[go: up one dir, main page]

CN101333614B - Structural material piece of magnesium-containing silumin and method for preparing same - Google Patents

Structural material piece of magnesium-containing silumin and method for preparing same Download PDF

Info

Publication number
CN101333614B
CN101333614B CN2008101376030A CN200810137603A CN101333614B CN 101333614 B CN101333614 B CN 101333614B CN 2008101376030 A CN2008101376030 A CN 2008101376030A CN 200810137603 A CN200810137603 A CN 200810137603A CN 101333614 B CN101333614 B CN 101333614B
Authority
CN
China
Prior art keywords
magnesium
parts
wood materials
alloy
structural wood
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2008101376030A
Other languages
Chinese (zh)
Other versions
CN101333614A (en
Inventor
左良
于福晓
赵刚
赵骧
杨永亮
李艳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northeastern University China
Original Assignee
Northeastern University China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northeastern University China filed Critical Northeastern University China
Priority to CN2008101376030A priority Critical patent/CN101333614B/en
Publication of CN101333614A publication Critical patent/CN101333614A/en
Application granted granted Critical
Publication of CN101333614B publication Critical patent/CN101333614B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/02Alloys based on aluminium with silicon as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/043Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with silicon as the next major constituent

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Forging (AREA)
  • Continuous Casting (AREA)
  • Extrusion Of Metal (AREA)

Abstract

Disclosed is a structure material part containing magnesium and high-silicon aluminum alloy, which comprises a profile, a rod, a plate and a forged part. The structure material part is characterized in that an ingot is prepared by the method of semi-continuous casting, then phase particles of eutectic silicon are discretized by preheating treatment, and then the ultimate form and the microstructure are obtained by hot-deforming processing and heating treatment; the structure material part contains 0.2 to 2.0 weight percent of magnesium, and 8 to 18 weight percent of silicon; and the structure material part has even and refined microstructure, for the structure of aluminum matrix is of equiaxed grains whose average size is less than 6 microns, and the silicon and other second phase particles are dispersively distributed, and the average size of the second phase particles is less than 5 microns. The structure material part containing magnesium and high-silicon deformed aluminum alloy, which has good plasticity and higher strength, can be manufactured with low cost on the premise that no modifier is added in the casting process.

Description

一种含镁高硅铝合金的结构材料件及其制备方法 Structural material piece of magnesium-containing high-silicon aluminum alloy and preparation method thereof

技术领域technical field

本发明涉及铝合金及其制备技术,特别提供了一种含镁高硅铝合金的结构材料件及其制备方法。The invention relates to an aluminum alloy and its preparation technology, and in particular provides a structural material piece of a magnesium-containing high-silicon aluminum alloy and a preparation method thereof.

背景技术Background technique

铝硅合金,尤其是高硅含量的铝硅合金,由于其低密度、高耐磨性、高抗腐蚀性和低热膨胀系数,在汽车工业和航天航空工业领域中有着广泛的应用。然而,对于普通凝固方法制备的铝硅合金,其锭坯中存在粗大的块状先析出Si颗粒和板条状共晶组织,致使合金脆性极大,难以通过塑性加工来进一步改善凝固组织和制造各种断面形状的高性能材料,从而限制了合金的应用范围。传统上,铝硅合金被划分在铸造铝合金之列。针对普通凝固铝硅合金变形能力差的问题,人们进而寻求快速凝固的方法。但是,采用快速凝固方法只能获得尺寸很小(<10mm)的块体,若是制造大尺寸的部件则需要进一步的工序。一个典型的例子即是通过粉末冶金的方法制备,但其生产成本和工艺复杂程度均很高。Al-Si alloys, especially Al-Si alloys with high silicon content, are widely used in the automotive industry and aerospace industry due to their low density, high wear resistance, high corrosion resistance and low thermal expansion coefficient. However, for the aluminum-silicon alloy prepared by the common solidification method, there are coarse massive Si particles and lath-like eutectic structure in the ingot, which makes the alloy extremely brittle, and it is difficult to further improve the solidification structure and manufacture through plastic processing. High-performance materials with various cross-sectional shapes, thus limiting the application range of alloys. Traditionally, aluminum-silicon alloys have been classified as cast aluminum alloys. Aiming at the problem of poor deformation ability of common solidified aluminum-silicon alloys, people seek a rapid solidification method. However, only very small (<10 mm) blocks can be obtained using the rapid solidification method, and further processing is required to manufacture large-sized parts. A typical example is the preparation by powder metallurgy, but its production cost and process complexity are high.

在工业纯铝和变形铝合金的生产中,半连续铸造方法(Direct ChillCasting,简称DC铸造)一直被广泛应用,人们主要关注如何降低合金成分偏析、减小晶粒尺寸、提高表面质量。利用半连续铸造方法制备大尺寸规格且不含任何变质剂(如P、Na、Sr)的高硅铝合金锭坯的技术已由本发明的发明人之一申请并获得中国专利授权(专利号ZL200510119550.6)。通过发明人的进一步研究发现,利用上述发明技术,放宽Si的下限含量(到8%重量),降低Si的上限含量(到18%重量),调整Mg的含量以及其它合金元素的含量,通过热塑性加工和随后热处理,可获得具有良好塑性、高强度的含镁高硅铝合金的结构材料件。In the production of industrial pure aluminum and wrought aluminum alloys, the semi-continuous casting method (Direct Chill Casting, referred to as DC casting) has been widely used. People mainly focus on how to reduce alloy composition segregation, reduce grain size, and improve surface quality. The technology of preparing high-silicon aluminum alloy ingots with large specifications and without any modifiers (such as P, Na, Sr) by semi-continuous casting method has been applied by one of the inventors of the present invention and obtained Chinese patent authorization (Patent No. ZL200510119550 .6). Further research by the inventors found that using the above-mentioned invention technology, the lower limit content of Si is relaxed (to 8% by weight), the upper limit content of Si is reduced (to 18% by weight), and the content of Mg and other alloying elements is adjusted. Through thermoplasticity Processing and subsequent heat treatment can obtain a structural material piece of magnesium-containing high-silicon aluminum alloy with good plasticity and high strength.

发明内容Contents of the invention

本发明的目的在于提供一种含镁高硅铝合金的结构材料件及其制备方法,可以在铸造过程中不添加任何变质剂的前提下,通过热塑性加工和热处理,低成本地制造出具有良好塑性、高强度的含镁高硅变形铝合金结构材料件。The object of the present invention is to provide a structural material piece of magnesium-containing high-silicon aluminum alloy and its preparation method, which can be produced at low cost through thermoplastic processing and heat treatment without adding any modifier in the casting process. Plastic, high-strength magnesium-containing and high-silicon deformed aluminum alloy structural material parts.

