CN101333614B - Structural material piece of magnesium-containing silumin and method for preparing same - Google Patents
Structural material piece of magnesium-containing silumin and method for preparing same Download PDFInfo
- Publication number
- CN101333614B CN101333614B CN2008101376030A CN200810137603A CN101333614B CN 101333614 B CN101333614 B CN 101333614B CN 2008101376030 A CN2008101376030 A CN 2008101376030A CN 200810137603 A CN200810137603 A CN 200810137603A CN 101333614 B CN101333614 B CN 101333614B
- Authority
- CN
- China
- Prior art keywords
- magnesium
- parts
- wood materials
- alloy
- structural wood
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000000463 material Substances 0.000 title claims abstract description 38
- 239000011777 magnesium Substances 0.000 title claims abstract description 32
- 238000000034 method Methods 0.000 title claims abstract description 30
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 title claims abstract description 27
- 229910052749 magnesium Inorganic materials 0.000 title claims abstract description 27
- 229910000551 Silumin Inorganic materials 0.000 title claims 9
- 238000010438 heat treatment Methods 0.000 claims abstract description 48
- 229910000838 Al alloy Inorganic materials 0.000 claims abstract description 24
- 238000005266 casting Methods 0.000 claims abstract description 23
- 238000009749 continuous casting Methods 0.000 claims abstract description 19
- 239000002245 particle Substances 0.000 claims abstract description 13
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 12
- 239000010703 silicon Substances 0.000 claims abstract description 12
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 8
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims abstract description 8
- 230000005496 eutectics Effects 0.000 claims abstract description 6
- 229910045601 alloy Inorganic materials 0.000 claims description 68
- 239000000956 alloy Substances 0.000 claims description 68
- 230000032683 aging Effects 0.000 claims description 29
- 238000001125 extrusion Methods 0.000 claims description 17
- 238000002360 preparation method Methods 0.000 claims description 17
- 238000005242 forging Methods 0.000 claims description 12
- 238000001816 cooling Methods 0.000 claims description 11
- 238000005096 rolling process Methods 0.000 claims description 11
- 239000000498 cooling water Substances 0.000 claims description 10
- 239000006104 solid solution Substances 0.000 claims description 10
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 7
- 239000000243 solution Substances 0.000 claims description 7
- 238000005728 strengthening Methods 0.000 claims description 7
- 238000005516 engineering process Methods 0.000 claims description 4
- 239000011856 silicon-based particle Substances 0.000 claims description 4
- 229910052802 copper Inorganic materials 0.000 claims description 2
- 229910052742 iron Inorganic materials 0.000 claims description 2
- 229910052759 nickel Inorganic materials 0.000 claims description 2
- 238000001556 precipitation Methods 0.000 claims description 2
- 229910052719 titanium Inorganic materials 0.000 claims description 2
- 229910052725 zinc Inorganic materials 0.000 claims description 2
- 239000002023 wood Substances 0.000 claims 13
- 238000007669 thermal treatment Methods 0.000 claims 6
- 229910018125 Al-Si Inorganic materials 0.000 claims 2
- 229910018520 Al—Si Inorganic materials 0.000 claims 2
- 239000012071 phase Substances 0.000 claims 2
- 239000000758 substrate Substances 0.000 claims 2
- 239000013078 crystal Substances 0.000 claims 1
- 238000009826 distribution Methods 0.000 claims 1
- 239000007791 liquid phase Substances 0.000 claims 1
- 230000002093 peripheral effect Effects 0.000 claims 1
- 238000002791 soaking Methods 0.000 claims 1
- 239000003607 modifier Substances 0.000 abstract description 5
- 239000011159 matrix material Substances 0.000 abstract description 4
- 229920001169 thermoplastic Polymers 0.000 description 10
- 239000004416 thermosoftening plastic Substances 0.000 description 10
- CSDREXVUYHZDNP-UHFFFAOYSA-N alumanylidynesilicon Chemical compound [Al].[Si] CSDREXVUYHZDNP-UHFFFAOYSA-N 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 238000007781 pre-processing Methods 0.000 description 4
- 229910000676 Si alloy Inorganic materials 0.000 description 3
- 230000008018 melting Effects 0.000 description 3
- 238000002844 melting Methods 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 239000004033 plastic Substances 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 229910021364 Al-Si alloy Inorganic materials 0.000 description 2
- 229910017518 Cu Zn Inorganic materials 0.000 description 2
- 238000001192 hot extrusion Methods 0.000 description 2
- 238000005098 hot rolling Methods 0.000 description 2
- 238000007712 rapid solidification Methods 0.000 description 2
- 238000007711 solidification Methods 0.000 description 2
- 230000008023 solidification Effects 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 238000005275 alloying Methods 0.000 description 1
- 238000013475 authorization Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005034 decoration Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000012761 high-performance material Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000004663 powder metallurgy Methods 0.000 description 1
- 238000005204 segregation Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C21/00—Alloys based on aluminium
- C22C21/02—Alloys based on aluminium with silicon as the next major constituent
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
- C22F1/04—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
- C22F1/043—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with silicon as the next major constituent
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Forging (AREA)
- Continuous Casting (AREA)
- Extrusion Of Metal (AREA)
Abstract
Description
技术领域technical field
本发明涉及铝合金及其制备技术,特别提供了一种含镁高硅铝合金的结构材料件及其制备方法。The invention relates to an aluminum alloy and its preparation technology, and in particular provides a structural material piece of a magnesium-containing high-silicon aluminum alloy and a preparation method thereof.
