实施方式 Detailed ways
实施例1Example 1
将纳米级LiCoO2放入机械融合设备,进行机械融合造粒,形成约10微米大小的均匀球形颗粒;再加入其重量10%的活性炭,再进行机械融合处理,获得的复合材料的XRD见图1,SEM见图2。以该材料为正极,金属锂片为负极,LiPF6/EC+DEC为电解液组装成电池,测试其放电容量,0.5C和10C的放电比容量分别为95mAh/g和85mAh/g。Put nano-scale LiCoO 2 into mechanical fusion equipment for mechanical fusion granulation to form uniform spherical particles with a size of about 10 microns; then add 10% of its weight of activated carbon, and then perform mechanical fusion treatment. The XRD of the obtained composite material is shown in the figure 1. See Figure 2 for SEM. The material was used as the positive electrode, the metal lithium sheet was used as the negative electrode, and LiPF 6 /EC+DEC was used as the electrolyte to assemble a battery. The discharge capacity was tested. The discharge specific capacities at 0.5C and 10C were 95mAh/g and 85mAh/g, respectively.
实施例2Example 2
将纳米LiNi1/3Mn1/3Co1/3O2放入机械融合设备,进行机械融合造粒,形成约8微米大小的球形颗粒;再加入其重量50%的中孔炭,再进行机械融合,获得的复合材料的XRD见图3,SEM见图4。以该材料为正极,金属锂片为负极,LiPF6/EC+DEC为电解液组装成电池,其首次充放电曲线见图5,0.5C和10C的放电比容量分别为102mAh/g和88mAh/g。Put nano-LiNi 1/3 Mn 1/3 Co 1/3 O 2 into mechanical fusion equipment, carry out mechanical fusion granulation, and form spherical particles with a size of about 8 microns; then add 50% of its weight of mesoporous carbon, and then carry out Mechanical fusion, the XRD of the obtained composite material is shown in Figure 3, and the SEM is shown in Figure 4. Using this material as the positive electrode, the metal lithium sheet as the negative electrode, and LiPF 6 /EC+DEC as the electrolyte, the battery was assembled into a battery. The first charge and discharge curves are shown in Figure 5. The discharge specific capacities at 0.5C and 10C are 102mAh/g and 88mAh/ g.
实施例3Example 3
将纳米LiFePO4放入机械融合设备,进行机械融合造粒,形成约5微米均匀大小的球形颗粒;再加入磷酸铁锂重量100%的炭纤维,再进行机械融合处理,获得的复合材料,以该材料为正极,金属锂片为负极,LiPF6/EC+DEC为电解液组装成电池,其第二次充放电曲线见图6,倍率性能见图7,0.5C、5C和10C的放电比容量分别为101mAh/g、96mAh/g和92mAh/g。循环性能(10C)见图8,50次循环后容量保持率为97%。Put nano-LiFePO 4 into mechanical fusion equipment for mechanical fusion granulation to form spherical particles with a uniform size of about 5 microns; then add carbon fiber with 100% weight of lithium iron phosphate, and then perform mechanical fusion treatment to obtain a composite material with The material is the positive electrode, the metal lithium sheet is the negative electrode, and LiPF 6 /EC+DEC is the electrolyte to assemble the battery. The second charge-discharge curve is shown in Figure 6, and the rate performance is shown in Figure 7. The discharge ratios of 0.5C, 5C and 10C The capacities are 101mAh/g, 96mAh/g and 92mAh/g respectively. The cycle performance (10C) is shown in Figure 8, and the capacity retention rate after 50 cycles is 97%.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNA2007100352388A CN101335346A (en) | 2007-06-28 | 2007-06-28 | Supercapacitor-battery positive electrode material and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNA2007100352388A CN101335346A (en) | 2007-06-28 | 2007-06-28 | Supercapacitor-battery positive electrode material and preparation method thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
CN101335346A true CN101335346A (en) | 2008-12-31 |
Family
ID=40197752
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNA2007100352388A Pending CN101335346A (en) | 2007-06-28 | 2007-06-28 | Supercapacitor-battery positive electrode material and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101335346A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102005306A (en) * | 2010-12-16 | 2011-04-06 | 嘉兴市凯勒电子科技有限公司 | Method for producing electrodes foil of power type super capacitor |
CN102088086A (en) * | 2010-12-30 | 2011-06-08 | 奇瑞汽车股份有限公司 | High-voltage lithium ion battery anode, lithium ion battery using same and preparation method of high-voltage lithium ion battery anode |
CN101527202B (en) * | 2009-04-24 | 2012-02-15 | 南京理工大学 | Oxidized grapheme/polyaniline super capacitor composite electrode material and preparation method |
WO2012085874A1 (en) * | 2010-12-23 | 2012-06-28 | Saint-Gobain Centre De Recherches Et D'etudes Europeen | Method for the production of an lmo product |
CN103682269A (en) * | 2013-12-05 | 2014-03-26 | 天津赫维科技有限公司 | Method for preparing lithium iron phosphate/C composite material with high specific surface area |
WO2018132992A1 (en) * | 2017-01-19 | 2018-07-26 | GM Global Technology Operations LLC | Hybrid active materials for batteries and capacitors |
WO2020124361A1 (en) * | 2018-12-18 | 2020-06-25 | Samsung Sdi Co., Ltd. | Positive active material for rechargeable lithium battery, positive electrode and rechargeable lithium battery including the same |
-
2007
- 2007-06-28 CN CNA2007100352388A patent/CN101335346A/en active Pending
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101527202B (en) * | 2009-04-24 | 2012-02-15 | 南京理工大学 | Oxidized grapheme/polyaniline super capacitor composite electrode material and preparation method |