本发明具体提供了一种含镁高硅铝合金的结构材料件,包括型材、棒材、板材、锻件,其特征在于:The present invention specifically provides a structural material piece of magnesium-containing high-silicon aluminum alloy, including profiles, rods, plates, and forgings, which are characterized in that:

所述结构材料件采用半连续铸造方法制备锭坯,然后通过预先热处理进行共晶硅相的颗粒离散,再通过热塑性加工和热处理获得最终形状和微观组织的制品,其强化机理为铝基体的细晶强化、硅颗粒的颗粒强化和第二相粒子的沉淀强化;The structural material piece adopts the semi-continuous casting method to prepare the ingot, and then the particles of the eutectic silicon phase are dispersed through pre-heat treatment, and then the product with the final shape and microstructure is obtained through thermoplastic processing and heat treatment. The strengthening mechanism is the fineness of the aluminum matrix. Grain strengthening, particle strengthening of silicon particles and precipitation strengthening of second phase particles;

所述结构材料件中Mg的含量为0.2~2.0%重量,Si的含量为8~18%重量;具有均匀细化的微观组织结构,铝基体组织为等轴晶粒,平均尺寸<6μm,Si与其它第二相颗粒呈弥散分布且平均尺寸<5μm;The content of Mg in the structural material piece is 0.2-2.0% by weight, and the content of Si is 8-18% by weight; it has a uniform and refined microstructure, the aluminum matrix structure is equiaxed grains, the average size is <6 μm, and Si It is dispersedly distributed with other second phase particles and the average size is <5 μm;

本发明所提供的含镁高硅铝合金的结构材料件中,还可含有Cu、Zn、Ni、Ti、Fe之一种或多种,总含量低于2%重量。The magnesium-containing high-silicon aluminum alloy structural material piece provided by the present invention may also contain one or more of Cu, Zn, Ni, Ti, Fe, and the total content is less than 2% by weight.

本发明另外还提供了一种上述含镁高硅铝合金的结构材料件的制备方法,其特征在于:The present invention also provides a method for preparing the structural material of the above-mentioned magnesium-containing high-silicon aluminum alloy, which is characterized in that:

——采用半连续铸造方法制备锭坯,工艺参数为:——The semi-continuous casting method is used to prepare the ingot, and the process parameters are:

浇铸温度:对应合金液相线温度以上150~300℃;Casting temperature: 150-300°C above the liquidus temperature of the corresponding alloy;

铸造速度:100~200mm/min;Casting speed: 100~200mm/min;

凝固坯外围冷却水量:5~15g/mm·s;The amount of cooling water around the solidified billet: 5 ~ 15g/mm s;

不添加任何变质剂;No modifiers are added;

——对上述锭坯通过预先热处理进行共晶硅相的颗粒离散化,工艺参数为:——The eutectic silicon phase particles are discretized by pre-heating the above-mentioned ingot, and the process parameters are:

加热速度:10~30℃/min;Heating speed: 10~30℃/min;

加热温度:450~520℃;Heating temperature: 450~520℃;

保温时间:1~3hr;Holding time: 1~3hr;

——对上述经预先热处理后的锭坯进行热塑性加工,工艺参数为:——Carry out thermoplastic processing on the above-mentioned pre-heat-treated ingot, and the process parameters are:

变形温度:400~520℃;Deformation temperature: 400~520℃;

冷却方式:自然冷却或者强制冷却;Cooling method: natural cooling or forced cooling;

——对上述经热塑性加工后的结构材料件进行热处理。- Heat treatment of the above-mentioned structural material pieces after thermoplastic processing.

本发明所提供的含镁高硅铝合金的结构材料件的制备方法中,对于热塑性加工后自然冷却的结构材料件,热处理采用固溶处理+人工时效工艺:In the preparation method of the magnesium-containing high-silicon aluminum alloy structural material parts provided by the present invention, for the structural material parts naturally cooled after thermoplastic processing, the heat treatment adopts solution treatment + artificial aging process:

——固溶处理参数为:——The solid solution treatment parameters are:

加热速度:10~30℃/min;Heating speed: 10~30℃/min;

固溶处理温度:500~540℃;Solution treatment temperature: 500~540℃;

固溶处理时间:0.5~3hr;Solution treatment time: 0.5~3hr;

——人工时效参数为:——The artificial aging parameters are:

时效温度:160~200℃;Aging temperature: 160~200℃;

时效时间:1~10hr。Aging time: 1~10hr.

本发明所提供的含镁高硅铝合金的结构材料件的制备方法中,对于热塑性加工后强制冷却的结构材料件,热处理采用人工时效或自然时效工艺:In the preparation method of the magnesium-containing high-silicon aluminum alloy structural material parts provided by the present invention, for the structural material parts that are forced to cool after thermoplastic processing, the heat treatment adopts artificial aging or natural aging process:

——人工时效参数为:——The artificial aging parameters are:

时效温度:160~200℃;Aging temperature: 160~200℃;

时效时间:1~10hr。Aging time: 1~10hr.

本发明所提供的含镁高硅铝合金的结构材料件的制备方法中,当热塑性加工采用轧制工艺时,轧制总压下量最好大于40%。In the preparation method of the magnesium-containing high-silicon aluminum alloy structural material provided by the present invention, when the thermoplastic processing adopts the rolling process, the total rolling reduction is preferably greater than 40%.

本发明所提供的含镁高硅铝合金的结构材料件的制备方法中,当热塑性加工采用挤压工艺时,挤压比最好大于15。In the preparation method of the magnesium-containing high-silicon aluminum alloy structural material provided by the present invention, when the extrusion process is used for thermoplastic processing, the extrusion ratio is preferably greater than 15.

本发明所提供的含镁高硅铝合金的结构材料件的制备方法中,当热塑性加工采用锻造工艺时,锻造比大于40%。In the preparation method of the magnesium-containing high-silicon aluminum alloy structural material provided by the present invention, when the thermoplastic processing adopts a forging process, the forging ratio is greater than 40%.

本发明的关键在于克服了传统的技术偏见,在不添加任何变质剂的前提下,将传统的半连续铸造方法用于含镁高硅铝合金的制备,结合热塑性加工和热处理,获得了意想不到的技术效果,即得到了具有细小弥散硅颗粒和第二相分布在等轴晶粒铝基体上、具有良好塑性和高强度的新型铝合金加工材料。The key of the present invention is to overcome the traditional technical prejudice. On the premise of not adding any modifier, the traditional semi-continuous casting method is used for the preparation of magnesium-containing high-silicon aluminum alloy, combined with thermoplastic processing and heat treatment, an unexpected The technical effect is to obtain a new type of aluminum alloy processing material with fine dispersed silicon particles and the second phase distributed on the equiaxed grain aluminum matrix, with good plasticity and high strength.