背景技术Background technique
铝硅合金,尤其是高硅含量的铝硅合金,由于其低密度、高耐磨性、高抗腐蚀性和低热膨胀系数,在汽车工业和航天航空工业领域中有着广泛的应用。然而,对于普通凝固方法制备的铝硅合金,其锭坯中存在粗大的块状先析出Si颗粒和板条状共晶组织,致使合金脆性极大,难以通过塑性加工来进一步改善凝固组织和制造各种断面形状的高性能材料,从而限制了合金的应用范围。传统上,铝硅合金被划分在铸造铝合金之列。针对普通凝固铝硅合金变形能力差的问题,人们进而寻求快速凝固的方法。但是,采用快速凝固方法只能获得尺寸很小(<10mm)的块体,若是制造大尺寸的部件则需要进一步的工序。一个典型的例子即是通过粉末冶金的方法制备,但其生产成本和工艺复杂程度均很高。Al-Si alloys, especially Al-Si alloys with high silicon content, are widely used in the automotive industry and aerospace industry due to their low density, high wear resistance, high corrosion resistance and low thermal expansion coefficient. However, for the aluminum-silicon alloy prepared by the common solidification method, there are coarse massive Si particles and lath-like eutectic structure in the ingot, which makes the alloy extremely brittle, and it is difficult to further improve the solidification structure and manufacture through plastic processing. High-performance materials with various cross-sectional shapes, thus limiting the application range of alloys. Traditionally, aluminum-silicon alloys have been classified as cast aluminum alloys. Aiming at the problem of poor deformation ability of common solidified aluminum-silicon alloys, people seek a rapid solidification method. However, only very small (<10 mm) blocks can be obtained using the rapid solidification method, and further processing is required to manufacture large-sized parts. A typical example is the preparation by powder metallurgy, but its production cost and process complexity are high.
在工业纯铝和变形铝合金的生产中,半连续铸造方法(Direct ChillCasting,简称DC铸造)一直被广泛应用,人们主要关注如何降低合金成分偏析、减小晶粒尺寸、提高表面质量。利用半连续铸造方法制备大尺寸规格且不含任何变质剂(如P、Na、Sr)的高硅铝合金锭坯的技术已由本发明的发明人之一申请并获得中国专利授权(专利号ZL200510119550.6)。通过发明人的进一步研究发现,利用上述发明技术,放宽Si的下限含量(到8%重量),降低Si的上限含量(到18%重量),调整Mg的含量以及其它合金元素的含量,通过热塑性加工和随后热处理,可获得具有良好塑性、高强度的含镁高硅铝合金的结构材料件。In the production of industrial pure aluminum and wrought aluminum alloys, the semi-continuous casting method (Direct Chill Casting, referred to as DC casting) has been widely used. People mainly focus on how to reduce alloy composition segregation, reduce grain size, and improve surface quality. The technology of preparing high-silicon aluminum alloy ingots with large specifications and without any modifiers (such as P, Na, Sr) by semi-continuous casting method has been applied by one of the inventors of the present invention and obtained Chinese patent authorization (Patent No. ZL200510119550 .6). Further research by the inventors found that using the above-mentioned invention technology, the lower limit content of Si is relaxed (to 8% by weight), the upper limit content of Si is reduced (to 18% by weight), and the content of Mg and other alloying elements is adjusted. Through thermoplasticity Processing and subsequent heat treatment can obtain a structural material piece of magnesium-containing high-silicon aluminum alloy with good plasticity and high strength.
发明内容Contents of the invention
本发明的目的在于提供一种含镁高硅铝合金的结构材料件及其制备方法,可以在铸造过程中不添加任何变质剂的前提下,通过热塑性加工和热处理,低成本地制造出具有良好塑性、高强度的含镁高硅变形铝合金结构材料件。The object of the present invention is to provide a structural material piece of magnesium-containing high-silicon aluminum alloy and its preparation method, which can be produced at low cost through thermoplastic processing and heat treatment without adding any modifier in the casting process. Plastic, high-strength magnesium-containing and high-silicon deformed aluminum alloy structural material parts.
本发明具体提供了一种含镁高硅铝合金的结构材料件,包括型材、棒材、板材、锻件,其特征在于:The present invention specifically provides a structural material piece of magnesium-containing high-silicon aluminum alloy, including profiles, rods, plates, and forgings, which are characterized in that:
所述结构材料件采用半连续铸造方法制备锭坯,然后通过预先热处理进行共晶硅相的颗粒离散,再通过热塑性加工和热处理获得最终形状和微观组织的制品,其强化机理为铝基体的细晶强化、硅颗粒的颗粒强化和第二相粒子的沉淀强化;The structural material piece adopts the semi-continuous casting method to prepare the ingot, and then the particles of the eutectic silicon phase are dispersed through pre-heat treatment, and then the product with the final shape and microstructure is obtained through thermoplastic processing and heat treatment. The strengthening mechanism is the fineness of the aluminum matrix. Grain strengthening, particle strengthening of silicon particles and precipitation strengthening of second phase particles;
所述结构材料件中Mg的含量为0.2~2.0%重量,Si的含量为8~18%重量;具有均匀细化的微观组织结构,铝基体组织为等轴晶粒,平均尺寸<6μm,Si与其它第二相颗粒呈弥散分布且平均尺寸<5μm;The content of Mg in the structural material piece is 0.2-2.0% by weight, and the content of Si is 8-18% by weight; it has a uniform and refined microstructure, the aluminum matrix structure is equiaxed grains, the average size is <6 μm, and Si It is dispersedly distributed with other second phase particles and the average size is <5 μm;
本发明所提供的含镁高硅铝合金的结构材料件中,还可含有Cu、Zn、Ni、Ti、Fe之一种或多种,总含量低于2%重量。The magnesium-containing high-silicon aluminum alloy structural material piece provided by the present invention may also contain one or more of Cu, Zn, Ni, Ti, Fe, and the total content is less than 2% by weight.