CN102005306A (en) * | 2010-12-16 | 2011-04-06 | 嘉兴市凯勒电子科技有限公司 | Method for producing electrodes foil of power type super capacitor |
CN102005306B (en) * | 2010-12-16 | 2012-11-07 | 嘉兴市凯勒电子科技有限公司 | Method for producing electrodes foil of power type super capacitor |
WO2012085874A1 (en) * | 2010-12-23 | 2012-06-28 | Saint-Gobain Centre De Recherches Et D'etudes Europeen | Method for the production of an lmo product |
FR2969595A1 (en) * | 2010-12-23 | 2012-06-29 | Saint Gobain Ct Recherches | PROCESS FOR PRODUCING LMO PRODUCT |
US9695060B2 (en) | 2010-12-23 | 2017-07-04 | Saint-Gobain Centre De Recherches Et D'etudes Europeen | Method for the production of an LMO product |
CN102088086A (en) * | 2010-12-30 | 2011-06-08 | 奇瑞汽车股份有限公司 | High-voltage lithium ion battery anode, lithium ion battery using same and preparation method of high-voltage lithium ion battery anode |
CN102088086B (en) * | 2010-12-30 | 2013-04-10 | 奇瑞汽车股份有限公司 | Method for preparing high-voltage lithium ion battery anode |
CN103682269B (en) * | 2013-12-05 | 2016-08-17 | 天津赫维科技有限公司 | A kind of preparation method of high-specific surface area LiFePO 4/C composite |
CN103682269A (en) * | 2013-12-05 | 2014-03-26 | 天津赫维科技有限公司 | Method for preparing lithium iron phosphate/C composite material with high specific surface area |
WO2018132992A1 (en) * | 2017-01-19 | 2018-07-26 | GM Global Technology Operations LLC | Hybrid active materials for batteries and capacitors |
CN110140237A (en) * | 2017-01-19 | 2019-08-16 | 通用汽车环球科技运作有限责任公司 | Hydridization active material for battery pack and capacitor |
CN110140237B (en) * | 2017-01-19 | 2022-09-27 | 通用汽车环球科技运作有限责任公司 | Hybrid active materials for batteries and capacitors |
WO2020124361A1 (en) * | 2018-12-18 | 2020-06-25 | Samsung Sdi Co., Ltd. | Positive active material for rechargeable lithium battery, positive electrode and rechargeable lithium battery including the same |
CN111587501A (en) * | 2018-12-18 | 2020-08-25 | 三星Sdi株式会社 | Positive electrode active material for rechargeable lithium battery, positive electrode including same, and rechargeable lithium battery |
CN111587501B (en) * | 2018-12-18 | 2024-01-16 | 三星Sdi株式会社 | Positive active material for rechargeable lithium battery, positive electrode including the same, and rechargeable lithium battery |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5462445B2 (en) | Lithium ion secondary battery | |
CN203746972U (en) | a positive electrode | |
CN103117374B (en) | Anode pole piece of lithium rechargeable battery and preparation method thereof | |
JP5341470B2 (en) | ELECTRODE BODY FOR STORAGE ELEMENT, NON-AQUEOUS LITHIUM TYPE STORAGE ELEMENT AND METHOD FOR PRODUCING ELECTRODE BODY FOR STORAGE ELEMENT | |
WO2017024720A1 (en) | Preparation method for high capacity lithium-ion battery negative electrode material | |
JP2009076373A (en) | Non-aqueous secondary battery | |
JP5070721B2 (en) | Electrode plate for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery | |
CN101335346A (en) | Supercapacitor-battery positive electrode material and preparation method thereof | |
CN112820869B (en) | Negative electrode active material, electrochemical device, and electronic device | |
CN102227031A (en) | Lithium ion battery with high-rate discharge characteristic | |
CN115842096A (en) | Pre-lithiation pole piece, preparation method thereof, secondary battery and power utilization device | |
JP6567289B2 (en) | Lithium ion secondary battery | |
JP2020140896A (en) | Electrode for lithium ion secondary battery and lithium ion secondary battery | |
JP2010109080A (en) | Method for manufacturing electrode for storage element, electrode for storage element, and nonaqueous lithium type electricity storage element | |
Li et al. | Litchi shell-derived porous carbon for enhanced stability of silicon-based lithium-ion battery anode materials | |
Li et al. | Monodispersed LiFePO4@ C Core‐Shell Nanoparticles Anchored on 3D Carbon Cloth for High‐Rate Performance Binder‐Free Lithium Ion Battery Cathode | |
CN103178244A (en) | Hybrid energy storage element | |
CN115911261A (en) | Negative pole piece, secondary battery and power consumption device | |
CN203552954U (en) | Lithium pre-embedding device for lithium ion capacitor | |
CN101335366A (en) | Lithium iron phosphate high-rate polymer battery | |
JP2015506549A (en) | Cathode electrode in film form filled with active material and method for producing the same | |
Yuan et al. | Hierarchical MCMB/CuO/Cu anode with super-hydrophilic substrate and blind-hole structures for lithium-ion batteries | |
CN116895760A (en) | Negative electrode active material, negative electrode sheet, lithium ion battery and electronic device | |
JP4841814B2 (en) | Non-aqueous secondary battery | |
CN119301789A (en) | Secondary batteries and electrical devices |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C12 | Rejection of a patent application after its publication | ||
RJ01 | Rejection of invention patent application after publication |
Open date: 20081231 |