表1示例给出采用本发明制备的挤压硅铝合金(Al-8.5Si-1.8Mg-0.27Fe、Al-12.7Si-0.7Mg-1.5Cu-0.3Ni-0.3Ti-0.3Fe和Al-15.5Si-0.7Mg-0.27Fe)在挤压和热处理状态下的力学性能,并与中国国家标准中的挤压6063合金在T5、T6状态下的力学性能进行了对比。Table 1 illustrates the extruded silicon-aluminum alloy (Al-8.5Si-1.8Mg-0.27Fe, Al-12.7Si-0.7Mg-1.5Cu-0.3Ni-0.3Ti-0.3Fe and Al-15.5 The mechanical properties of Si-0.7Mg-0.27Fe) in the state of extrusion and heat treatment were compared with the mechanical properties of the extruded 6063 alloy in the Chinese national standard in the state of T5 and T6.

表1本发明制备的合金与中国国家标准6063合金的力学性能对比The mechanical property comparison of the alloy prepared by the present invention and Chinese national standard 6063 alloy in table 1

合金alloy 状态state   屈服强度(MPa)Yield strength (MPa)   拉伸强度(MPa)Tensile strength (MPa)   延伸率(%)Elongation (%)   Al-8.5Si-1.8Mg-0.27FeAl-8.5Si-1.8Mg-0.27Fe   T1T1   175175   252252   1313   Al-8.5Si-1.8Mg-0.27FeAl-8.5Si-1.8Mg-0.27Fe   T6T6   296296   344344   7.27.2   Al-15.5Si-0.7Mg-0.27FeAl-15.5Si-0.7Mg-0.27Fe   T1T1   120120   232232   1111   Al-15.5Si-0.7Mg-0.27FeAl-15.5Si-0.7Mg-0.27Fe   T6T6   280280   325325   7.57.5   Al-12.7Si-0.7Mg-1.5Cu-0.3Ni-0.3Ti-0.3FeAl-12.7Si-0.7Mg-1.5Cu-0.3Ni-0.3Ti-0.3Fe   T1T1   112112   190190   1515   Al-12.7Si-0.7Mg-1.5Cu-0.3Ni-0.3Ti-0.3FeAl-12.7Si-0.7Mg-1.5Cu-0.3Ni-0.3Ti-0.3Fe   T6T6   268268   347347   9 9   6063Al-(0.2-0.6)Si-(0.4-0.9)Mg6063Al-(0.2-0.6)Si-(0.4-0.9)Mg   T5T5   110110   160160   8 8   6063Al-(0.2-0.6)Si-(0.4-0.9)Mg6063Al-(0.2-0.6)Si-(0.4-0.9)Mg   T6T6   180180   205205   8 8

可见,Al-15.5Si-0.7Mg-0.27Fe、Al-12.7Si-0.7Mg-1.5Cu-0.3Ni-0.3Ti-0.3Fe和Al-8.5Si-1.8Mg-0.27Fe合金在T6状态下的屈服强度、抗拉强度均高于6063合金T6状态的国家标准;合金的挤压状态(T1)力学性能尤其是延伸率高于6060合金T5状态的国家标准。6063合金是最通用的挤压型材合金,国内外将其大量应用于建筑、车辆、装饰等领域,具有广阔的市场需求。一旦用含镁高硅铝合金部分取代6063合金,必将带来巨大的经济效益。另外,硅的添加将大量节约铝资源。It can be seen that the yield of Al-15.5Si-0.7Mg-0.27Fe, Al-12.7Si-0.7Mg-1.5Cu-0.3Ni-0.3Ti-0.3Fe and Al-8.5Si-1.8Mg-0.27Fe alloys in the T6 state The strength and tensile strength are higher than the national standard of the 6063 alloy T6 state; the mechanical properties of the alloy in the extrusion state (T1), especially the elongation, are higher than the national standard of the 6060 alloy T5 state. 6063 alloy is the most common extruded profile alloy. It is widely used in construction, vehicles, decoration and other fields at home and abroad, and has a broad market demand. Once the 6063 alloy is partially replaced with magnesium-containing high-silicon aluminum alloy, it will definitely bring huge economic benefits. In addition, the addition of silicon will greatly save aluminum resources.

附图说明Description of drawings

图1为半连续铸造设备的结构示意图;Fig. 1 is the structural representation of semi-continuous casting equipment;

图2为典型的实施例1中Al-12.7Si-0.7Mg-0.3Fe合金(#3)的半连续铸造(铸造温度730℃,铸造速度180mm/min,冷却水流量8g/mm·s)锭坯的铸态微观组织形貌;Fig. 2 is a semi-continuous casting (casting temperature 730°C, casting speed 180mm/min, cooling water flow rate 8g/mm s) ingot of Al-12.7Si-0.7Mg-0.3Fe alloy (#3) in typical Example 1 The as-cast microstructure of the slab;

图3为典型的实施例1中Al-12.7Si-0.7Mg-0.3Fe合金(#3)的半连续铸造(铸造温度730℃,铸造速度180mm/min,冷却水流量8g/mm·s)锭坯的高倍铸态微观组织形貌;Fig. 3 is a semi-continuous casting (casting temperature 730°C, casting speed 180mm/min, cooling water flow rate 8g/mm s) ingot of Al-12.7Si-0.7Mg-0.3Fe alloy (#3) in typical Example 1 High-magnification as-cast microstructure of billet;

图4为典型的实施例2中半连续铸造Al-12.7Si-0.7Mg-0.3Fe合金(#3)经500℃预先热处理2hr、470℃热挤压(挤压比15)后的微观组织形貌;Fig. 4 is the microstructural shape of the semi-continuously cast Al-12.7Si-0.7Mg-0.3Fe alloy (#3) in Example 2 after pre-heat treatment at 500°C for 2 hours and hot extrusion at 470°C (extrusion ratio 15). appearance;

图5为典型的实施例3中半连续铸造Al-12.7Si-0.7Mg-0.3Fe合金(#3)经500℃预先热处理2hr、470℃热挤压(挤压比15)后T6状态(固溶温度540℃,时间1hr;人工时效温度200℃,时间3hr)的微观组织形貌;Fig. 5 is the T6 state (solid state) after the semi-continuous casting Al-12.7Si-0.7Mg-0.3Fe alloy (#3) in the typical embodiment 3 is pre-heated at 500 ° C for 2 hours, and hot extruded at 470 ° C (extrusion ratio 15). Melting temperature 540°C, time 1hr; artificial aging temperature 200°C, time 3hr) microstructure morphology;

图6为典型的实施例1中Al-15.5Si-0.7Mg-0.27Fe合金(#5)的半连续铸造(铸造温度800℃,铸造速度140mm/min,冷却水流量10gmm·s)锭坯的铸态微观组织形貌;Fig. 6 is the semi-continuous casting (casting temperature 800 ℃, casting speed 140mm/min, cooling water flow rate 10gmm s) billet of Al-15.5Si-0.7Mg-0.27Fe alloy (#5) in typical embodiment 1 As-cast microstructure morphology;