本发明另外还提供了一种上述含镁高硅铝合金的结构材料件的制备方法,其特征在于:The present invention also provides a method for preparing the structural material of the above-mentioned magnesium-containing high-silicon aluminum alloy, which is characterized in that:
——采用半连续铸造方法制备锭坯,工艺参数为:——The semi-continuous casting method is used to prepare the ingot, and the process parameters are:
浇铸温度:对应合金液相线温度以上150~300℃;Casting temperature: 150-300°C above the liquidus temperature of the corresponding alloy;
铸造速度:100~200mm/min;Casting speed: 100~200mm/min;
凝固坯外围冷却水量:5~15g/mm·s;The amount of cooling water around the solidified billet: 5 ~ 15g/mm s;
不添加任何变质剂;No modifiers are added;
——对上述锭坯通过预先热处理进行共晶硅相的颗粒离散化,工艺参数为:——The eutectic silicon phase particles are discretized by pre-heating the above-mentioned ingot, and the process parameters are:
加热速度:10~30℃/min;Heating speed: 10~30℃/min;
加热温度:450~520℃;Heating temperature: 450~520℃;
保温时间:1~3hr;Holding time: 1~3hr;
——对上述经预先热处理后的锭坯进行热塑性加工,工艺参数为:——Carry out thermoplastic processing on the above-mentioned pre-heat-treated ingot, and the process parameters are:
变形温度:400~520℃;Deformation temperature: 400~520℃;
冷却方式:自然冷却或者强制冷却;Cooling method: natural cooling or forced cooling;
——对上述经热塑性加工后的结构材料件进行热处理。- Heat treatment of the above-mentioned structural material pieces after thermoplastic processing.
本发明所提供的含镁高硅铝合金的结构材料件的制备方法中,对于热塑性加工后自然冷却的结构材料件,热处理采用固溶处理+人工时效工艺:In the preparation method of the magnesium-containing high-silicon aluminum alloy structural material parts provided by the present invention, for the structural material parts naturally cooled after thermoplastic processing, the heat treatment adopts solution treatment + artificial aging process:
——固溶处理参数为:——The solid solution treatment parameters are:
加热速度:10~30℃/min;Heating speed: 10~30℃/min;
固溶处理温度:500~540℃;Solution treatment temperature: 500~540℃;
固溶处理时间:0.5~3hr;Solution treatment time: 0.5~3hr;
——人工时效参数为:——The artificial aging parameters are:
时效温度:160~200℃;Aging temperature: 160~200℃;
时效时间:1~10hr。Aging time: 1~10hr.
本发明所提供的含镁高硅铝合金的结构材料件的制备方法中,对于热塑性加工后强制冷却的结构材料件,热处理采用人工时效或自然时效工艺:In the preparation method of the magnesium-containing high-silicon aluminum alloy structural material parts provided by the present invention, for the structural material parts that are forced to cool after thermoplastic processing, the heat treatment adopts artificial aging or natural aging process:
——人工时效参数为:——The artificial aging parameters are:
时效温度:160~200℃;Aging temperature: 160~200℃;
时效时间:1~10hr。Aging time: 1~10hr.
本发明所提供的含镁高硅铝合金的结构材料件的制备方法中,当热塑性加工采用轧制工艺时,轧制总压下量最好大于40%。In the preparation method of the magnesium-containing high-silicon aluminum alloy structural material provided by the present invention, when the thermoplastic processing adopts the rolling process, the total rolling reduction is preferably greater than 40%.
本发明所提供的含镁高硅铝合金的结构材料件的制备方法中,当热塑性加工采用挤压工艺时,挤压比最好大于15。In the preparation method of the magnesium-containing high-silicon aluminum alloy structural material provided by the present invention, when the extrusion process is used for thermoplastic processing, the extrusion ratio is preferably greater than 15.
本发明所提供的含镁高硅铝合金的结构材料件的制备方法中,当热塑性加工采用锻造工艺时,锻造比大于40%。In the preparation method of the magnesium-containing high-silicon aluminum alloy structural material provided by the present invention, when the thermoplastic processing adopts a forging process, the forging ratio is greater than 40%.
本发明的关键在于克服了传统的技术偏见,在不添加任何变质剂的前提下,将传统的半连续铸造方法用于含镁高硅铝合金的制备,结合热塑性加工和热处理,获得了意想不到的技术效果,即得到了具有细小弥散硅颗粒和第二相分布在等轴晶粒铝基体上、具有良好塑性和高强度的新型铝合金加工材料。The key of the present invention is to overcome the traditional technical prejudice. On the premise of not adding any modifier, the traditional semi-continuous casting method is used for the preparation of magnesium-containing high-silicon aluminum alloy, combined with thermoplastic processing and heat treatment, an unexpected The technical effect is to obtain a new type of aluminum alloy processing material with fine dispersed silicon particles and the second phase distributed on the equiaxed grain aluminum matrix, with good plasticity and high strength.