图7为典型的实施例1中Al-15.5Si-0.7Mg-0.27Fe合金(#5)的半连续铸造(铸造温度800℃,铸造速度140mm/min,冷却水流量10g/mm·s)锭坯的高倍铸态微观组织形貌;Figure 7 is a semi-continuous casting (casting temperature 800°C, casting speed 140mm/min, cooling water flow rate 10g/mm s) ingot of Al-15.5Si-0.7Mg-0.27Fe alloy (#5) in typical Example 1 High-magnification as-cast microstructure of billet;

图8为典型的实施例2中半连续铸造Al-15.5Si-0.7Mg-0.27Fe合金(#5)经500℃预先热处理2hr、470℃热挤压(挤压比45)后的微观组织形貌;Figure 8 shows the microstructure of the semi-continuously cast Al-15.5Si-0.7Mg-0.27Fe alloy (#5) in Example 2 after heat treatment at 500°C for 2 hours and hot extrusion at 470°C (extrusion ratio 45). appearance;

图9为典型的实施例2中半连续铸造Al-15.5Si-0.7Mg-0.27Fe合金(#5)矩形铸坯经500℃预先热处理1hr、500℃热轧(压下量60%)后的微观组织形貌;Fig. 9 is a semi-continuously cast Al-15.5Si-0.7Mg-0.27Fe alloy (#5) rectangular cast slab in typical embodiment 2 after pre-heat treatment at 500°C for 1hr and hot rolling at 500°C (reduction 60%) Microstructure morphology;

图10为典型的实施例3中半连续铸造Al-15.5Si-0.7Mg-0.27Fe合金(#5)经500℃预先热处理2hr、470℃热挤压(挤压比45)后T6状态(固溶温度520℃,时间2hr;人工时效温度180℃,时间4hr)的微观组织形貌;Fig. 10 is the T6 state (solid state) after the semi-continuous casting Al-15.5Si-0.7Mg-0.27Fe alloy (#5) in the typical embodiment 3 is pre-heated at 500°C for 2 hours and hot extruded at 470°C (extrusion ratio 45). Melting temperature 520°C, time 2hr; artificial aging temperature 180°C, time 4hr) microstructure morphology;

图11为典型的实施例3中半连续铸造Al-15.5Si-0.7Mg-0.27Fe合金(#5)矩形铸坯经500℃预先热处理1hr、500℃热轧(压下量60%)后T6状态(固溶温度520℃,时间3hr;人工时效温度200℃,时间4hr)的微观组织形貌;Figure 11 shows T6 of the semi-continuously cast Al-15.5Si-0.7Mg-0.27Fe alloy (#5) rectangular billet in Example 3, which was pre-heated at 500°C for 1 hr and hot rolled at 500°C (reduction 60%) State (solution temperature 520°C, time 3hr; artificial aging temperature 200°C, time 4hr) microstructure morphology;

图12为典型的实施例3中半连续铸造Al-15.5Si-0.7Mg-0.27Fe合金(#5)经500℃预先热处理2hr、470℃热挤压(挤压比45)后T6状态(固溶温度520℃,时间2hr;人工时效温度180℃,时间4hr)的高倍微观组织形貌;Fig. 12 is the T6 state (solid state) after the semi-continuous casting Al-15.5Si-0.7Mg-0.27Fe alloy (#5) in the typical embodiment 3 is pre-heated at 500°C for 2 hours and hot extruded at 470°C (extrusion ratio 45). Melting temperature 520°C, time 2hr; artificial aging temperature 180°C, time 4hr) high-magnification microstructure morphology;

图13为典型的实施例1中Al-17.5Si-0.7Mg-1.0Cu-0.27Fe合金(#7)的半连续铸造(铸造温度850℃,铸造速度120mm/min,冷却水流量10g/mm·s)锭坯的铸态微观组织形貌。Fig. 13 is the semi-continuous casting of Al-17.5Si-0.7Mg-1.0Cu-0.27Fe alloy (#7) in typical embodiment 1 (casting temperature 850 ℃, casting speed 120mm/min, cooling water flow rate 10g/mm. s) As-cast microstructure morphology of the ingot.

具体实施方式Detailed ways

实施例1半连续铸造锭坯的制备The preparation of embodiment 1 semi-continuous casting billet

选用设备为自制设备,其结构原理示于图1。图中,1-冷却水;2-结晶器;3-坯料;4-热顶;5-石墨环,6-金属液。合金的化学成分见表2,铸造工艺参数见表3。The selected equipment is self-made equipment, and its structural principle is shown in Figure 1. In the figure, 1-cooling water; 2-crystallizer; 3-blank; 4-hot top; 5-graphite ring, 6-metal liquid. The chemical composition of the alloy is shown in Table 2, and the casting process parameters are shown in Table 3.

表2半连续铸造含镁高硅铝合金的化学成分(wt.%)Table 2 Chemical composition of semi-continuous casting magnesium-containing high-silicon aluminum alloys (wt.%)

  合金编号Alloy No.   SiSi   MgMg   CuCu   ZnZn   NiNi   TiTi   FeFe   AlAl   #1 #1   8.58.5   0.70.7   0.50.5   0.30.3   0.30.3   0.270.27   Bal.Bal.   #2 #2   8.58.5   1.81.8   0.270.27   Bal.Bal.   #3#3   12.712.7   0.70.7   0.30.3   Bal.Bal.

  合金编号Alloy No.   SiSi   MgMg   CuCu   ZnZn   NiNi   TiTi   FeFe   AlAl   #4#4   12.712.7   1.21.2   1.51.5   0.30.3   0.30.3   0.30.3   0.30.3   Bal.Bal.   #5#5   15.515.5   0.70.7   0.270.27   Bal.Bal.   #6#6   15.515.5   1.81.8   0.80.8   0.50.5   0.30.3   0.270.27   Bal.Bal.   #7#7   17.517.5   0.70.7   1.01.0   0.270.27   Bal.Bal.   #8 #8   17.517.5   1.01.0   1.01.0   0.270.27   Bal.Bal.

表3不同合金的铸造工艺参数Table 3 Casting process parameters of different alloys

  合金编号Alloy No.   铸坯断面尺寸(mm)Billet section size (mm)   铸造温度(℃)Casting temperature (℃)   铸造速度(mm/min)Casting speed (mm/min)   冷却水量(g/mm·s)Cooling water volume (g/mm s)   #1 #1   Φ100Φ100   780780   120120   8 8   #1 #1   600×50600×50   780780   180180   8 8   #2 #2   Φ100Φ100   780780   120120   8 8   #2 #2   600×50600×50   780780   180180   8 8   #3#3   Φ100Φ100   730730   180180   1010   #3#3   600×50600×50   730730   180180   1010   #4#4   Φ100Φ100   730730   140140   8 8   #4#4   600×50600×50   730730   180180   8 8   #5#5   Φ100Φ100   800800   140140   1010   #5#5   600×50600×50   850850   180180   1010   #6#6   Φ100Φ100   800800   160160   1212   #7#7   Φ60Φ60   850850   120120   1010

  合金编号Alloy No.   铸坯断面尺寸(mm)Billet section size (mm)   铸造温度(℃)Casting temperature (℃)   铸造速度(mm/min)Casting speed (mm/min)   冷却水量(g/mm·s)Cooling water volume (g/mm s)   #8 #8   Φ60Φ60   850850   180180   1414   #8 #8   Φ100Φ100   850850   180180   1414

实施例2铸造合金锭坯的预先热处理及挤压、轧制、锻造Pre-heat treatment and extrusion, rolling, forging of embodiment 2 cast alloy ingot billet

预先热处理在热处理炉中按设定加热速度加热,到达设定温度后,按设定时间保温。然后使用挤压机、热轧机和锻造机完成塑性变形。具体工艺参数分别在表4、表5、表6中给出。The pre-heat treatment is heated in the heat treatment furnace according to the set heating rate, and after reaching the set temperature, it is kept for the set time. Plastic deformation is then done using extruders, hot rolling mills and forging machines. The specific process parameters are given in Table 4, Table 5, and Table 6, respectively.

表4不同合金的预先热处理与挤压工艺参数Table 4 Pre-heat treatment and extrusion process parameters of different alloys

  合金编号Alloy No.   预处理加热速度(℃/min)Pretreatment heating rate (℃/min)   预处理温度(℃)Pretreatment temperature (℃)   预处理时间(hr)Preprocessing time (hr)   挤压温度(℃)Extrusion temperature (℃) 挤压比extrusion ratio   冷却方式 cooling method   变形后合金编号Alloy number after deformation   #1 #1   2525   450450   33   450450   3636   自然 nature   1A1A   #2 #2   2020   450450   33   450450   3636   自然 nature   2A2A   #3#3   1515   500500   2 2   470470   1515   自然 nature   3A3A   #4#4   1515   500500   2 2   470470   1515   强制Mandatory   4A4A   #5#5   1515   500500   2 2   470470   4545   自然 nature   5A5A   #7#7   1010   500500   44   480480   3030   强制Mandatory   7A7A   #8 #8   1010   500500   44   480480   3030   强制Mandatory   8A8A

表5不同合金的预先热处理与轧制工艺参数Table 5 Pre-heat treatment and rolling process parameters of different alloys

  合金编号Alloy No.   预处理加热速度(℃/min)Pretreatment heating rate (℃/min)   预处理温度(℃)Pretreatment temperature (℃)   预处理时间(hr)Preprocessing time (hr)   轧制温度(℃)Rolling temperature (℃)   轧制压下量(%)Rolling reduction (%)   冷却方式 cooling method   变形后合金编号Alloy number after deformation   #1 #1   2020   450450   33   450450   5050   自然 nature   1B1B   #2 #2   2020   520520   1 1   520520   7070   自然 nature   2B2B

  合金编号Alloy No.   预处理加热速度(℃/min)Pretreatment heating rate (℃/min)   预处理温度(℃)Pretreatment temperature (℃)   预处理时间(hr)Preprocessing time (hr)   轧制温度(℃)Rolling temperature (℃)   轧制压下量(%)Rolling reduction (%)   冷却方式 cooling method   变形后合金编号Alloy number after deformation   #3#3   2020   500500   2 2   500500   6060   自然 nature   3B3B   #4#4   1515   480480   33   480480   6060   自然 nature   4B4B   #4#4   1515   520520   1 1   520520   7070   自然 nature   4B24B2   #5#5   1515   500500   33   500500   6060   自然 nature   5B5B   #5#5   1515   520520   1 1   520520   7070   自然 nature   5B25B2

表6不同合金的预先热处理与锻造工艺参数Table 6 Pre-heat treatment and forging process parameters of different alloys

  合金编号Alloy No.   预处理加热速度(℃/min)Pretreatment heating rate (℃/min)   预处理温度(℃)Pretreatment temperature (℃)   预处理时间(hr)Preprocessing time (hr)   锻造温度(℃)Forging temperature (℃) 锻造比(%)Forging ratio (%) 冷却方式cooling method   变形后合金编号Alloy number after deformation   #2 #2   2525   500500   2 2   500500   6565   自然 nature   2C2C   #3#3   2020   520520   1 1   520520   6565   自然 nature   3C3C   #5#5   1515   500500   2 2   500500   5050   自然 nature   5C5C   #6#6   1010   500500   44   500500   5050   自然 nature   6C6C   #6#6   1515   490490   44   490490   5050   自然 nature   6C26C2   #7#7   1010   500500   44   500500   5050   自然 nature   7C7C   #8 #8   1010   500500   44   500500   5050   自然 nature   8C8C

实施例3合金变形(挤压、轧制、锻造)后的热处理Heat treatment after embodiment 3 alloy deformation (extrusion, rolling, forging)

经过挤压、轧制、锻造的工件,在设定热处理工艺参数下进行热处理,具体热处理工艺参数分别在表7、表8、表9中给出。部分合金在不同变形方式与热处理状态下的力学性能在表10中给出。The extruded, rolled, and forged workpieces are heat treated under the set heat treatment process parameters. The specific heat treatment process parameters are given in Table 7, Table 8, and Table 9, respectively. The mechanical properties of some alloys under different deformation modes and heat treatment states are given in Table 10.

表7不同合金挤压制品的热处理工艺参数Table 7 Heat treatment process parameters of different alloy extrusion products

  变形后合金编号Alloy number after deformation   合金编号Alloy No.   热处理状态Heat treatment state   固溶温度(℃)Solid solution temperature (℃)   固溶时间(hr)Solid solution time (hr)   人工时效温度(℃)Artificial aging temperature (℃)   人工时效时间(hr)Artificial aging time (hr)   热处理后合金编号Alloy number after heat treatment   1A1A   #1 #1   T6T6   520520   2 2   180180   33   1AT61AT6   3A3A   #3#3   T6T6   540540   0.50.5   200200   33   3AT63AT6   4A4A   #4#4   T5T5   180180   33   4AT54AT5   5A5A   #5#5   T1T1   5AT15AT1   5A5A   #5#5   T6T6   520520   2 2   180180   2 2   5AT65AT6   7A7A   #7#7   T5T5   180180   66   7AT57AT5   8A8A   #8 #8   T5T5   170170   8 8   8AT58AT5

表8不同合金轧制制品的热处理工艺参数Table 8 Heat treatment process parameters of different alloy rolled products