表1示例给出采用本发明制备的挤压硅铝合金(Al-8.5Si-1.8Mg-0.27Fe、Al-12.7Si-0.7Mg-1.5Cu-0.3Ni-0.3Ti-0.3Fe和Al-15.5Si-0.7Mg-0.27Fe)在挤压和热处理状态下的力学性能,并与中国国家标准中的挤压6063合金在T5、T6状态下的力学性能进行了对比。Table 1 illustrates the extruded silicon-aluminum alloy (Al-8.5Si-1.8Mg-0.27Fe, Al-12.7Si-0.7Mg-1.5Cu-0.3Ni-0.3Ti-0.3Fe and Al-15.5 The mechanical properties of Si-0.7Mg-0.27Fe) in the state of extrusion and heat treatment were compared with the mechanical properties of the extruded 6063 alloy in the Chinese national standard in the state of T5 and T6.
表1本发明制备的合金与中国国家标准6063合金的力学性能对比The mechanical property comparison of the alloy prepared by the present invention and Chinese national standard 6063 alloy in table 1
可见,Al-15.5Si-0.7Mg-0.27Fe、Al-12.7Si-0.7Mg-1.5Cu-0.3Ni-0.3Ti-0.3Fe和Al-8.5Si-1.8Mg-0.27Fe合金在T6状态下的屈服强度、抗拉强度均高于6063合金T6状态的国家标准;合金的挤压状态(T1)力学性能尤其是延伸率高于6060合金T5状态的国家标准。6063合金是最通用的挤压型材合金,国内外将其大量应用于建筑、车辆、装饰等领域,具有广阔的市场需求。一旦用含镁高硅铝合金部分取代6063合金,必将带来巨大的经济效益。另外,硅的添加将大量节约铝资源。It can be seen that the yield of Al-15.5Si-0.7Mg-0.27Fe, Al-12.7Si-0.7Mg-1.5Cu-0.3Ni-0.3Ti-0.3Fe and Al-8.5Si-1.8Mg-0.27Fe alloys in the T6 state The strength and tensile strength are higher than the national standard of the 6063 alloy T6 state; the mechanical properties of the alloy in the extrusion state (T1), especially the elongation, are higher than the national standard of the 6060 alloy T5 state. 6063 alloy is the most common extruded profile alloy. It is widely used in construction, vehicles, decoration and other fields at home and abroad, and has a broad market demand. Once the 6063 alloy is partially replaced with magnesium-containing high-silicon aluminum alloy, it will definitely bring huge economic benefits. In addition, the addition of silicon will greatly save aluminum resources.
附图说明Description of drawings
图1为半连续铸造设备的结构示意图;Fig. 1 is the structural representation of semi-continuous casting equipment;
图2为典型的实施例1中Al-12.7Si-0.7Mg-0.3Fe合金(#3)的半连续铸造(铸造温度730℃,铸造速度180mm/min,冷却水流量8g/mm·s)锭坯的铸态微观组织形貌;Fig. 2 is a semi-continuous casting (casting temperature 730°C, casting speed 180mm/min, cooling water flow rate 8g/mm s) ingot of Al-12.7Si-0.7Mg-0.3Fe alloy (#3) in typical Example 1 The as-cast microstructure of the slab;
图3为典型的实施例1中Al-12.7Si-0.7Mg-0.3Fe合金(#3)的半连续铸造(铸造温度730℃,铸造速度180mm/min,冷却水流量8g/mm·s)锭坯的高倍铸态微观组织形貌;Fig. 3 is a semi-continuous casting (casting temperature 730°C, casting speed 180mm/min, cooling water flow rate 8g/mm s) ingot of Al-12.7Si-0.7Mg-0.3Fe alloy (#3) in typical Example 1 High-magnification as-cast microstructure of billet;
图4为典型的实施例2中半连续铸造Al-12.7Si-0.7Mg-0.3Fe合金(#3)经500℃预先热处理2hr、470℃热挤压(挤压比15)后的微观组织形貌;Fig. 4 is the microstructural shape of the semi-continuously cast Al-12.7Si-0.7Mg-0.3Fe alloy (#3) in Example 2 after pre-heat treatment at 500°C for 2 hours and hot extrusion at 470°C (extrusion ratio 15). appearance;
图5为典型的实施例3中半连续铸造Al-12.7Si-0.7Mg-0.3Fe合金(#3)经500℃预先热处理2hr、470℃热挤压(挤压比15)后T6状态(固溶温度540℃,时间1hr;人工时效温度200℃,时间3hr)的微观组织形貌;Fig. 5 is the T6 state (solid state) after the semi-continuous casting Al-12.7Si-0.7Mg-0.3Fe alloy (#3) in the
图6为典型的实施例1中Al-15.5Si-0.7Mg-0.27Fe合金(#5)的半连续铸造(铸造温度800℃,铸造速度140mm/min,冷却水流量10gmm·s)锭坯的铸态微观组织形貌;Fig. 6 is the semi-continuous casting (casting temperature 800 ℃, casting speed 140mm/min, cooling water flow rate 10gmm s) billet of Al-15.5Si-0.7Mg-0.27Fe alloy (#5) in
图7为典型的实施例1中Al-15.5Si-0.7Mg-0.27Fe合金(#5)的半连续铸造(铸造温度800℃,铸造速度140mm/min,冷却水流量10g/mm·s)锭坯的高倍铸态微观组织形貌;Figure 7 is a semi-continuous casting (casting temperature 800°C, casting speed 140mm/min, cooling water flow rate 10g/mm s) ingot of Al-15.5Si-0.7Mg-0.27Fe alloy (#5) in typical Example 1 High-magnification as-cast microstructure of billet;
图8为典型的实施例2中半连续铸造Al-15.5Si-0.7Mg-0.27Fe合金(#5)经500℃预先热处理2hr、470℃热挤压(挤压比45)后的微观组织形貌;Figure 8 shows the microstructure of the semi-continuously cast Al-15.5Si-0.7Mg-0.27Fe alloy (#5) in Example 2 after heat treatment at 500°C for 2 hours and hot extrusion at 470°C (extrusion ratio 45). appearance;
图9为典型的实施例2中半连续铸造Al-15.5Si-0.7Mg-0.27Fe合金(#5)矩形铸坯经500℃预先热处理1hr、500℃热轧(压下量60%)后的微观组织形貌;Fig. 9 is a semi-continuously cast Al-15.5Si-0.7Mg-0.27Fe alloy (#5) rectangular cast slab in typical embodiment 2 after pre-heat treatment at 500°C for 1hr and hot rolling at 500°C (reduction 60%) Microstructure morphology;
图10为典型的实施例3中半连续铸造Al-15.5Si-0.7Mg-0.27Fe合金(#5)经500℃预先热处理2hr、470℃热挤压(挤压比45)后T6状态(固溶温度520℃,时间2hr;人工时效温度180℃,时间4hr)的微观组织形貌;Fig. 10 is the T6 state (solid state) after the semi-continuous casting Al-15.5Si-0.7Mg-0.27Fe alloy (#5) in the
图11为典型的实施例3中半连续铸造Al-15.5Si-0.7Mg-0.27Fe合金(#5)矩形铸坯经500℃预先热处理1hr、500℃热轧(压下量60%)后T6状态(固溶温度520℃,时间3hr;人工时效温度200℃,时间4hr)的微观组织形貌;Figure 11 shows T6 of the semi-continuously cast Al-15.5Si-0.7Mg-0.27Fe alloy (#5) rectangular billet in Example 3, which was pre-heated at 500°C for 1 hr and hot rolled at 500°C (reduction 60%) State (solution temperature 520°C, time 3hr; artificial aging temperature 200°C, time 4hr) microstructure morphology;
图12为典型的实施例3中半连续铸造Al-15.5Si-0.7Mg-0.27Fe合金(#5)经500℃预先热处理2hr、470℃热挤压(挤压比45)后T6状态(固溶温度520℃,时间2hr;人工时效温度180℃,时间4hr)的高倍微观组织形貌;Fig. 12 is the T6 state (solid state) after the semi-continuous casting Al-15.5Si-0.7Mg-0.27Fe alloy (#5) in the
图13为典型的实施例1中Al-17.5Si-0.7Mg-1.0Cu-0.27Fe合金(#7)的半连续铸造(铸造温度850℃,铸造速度120mm/min,冷却水流量10g/mm·s)锭坯的铸态微观组织形貌。Fig. 13 is the semi-continuous casting of Al-17.5Si-0.7Mg-1.0Cu-0.27Fe alloy (#7) in typical embodiment 1 (casting temperature 850 ℃, casting speed 120mm/min, cooling water flow rate 10g/mm. s) As-cast microstructure morphology of the ingot.
具体实施方式Detailed ways
实施例1半连续铸造锭坯的制备The preparation of
选用设备为自制设备,其结构原理示于图1。图中,1-冷却水;2-结晶器;3-坯料;4-热顶;5-石墨环,6-金属液。合金的化学成分见表2,铸造工艺参数见表3。The selected equipment is self-made equipment, and its structural principle is shown in Figure 1. In the figure, 1-cooling water; 2-crystallizer; 3-blank; 4-hot top; 5-graphite ring, 6-metal liquid. The chemical composition of the alloy is shown in Table 2, and the casting process parameters are shown in Table 3.
表2半连续铸造含镁高硅铝合金的化学成分(wt.%)Table 2 Chemical composition of semi-continuous casting magnesium-containing high-silicon aluminum alloys (wt.%)
表3不同合金的铸造工艺参数Table 3 Casting process parameters of different alloys
实施例2铸造合金锭坯的预先热处理及挤压、轧制、锻造Pre-heat treatment and extrusion, rolling, forging of embodiment 2 cast alloy ingot billet
预先热处理在热处理炉中按设定加热速度加热,到达设定温度后,按设定时间保温。然后使用挤压机、热轧机和锻造机完成塑性变形。具体工艺参数分别在表4、表5、表6中给出。The pre-heat treatment is heated in the heat treatment furnace according to the set heating rate, and after reaching the set temperature, it is kept for the set time. Plastic deformation is then done using extruders, hot rolling mills and forging machines. The specific process parameters are given in Table 4, Table 5, and Table 6, respectively.
表4不同合金的预先热处理与挤压工艺参数Table 4 Pre-heat treatment and extrusion process parameters of different alloys
表5不同合金的预先热处理与轧制工艺参数Table 5 Pre-heat treatment and rolling process parameters of different alloys
表6不同合金的预先热处理与锻造工艺参数Table 6 Pre-heat treatment and forging process parameters of different alloys
实施例3合金变形(挤压、轧制、锻造)后的热处理Heat treatment after
经过挤压、轧制、锻造的工件,在设定热处理工艺参数下进行热处理,具体热处理工艺参数分别在表7、表8、表9中给出。部分合金在不同变形方式与热处理状态下的力学性能在表10中给出。The extruded, rolled, and forged workpieces are heat treated under the set heat treatment process parameters. The specific heat treatment process parameters are given in Table 7, Table 8, and Table 9, respectively. The mechanical properties of some alloys under different deformation modes and heat treatment states are given in Table 10.