  变形后合金编号Alloy number after deformation   合金编号Alloy No.   热处理状态Heat treatment status   固溶温度(℃)Solid solution temperature (℃)   固溶时间(hr)Solid solution time (hr)   人工时效温度(℃)Artificial aging temperature (℃)   人工时效时间(hr)Artificial aging time (hr)   热处理后合金编号Alloy number after heat treatment   1B1B   #1 #1   T6T6   500500   33   160160   8 8   1BT61BT6   2B2B   #2 #2   T5T5   180180   33   2BT12BT1   2B2B   #2 #2   T6T6   520520   2 2   160160   1010   2BT62BT6   4B4B   #4#4   T6T6   540540   0.50.5   200200   8 8   4BT64BT6   5B5B   #5#5   T6T6   520520   1 1   200200   44   5BT65BT6   5B25B2   #5#5   T6T6   520520   1 1   200200   66   5B2T65B2T6

表9不同合金锻造制品的热处理工艺参数Table 9 Heat Treatment Process Parameters of Different Alloy Forged Products

  变形后合金编号Alloy number after deformation   合金编号Alloy No.   热处理状态Heat treatment state   固溶温度(℃)Solid solution temperature (℃)   固溶时间(hr)Solid solution time (hr)   人工时效温度(℃)Artificial aging temperature (℃)   人工时效时间(hr)Artificial aging time (hr)   热处理后合金编号Alloy number after heat treatment   2C2C   #2 #2   T6T6   520520   33   180180   66   2CT62CT6

  变形后合金编号Alloy number after deformation   合金编号Alloy No.   热处理状态Heat treatment state   固溶温度(℃)Solid solution temperature (℃)   固溶时间(hr)Solid solution time (hr)   人工时效温度(℃)Artificial aging temperature (℃)   人工时效时间(hr)Artificial aging time (hr)   热处理后合金编号Alloy number after heat treatment   5C5C   #5#5   T6T6   540540   0.50.5   200200   44   5CT65CT6   5C5C   #5#5   T1T1   5CT15CT1   6C26C2   #6#6   T6T6   510510   44   170170   1010   6C2T66C2T6   7C7C   #7#7   T6T6   510510   33   200200   2 2   7CT67CT6

  8C28C2   #8 #8   T6T6   510510   44   180180   8 8   8C2T68C2T6

表10部分合金不同变形、热处理状态下的常温力学性能Table 10 Mechanical properties at room temperature of some alloys under different deformation and heat treatment states

  热处理后合金编号Alloy number after heat treatment   屈服强度σ<sub>02</sub>(MPa)Yield strength σ<sub>02</sub>(MPa)   拉伸强度σ<sub>b</sub>(MPa)Tensile strength σ<sub>b</sub>(MPa)   延伸率(%)Elongation (%)   1AT61AT6   293293   378378   14.614.6   2AT62AT6   302302   378378   12.512.5   2BT62BT6   294294   360360   11.711.7   4AT54AT5   290290   375375   10.410.4   4AT64AT6   305305   380380   9.29.2   5AT15AT1   120120   232232   1010   5AT65AT6   280280   325325   7.57.5   5BT65BT6   300300   366366   7.67.6   6C2T66C2T6   260260   343343   66   7AT57AT5   240240   265265   1.81.8   7CT67CT6   285285   327327   2.52.5   8C2T68C2T6   296296   339339   2.82.8

Claims (8)

1. structural wood materials and parts that contain the magnesium silumin comprise section bar, bar, sheet material, forging, it is characterized in that:
Described structural wood materials and parts adopt semi-continuous casting method to prepare ingot blank, carry out the particle discretize of Eutectic Silicon in Al-Si Cast Alloys phase then by thermal treatment in advance, Al-alloy products by thermoplasticity processing and thermal treatment acquisition net shape and microtexture again, its strengthening mechanism are the particle strengthening and second precipitation strength of particle mutually of refined crystalline strengthening, the silicon grain of aluminum substrate;
The content of Mg is 0.2~2.0% weight in the described structural wood materials and parts, and the content of Si is 8~18% weight; Have the heterogeneous microstructure of even refinement, aluminum substrate is organized as equi-axed crystal, mean sizes<6 μ m, the Si particle with other second mutually particle be disperse distribution and mean sizes<5 μ m.
2. according to the described structural wood materials and parts that contain the magnesium silumin of claim 1, it is characterized in that can containing in the described alloy one or more of Cu, Zn, Ni, Ti, Fe, total content is lower than 2% weight.
3. described preparation method who contains the structural wood materials and parts of magnesium silumin of claim 1 is characterized in that:
---adopt semi-continuous casting method to prepare ingot blank, processing parameter is:
Pouring temperature: above 150~300 ℃ of corresponding alloy liquid phase line temperature;
Casting speed: 100~200mm/min;
Solidify peripheral cooling water inflow: the 5~15g/mms of base;
Do not add any alterant;
---above-mentioned ingot blank is carried out the particle discretize of Eutectic Silicon in Al-Si Cast Alloys phase by thermal treatment in advance, and processing parameter is:
Rate of heating: 10~30 ℃/min;
Heating temperature: 450~520 ℃;
Soaking time: 1~3hr;
---above-mentioned ingot blank after thermal treatment is in advance carried out thermoplasticity processing, and processing parameter is:
Texturing temperature: 400~520 ℃;
The type of cooling: naturally cooling or pressure cooling;
---above-mentioned structural wood materials and parts after thermoplasticity processing are heat-treated.
4. according to the described preparation method who contains the structural wood materials and parts of magnesium silumin of claim 3, the structural wood materials and parts for thermoplasticity processing back naturally cooling adopt solution treatment+artificially aged thermal treatment process, it is characterized in that:
---the solution treatment parameter is:
Rate of heating: 10~30 ℃/min;
Solid solution temperature: 500~540 ℃;
The solution treatment time: 0.5~3hr;
---the artificial aging parameter is:
Aging temp: 160~200 ℃;
Aging time: 1~10hr.
5. according to the described preparation method who contains the structural wood materials and parts of magnesium silumin of claim 3, force refrigerative structural wood materials and parts, adopt the thermal treatment process of artificial aging or natural aging, it is characterized in that for thermoplasticity processing back:
---the artificial aging parameter is:
Aging temp: 160~200 ℃;
Aging time: 1~10hr.
6. according to the described preparation method who contains the structural wood materials and parts of magnesium silumin of claim 3, when rolling technology was adopted in processing for thermoplasticity, it is characterized in that: rolling total reduction was greater than 40%.
7. according to the described preparation method who contains the structural wood materials and parts of magnesium silumin of claim 3, when extrusion process was adopted in processing for thermoplasticity, it is characterized in that: extrusion ratio was greater than 15.
8. according to the described preparation method who contains the structural wood materials and parts of magnesium silumin of claim 3, when forging process was adopted in processing for thermoplasticity, it is characterized in that: forging ratio was greater than 40%.
CN2008101376030A 2007-06-29 2008-06-30 Structural material piece of magnesium-containing silumin and method for preparing same Expired - Fee Related CN101333614B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2008101376030A CN101333614B (en) 2007-06-29 2008-06-30 Structural material piece of magnesium-containing silumin and method for preparing same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN200710011919.0 2007-06-29
CN200710011919 2007-06-29
CN2008101376030A CN101333614B (en) 2007-06-29 2008-06-30 Structural material piece of magnesium-containing silumin and method for preparing same