表7不同合金挤压制品的热处理工艺参数Table 7 Heat treatment process parameters of different alloy extrusion products
表8不同合金轧制制品的热处理工艺参数Table 8 Heat treatment process parameters of different alloy rolled products
表9不同合金锻造制品的热处理工艺参数Table 9 Heat Treatment Process Parameters of Different Alloy Forged Products
表10部分合金不同变形、热处理状态下的常温力学性能Table 10 Mechanical properties at room temperature of some alloys under different deformation and heat treatment states
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2008101376030A CN101333614B (en) | 2007-06-29 | 2008-06-30 | Structural material piece of magnesium-containing silumin and method for preparing same |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN200710011919.0 | 2007-06-29 | ||
CN200710011919 | 2007-06-29 | ||
CN2008101376030A CN101333614B (en) | 2007-06-29 | 2008-06-30 | Structural material piece of magnesium-containing silumin and method for preparing same |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101333614A CN101333614A (en) | 2008-12-31 |
CN101333614B true CN101333614B (en) | 2010-09-01 |
Family
ID=40196494
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2008101376030A Expired - Fee Related CN101333614B (en) | 2007-06-29 | 2008-06-30 | Structural material piece of magnesium-containing silumin and method for preparing same |
Country Status (8)
Country | Link |
---|---|
US (1) | US20100126639A1 (en) |
EP (1) | EP2172572B1 (en) |
JP (1) | JP2010531388A (en) |
KR (1) | KR20100018048A (en) |
CN (1) | CN101333614B (en) |
CA (1) | CA2689332A1 (en) |
RU (1) | RU2463371C2 (en) |
WO (1) | WO2009003365A1 (en) |
Families Citing this family (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102230114A (en) * | 2011-06-29 | 2011-11-02 | 北京科技大学 | High-silicon aluminum alloy optimized based on Fe-rich phase and preparation method thereof |
CN102747256A (en) * | 2012-06-19 | 2012-10-24 | 东南大学 | Aluminum-silicon based aluminum section and preparation technology thereof |
RU2525872C1 (en) * | 2013-04-23 | 2014-08-20 | Федеральное Государственное Автономное Образовательное Учреждение Высшего Профессионального Образования "Сибирский Федеральный Университет" | FORMATION OF MICROSTRUCTURE OF EUTECTIC Al-Si ALLOY |
CN103769551B (en) * | 2014-01-17 | 2016-03-30 | 新疆众和股份有限公司 | The production technology of a kind of aluminium silicon magnesium system Birmasil |
EP3128021B1 (en) | 2014-03-31 | 2018-10-17 | Hitachi Metals, Ltd. | Al-si-mg system aluminum alloy for casting, which has excellent specific stiffness, strength and ductility, and cast member formed from same |
CN104651763A (en) * | 2014-05-15 | 2015-05-27 | 巩向鹏 | Performance optimization method for 6063 aluminum alloy |
CN104087880B (en) * | 2014-07-08 | 2016-05-04 | 江苏佳铝实业股份有限公司 | A kind of production technology of high damping alusil alloy sheet material |
KR101990225B1 (en) * | 2014-12-05 | 2019-06-17 | 후루카와 덴키 고교 가부시키가이샤 | Aluminum alloy wire material, aluminum alloy stranded wire, covered electrical wire, wire harness, and method for producing aluminum alloy wire material |
JP6523681B2 (en) * | 2014-12-25 | 2019-06-05 | 株式会社Uacj | Aluminum alloy sheet for case and case |
CN105112744A (en) * | 2015-10-08 | 2015-12-02 | 江苏佳铝实业股份有限公司 | Manufacturing process of high-silicon aluminum alloy plate |
TWI565808B (en) * | 2015-10-13 | 2017-01-11 | 財團法人工業技術研究院 | Aluminum alloy composition and manufacturing method of aluminum alloy object |
FR3044326B1 (en) * | 2015-12-01 | 2017-12-01 | Constellium Neuf-Brisach | HIGH-RIGIDITY THIN SHEET FOR AUTOMOTIVE BODYWORK |
CN105695810B (en) * | 2015-12-15 | 2017-12-05 | 东北大学 | One kind can ageing strengthening silumin and its deformation material preparation method containing Mn |
CN105695811A (en) * | 2015-12-15 | 2016-06-22 | 东北大学 | Ti-containing high-silicon aluminum alloy capable of achieving aging strengthening and preparation method for deformation material of Ti-containing high-silicon aluminum alloy |
CN106929781B (en) * | 2015-12-29 | 2019-01-08 | 徐工集团工程机械股份有限公司 | A kind of preparation method of high-strength aluminum alloy pin shaft |
CN106544606B (en) * | 2015-12-29 | 2018-05-01 | 徐工集团工程机械股份有限公司 | A kind of preparation method of wear-resistant aluminum alloy axis pin |
CN105671376B (en) * | 2016-01-26 | 2017-04-26 | 北京航空航天大学 | High-strength and high-plasticity hypoeutectic aluminium-silicon alloy material manufactured through gravity casting and room-temperature cold rolling, and manufacturing method thereof |
CN106399765B (en) * | 2016-10-11 | 2019-02-26 | 湖南理工学院 | Al-Si-Mg aluminum alloy and its preparation process |
CA3085731C (en) * | 2017-12-21 | 2022-12-13 | Novelis Inc. | Aluminum alloy products exhibiting improved bond durability and/or having phosphorus-containing surfaces and methods of making the same |
US11498839B2 (en) * | 2019-06-01 | 2022-11-15 | GM Global Technology Operations LLC | Systems and methods for producing high-purity fine powders |
CN112941433A (en) * | 2019-12-11 | 2021-06-11 | 中国科学院金属研究所 | Aging process for improving 6082 aluminum alloy parking effect |
CN113881907A (en) * | 2021-08-26 | 2022-01-04 | 山东创新金属科技有限公司 | Aging treatment process for extrusion casting aluminum alloy |
CN113862534B (en) * | 2021-10-08 | 2022-07-29 | 上海交通大学 | A kind of regulation method of hereditary structure of aluminum alloy material and preparation method of 7085 aluminum alloy thick plate |
CN115305391B (en) * | 2022-08-10 | 2023-06-06 | 中南大学 | A kind of low energy consumption aluminum-silicon-magnesium alloy and preparation method thereof |
CN118241086B (en) * | 2024-05-28 | 2024-07-23 | 中铝材料应用研究院有限公司 | Aluminum alloy piston and preparation method thereof |
Family Cites Families (29)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB582732A (en) * | 1944-03-10 | 1946-11-26 | Horace Campbell Hall | Aluminium alloy having low coefficient of expansion |
US4068645A (en) * | 1973-04-16 | 1978-01-17 | Comalco Aluminium (Bell Bay) Limited | Aluminum-silicon alloys, cylinder blocks and bores, and method of making same |
JPS5320243B2 (en) * | 1974-04-20 | 1978-06-26 | ||
JPS5192709A (en) * | 1975-02-12 | 1976-08-14 | KAKYOSHOARUMINIUMUUKEISOKEIGOKINNO SHOSHOKEISOBISAIKAHO | |
JPS52129607A (en) * | 1976-04-23 | 1977-10-31 | Hitachi Ltd | Production of a1-si alloy having fine structure |
JPS5669344A (en) * | 1979-11-07 | 1981-06-10 | Showa Alum Ind Kk | Aluminum alloy for forging and its manufacture |
JPS6283453A (en) * | 1985-10-07 | 1987-04-16 | Sumitomo Alum Smelt Co Ltd | Manufacture of aluminum alloy ingot for extrusion |
JP2506115B2 (en) * | 1987-07-11 | 1996-06-12 | 株式会社豊田自動織機製作所 | High-strength, wear-resistant aluminum alloy with good shear cutability and its manufacturing method |
US5009844A (en) * | 1989-12-01 | 1991-04-23 | General Motors Corporation | Process for manufacturing spheroidal hypoeutectic aluminum alloy |
JP3318966B2 (en) * | 1992-05-29 | 2002-08-26 | 日本軽金属株式会社 | Manufacturing method of aluminum scroll |
JPH06279904A (en) * | 1993-03-30 | 1994-10-04 | Nippon Light Metal Co Ltd | Production of hyper-eutectic al-si alloy for forging and forging stock |
JPH0741920A (en) * | 1993-07-29 | 1995-02-10 | Nippon Light Metal Co Ltd | Heat treatment method of hypereutectic Al-Si alloy for improving wear resistance |
JPH07197164A (en) * | 1993-12-28 | 1995-08-01 | Furukawa Electric Co Ltd:The | Aluminum alloy having high strength and high workability and its production |
JPH07224340A (en) * | 1994-02-14 | 1995-08-22 | Nippon Light Metal Co Ltd | Hypereutectic al-si alloy excellent in machinability and its production |
JPH083701A (en) * | 1994-06-15 | 1996-01-09 | Mitsubishi Alum Co Ltd | Production of wear resistant aluminum alloy extruded material excellent in strength and machinability |
JPH083674A (en) * | 1994-06-17 | 1996-01-09 | Nissan Motor Co Ltd | Hypereutectic aluminum-silicon alloy and hypereutectic aluminum-silicon alloy casting |
JPH08176768A (en) * | 1994-12-22 | 1996-07-09 | Nissan Motor Co Ltd | Wear resistant aluminum member and production thereof |
JP3835629B2 (en) * | 1996-09-24 | 2006-10-18 | 住友軽金属工業株式会社 | Wear-resistant aluminum alloy material with excellent machinability and corrosion resistance |
JP3261056B2 (en) * | 1997-01-14 | 2002-02-25 | 住友軽金属工業株式会社 | High-strength wear-resistant aluminum alloy extruded material excellent in ease of forming anodized film and uniformity of film thickness and method for producing the same |
KR100291560B1 (en) * | 1998-12-23 | 2001-06-01 | 박호군 | Hypo-eutectic al-si wrought alloy having excellent wear-resistance and low thermal expansion coefficient, its production method, and its use |
JP2001020047A (en) * | 1999-07-05 | 2001-01-23 | Toyota Autom Loom Works Ltd | Stock for aluminum alloy forging and its production |
ATE422000T1 (en) * | 2001-07-25 | 2009-02-15 | Showa Denko Kk | ALUMINUM ALLOY HAVING EXCELLENT MACHINABILITY AND ALUMINUM ALLOY MATERIAL AND PRODUCTION PROCESS THEREOF |
US20030143102A1 (en) * | 2001-07-25 | 2003-07-31 | Showa Denko K.K. | Aluminum alloy excellent in cutting ability, aluminum alloy materials and manufacturing method thereof |
JP2002206132A (en) * | 2001-11-27 | 2002-07-26 | Kobe Steel Ltd | Aluminum alloy extrusion material having excellent machinability and production method therefor |