Publications (2)

Publication Number Publication Date
CN101333614A CN101333614A (en) 2008-12-31
CN101333614B true CN101333614B (en) 2010-09-01

Family

ID=40196494

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2008101376030A Expired - Fee Related CN101333614B (en) 2007-06-29 2008-06-30 Structural material piece of magnesium-containing silumin and method for preparing same

Country Status (8)

Country Link
US (1) US20100126639A1 (en)
EP (1) EP2172572B1 (en)
JP (1) JP2010531388A (en)
KR (1) KR20100018048A (en)
CN (1) CN101333614B (en)
CA (1) CA2689332A1 (en)
RU (1) RU2463371C2 (en)
WO (1) WO2009003365A1 (en)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102230114A (en) * 2011-06-29 2011-11-02 北京科技大学 High-silicon aluminum alloy optimized based on Fe-rich phase and preparation method thereof
CN102747256A (en) * 2012-06-19 2012-10-24 东南大学 Aluminum-silicon based aluminum section and preparation technology thereof
RU2525872C1 (en) * 2013-04-23 2014-08-20 Федеральное Государственное Автономное Образовательное Учреждение Высшего Профессионального Образования "Сибирский Федеральный Университет" FORMATION OF MICROSTRUCTURE OF EUTECTIC Al-Si ALLOY
CN103769551B (en) * 2014-01-17 2016-03-30 新疆众和股份有限公司 The production technology of a kind of aluminium silicon magnesium system Birmasil
EP3128021B1 (en) 2014-03-31 2018-10-17 Hitachi Metals, Ltd. Al-si-mg system aluminum alloy for casting, which has excellent specific stiffness, strength and ductility, and cast member formed from same
CN104651763A (en) * 2014-05-15 2015-05-27 巩向鹏 Performance optimization method for 6063 aluminum alloy
CN104087880B (en) * 2014-07-08 2016-05-04 江苏佳铝实业股份有限公司 A kind of production technology of high damping alusil alloy sheet material
KR101990225B1 (en) * 2014-12-05 2019-06-17 후루카와 덴키 고교 가부시키가이샤 Aluminum alloy wire material, aluminum alloy stranded wire, covered electrical wire, wire harness, and method for producing aluminum alloy wire material
JP6523681B2 (en) * 2014-12-25 2019-06-05 株式会社Uacj Aluminum alloy sheet for case and case
CN105112744A (en) * 2015-10-08 2015-12-02 江苏佳铝实业股份有限公司 Manufacturing process of high-silicon aluminum alloy plate
TWI565808B (en) * 2015-10-13 2017-01-11 財團法人工業技術研究院 Aluminum alloy composition and manufacturing method of aluminum alloy object
FR3044326B1 (en) * 2015-12-01 2017-12-01 Constellium Neuf-Brisach HIGH-RIGIDITY THIN SHEET FOR AUTOMOTIVE BODYWORK
CN105695810B (en) * 2015-12-15 2017-12-05 东北大学 One kind can ageing strengthening silumin and its deformation material preparation method containing Mn
CN105695811A (en) * 2015-12-15 2016-06-22 东北大学 Ti-containing high-silicon aluminum alloy capable of achieving aging strengthening and preparation method for deformation material of Ti-containing high-silicon aluminum alloy
CN106929781B (en) * 2015-12-29 2019-01-08 徐工集团工程机械股份有限公司 A kind of preparation method of high-strength aluminum alloy pin shaft
CN106544606B (en) * 2015-12-29 2018-05-01 徐工集团工程机械股份有限公司 A kind of preparation method of wear-resistant aluminum alloy axis pin
CN105671376B (en) * 2016-01-26 2017-04-26 北京航空航天大学 High-strength and high-plasticity hypoeutectic aluminium-silicon alloy material manufactured through gravity casting and room-temperature cold rolling, and manufacturing method thereof
CN106399765B (en) * 2016-10-11 2019-02-26 湖南理工学院 Al-Si-Mg aluminum alloy and its preparation process
CA3085731C (en) * 2017-12-21 2022-12-13 Novelis Inc. Aluminum alloy products exhibiting improved bond durability and/or having phosphorus-containing surfaces and methods of making the same
US11498839B2 (en) * 2019-06-01 2022-11-15 GM Global Technology Operations LLC Systems and methods for producing high-purity fine powders
CN112941433A (en) * 2019-12-11 2021-06-11 中国科学院金属研究所 Aging process for improving 6082 aluminum alloy parking effect
CN113881907A (en) * 2021-08-26 2022-01-04 山东创新金属科技有限公司 Aging treatment process for extrusion casting aluminum alloy
CN113862534B (en) * 2021-10-08 2022-07-29 上海交通大学 A kind of regulation method of hereditary structure of aluminum alloy material and preparation method of 7085 aluminum alloy thick plate
CN115305391B (en) * 2022-08-10 2023-06-06 中南大学 A kind of low energy consumption aluminum-silicon-magnesium alloy and preparation method thereof
CN118241086B (en) * 2024-05-28 2024-07-23 中铝材料应用研究院有限公司 Aluminum alloy piston and preparation method thereof

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB582732A (en) * 1944-03-10 1946-11-26 Horace Campbell Hall Aluminium alloy having low coefficient of expansion
US4068645A (en) * 1973-04-16 1978-01-17 Comalco Aluminium (Bell Bay) Limited Aluminum-silicon alloys, cylinder blocks and bores, and method of making same
JPS5320243B2 (en) * 1974-04-20 1978-06-26
JPS5192709A (en) * 1975-02-12 1976-08-14 KAKYOSHOARUMINIUMUUKEISOKEIGOKINNO SHOSHOKEISOBISAIKAHO
JPS52129607A (en) * 1976-04-23 1977-10-31 Hitachi Ltd Production of a1-si alloy having fine structure
JPS5669344A (en) * 1979-11-07 1981-06-10 Showa Alum Ind Kk Aluminum alloy for forging and its manufacture
JPS6283453A (en) * 1985-10-07 1987-04-16 Sumitomo Alum Smelt Co Ltd Manufacture of aluminum alloy ingot for extrusion
JP2506115B2 (en) * 1987-07-11 1996-06-12 株式会社豊田自動織機製作所 High-strength, wear-resistant aluminum alloy with good shear cutability and its manufacturing method
US5009844A (en) * 1989-12-01 1991-04-23 General Motors Corporation Process for manufacturing spheroidal hypoeutectic aluminum alloy
JP3318966B2 (en) * 1992-05-29 2002-08-26 日本軽金属株式会社 Manufacturing method of aluminum scroll
JPH06279904A (en) * 1993-03-30 1994-10-04 Nippon Light Metal Co Ltd Production of hyper-eutectic al-si alloy for forging and forging stock
JPH0741920A (en) * 1993-07-29 1995-02-10 Nippon Light Metal Co Ltd Heat treatment method of hypereutectic Al-Si alloy for improving wear resistance
JPH07197164A (en) * 1993-12-28 1995-08-01 Furukawa Electric Co Ltd:The Aluminum alloy having high strength and high workability and its production
JPH07224340A (en) * 1994-02-14 1995-08-22 Nippon Light Metal Co Ltd Hypereutectic al-si alloy excellent in machinability and its production
JPH083701A (en) * 1994-06-15 1996-01-09 Mitsubishi Alum Co Ltd Production of wear resistant aluminum alloy extruded material excellent in strength and machinability
JPH083674A (en) * 1994-06-17 1996-01-09 Nissan Motor Co Ltd Hypereutectic aluminum-silicon alloy and hypereutectic aluminum-silicon alloy casting
JPH08176768A (en) * 1994-12-22 1996-07-09 Nissan Motor Co Ltd Wear resistant aluminum member and production thereof
JP3835629B2 (en) * 1996-09-24 2006-10-18 住友軽金属工業株式会社 Wear-resistant aluminum alloy material with excellent machinability and corrosion resistance
JP3261056B2 (en) * 1997-01-14 2002-02-25 住友軽金属工業株式会社 High-strength wear-resistant aluminum alloy extruded material excellent in ease of forming anodized film and uniformity of film thickness and method for producing the same
KR100291560B1 (en) * 1998-12-23 2001-06-01 박호군 Hypo-eutectic al-si wrought alloy having excellent wear-resistance and low thermal expansion coefficient, its production method, and its use
JP2001020047A (en) * 1999-07-05 2001-01-23 Toyota Autom Loom Works Ltd Stock for aluminum alloy forging and its production
ATE422000T1 (en) * 2001-07-25 2009-02-15 Showa Denko Kk ALUMINUM ALLOY HAVING EXCELLENT MACHINABILITY AND ALUMINUM ALLOY MATERIAL AND PRODUCTION PROCESS THEREOF
US20030143102A1 (en) * 2001-07-25 2003-07-31 Showa Denko K.K. Aluminum alloy excellent in cutting ability, aluminum alloy materials and manufacturing method thereof
JP2002206132A (en) * 2001-11-27 2002-07-26 Kobe Steel Ltd Aluminum alloy extrusion material having excellent machinability and production method therefor
RU2221891C1 (en) * 2002-04-23 2004-01-20 Региональный общественный фонд содействия защите интеллектуальной собственности Aluminum-based alloy, article made from such alloy and method of manufacture of such article
CN1298878C (en) * 2003-12-03 2007-02-07 东华大学 Aluminum silicon alloy series possessing granulated silicon phase and its process
JP4474528B2 (en) * 2004-11-01 2010-06-09 独立行政法人産業技術総合研究所 Hyper-eutectic Al-Si alloy material with high toughness and forge forming
CN100392129C (en) * 2004-11-18 2008-06-04 东北大学 A large-size hypereutectic high-silicon aluminum alloy billet and its preparation method
JP4773796B2 (en) * 2005-10-28 2011-09-14 昭和電工株式会社 Aluminum alloy continuous casting rod, continuous casting rod casting method, continuous casting equipment

Also Published As

Publication number Publication date
WO2009003365A1 (en) 2009-01-08
US20100126639A1 (en) 2010-05-27
EP2172572A1 (en) 2010-04-07
CA2689332A1 (en) 2009-01-08
EP2172572A4 (en) 2010-12-15
CN101333614A (en) 2008-12-31
EP2172572B1 (en) 2013-05-15
RU2009149092A (en) 2011-08-10
KR20100018048A (en) 2010-02-16
JP2010531388A (en) 2010-09-24
RU2463371C2 (en) 2012-10-10

Similar Documents

Publication Publication Date Title
CN101333614B (en) Structural material piece of magnesium-containing silumin and method for preparing same
CN109530468B (en) In-situ nano reinforced aluminum alloy extrusion material for light vehicle body and isothermal variable-speed extrusion preparation method
AU2010310912B2 (en) Aluminium alloy products for manufacturing structural components and method of producing the same
CN111155007B (en) A preparation method of high-strength 2000 series aluminum alloy based on selective laser melting forming technology
CN102089450A (en) Aluminum alloy, method of casting aluminum alloy, and method of producing aluminum alloy product
CN103290278B (en) The high energy absorption capacity aluminium alloy of a kind of body of a motor car
TW201435092A (en) High strength aluminum-magnesium-silicon alloy and production process thereof
WO2012051074A2 (en) Hot thermo-mechanical processing of heat-treatable aluminum alloys
CN102409206B (en) Extrusion casted Al-Zn alloy material with high toughness
CN108251710A (en) The tough silumin of height and its preparation process of a kind of suitable extrusion casint
JP6126235B2 (en) Semi-finished product obtained by deforming heat-resistant aluminum base alloy and method for producing the same
CN101027419B (en) High-strength aluminium alloy products and method for the production thereof
Rajasekaran et al. Study of mechanical properties of stir casted Al7075/SiCp composites after thermomechanical treatment
JP2016505713A5 (en)
Meng et al. Segregation in squeeze casting 6061 aluminum alloy wheel spokes and its formation mechanism
CN113444903A (en) High-gadolinium rare earth magnesium alloy bar and preparation method thereof
KR102589799B1 (en) High-strength aluminum-based alloys and methods for producing articles therefrom
CN114293079B (en) Ultrahigh-plasticity rare earth wrought magnesium alloy and preparation method of extruded sheet thereof
JP2001316787A (en) METHOD FOR PRODUCING HALF-MELTED BILLET OF Al ALLOY FOR TRANSPORTING MACHINE
JP5575028B2 (en) High strength aluminum alloy, high strength aluminum alloy casting manufacturing method and high strength aluminum alloy member manufacturing method
WO2012027989A1 (en) Application of aluminium-zirconium-carbon master alloy in deforming process of magnesium or magnesium alloy
CN105543584B (en) The method that gravitational casting prepares high-strength high-plastic high-ductility hypoeutectic al-si alloy material with hot-extrudable group technology
WO2021003528A1 (en) Aluminium alloys
JP2003311373A (en) Method for producing base material for semi-melting formation
CN105671376B (en) High-strength and high-plasticity hypoeutectic aluminium-silicon alloy material manufactured through gravity casting and room-temperature cold rolling, and manufacturing method thereof

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20100901

CF01 Termination of patent right due to non-payment of annual fee