RU2221891C1 (en) * | 2002-04-23 | 2004-01-20 | Региональный общественный фонд содействия защите интеллектуальной собственности | Aluminum-based alloy, article made from such alloy and method of manufacture of such article |
CN1298878C (en) * | 2003-12-03 | 2007-02-07 | 东华大学 | Aluminum silicon alloy series possessing granulated silicon phase and its process |
JP4474528B2 (en) * | 2004-11-01 | 2010-06-09 | 独立行政法人産業技術総合研究所 | Hyper-eutectic Al-Si alloy material with high toughness and forge forming |
CN100392129C (en) * | 2004-11-18 | 2008-06-04 | 东北大学 | A large-size hypereutectic high-silicon aluminum alloy billet and its preparation method |
JP4773796B2 (en) * | 2005-10-28 | 2011-09-14 | 昭和電工株式会社 | Aluminum alloy continuous casting rod, continuous casting rod casting method, continuous casting equipment |
-
2008
- 2008-06-30 WO PCT/CN2008/001246 patent/WO2009003365A1/en active Application Filing
- 2008-06-30 US US12/451,232 patent/US20100126639A1/en not_active Abandoned
- 2008-06-30 RU RU2009149092/02A patent/RU2463371C2/en not_active IP Right Cessation
- 2008-06-30 JP JP2010513624A patent/JP2010531388A/en active Pending
- 2008-06-30 KR KR1020107000263A patent/KR20100018048A/en not_active Application Discontinuation
- 2008-06-30 CA CA002689332A patent/CA2689332A1/en not_active Abandoned
- 2008-06-30 CN CN2008101376030A patent/CN101333614B/en not_active Expired - Fee Related
- 2008-06-30 EP EP08772999.2A patent/EP2172572B1/en not_active Not-in-force
Also Published As
Publication number | Publication date |
---|---|
WO2009003365A1 (en) | 2009-01-08 |
US20100126639A1 (en) | 2010-05-27 |
EP2172572A1 (en) | 2010-04-07 |
CA2689332A1 (en) | 2009-01-08 |
EP2172572A4 (en) | 2010-12-15 |
CN101333614A (en) | 2008-12-31 |
EP2172572B1 (en) | 2013-05-15 |
RU2009149092A (en) | 2011-08-10 |
KR20100018048A (en) | 2010-02-16 |
JP2010531388A (en) | 2010-09-24 |
RU2463371C2 (en) | 2012-10-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101333614B (en) | Structural material piece of magnesium-containing silumin and method for preparing same | |
CN109530468B (en) | In-situ nano reinforced aluminum alloy extrusion material for light vehicle body and isothermal variable-speed extrusion preparation method | |
AU2010310912B2 (en) | Aluminium alloy products for manufacturing structural components and method of producing the same | |
CN111155007B (en) | A preparation method of high-strength 2000 series aluminum alloy based on selective laser melting forming technology | |
CN102089450A (en) | Aluminum alloy, method of casting aluminum alloy, and method of producing aluminum alloy product | |
CN103290278B (en) | The high energy absorption capacity aluminium alloy of a kind of body of a motor car | |
TW201435092A (en) | High strength aluminum-magnesium-silicon alloy and production process thereof | |
WO2012051074A2 (en) | Hot thermo-mechanical processing of heat-treatable aluminum alloys | |
CN102409206B (en) | Extrusion casted Al-Zn alloy material with high toughness | |
CN108251710A (en) | The tough silumin of height and its preparation process of a kind of suitable extrusion casint | |
JP6126235B2 (en) | Semi-finished product obtained by deforming heat-resistant aluminum base alloy and method for producing the same | |
CN101027419B (en) | High-strength aluminium alloy products and method for the production thereof | |
Rajasekaran et al. | Study of mechanical properties of stir casted Al7075/SiCp composites after thermomechanical treatment | |
JP2016505713A5 (en) | ||
Meng et al. | Segregation in squeeze casting 6061 aluminum alloy wheel spokes and its formation mechanism | |
CN113444903A (en) | High-gadolinium rare earth magnesium alloy bar and preparation method thereof | |
KR102589799B1 (en) | High-strength aluminum-based alloys and methods for producing articles therefrom | |
CN114293079B (en) | Ultrahigh-plasticity rare earth wrought magnesium alloy and preparation method of extruded sheet thereof | |
JP2001316787A (en) | METHOD FOR PRODUCING HALF-MELTED BILLET OF Al ALLOY FOR TRANSPORTING MACHINE | |
JP5575028B2 (en) | High strength aluminum alloy, high strength aluminum alloy casting manufacturing method and high strength aluminum alloy member manufacturing method | |
WO2012027989A1 (en) | Application of aluminium-zirconium-carbon master alloy in deforming process of magnesium or magnesium alloy | |
CN105543584B (en) | The method that gravitational casting prepares high-strength high-plastic high-ductility hypoeutectic al-si alloy material with hot-extrudable group technology | |
WO2021003528A1 (en) | Aluminium alloys | |
JP2003311373A (en) | Method for producing base material for semi-melting formation | |
CN105671376B (en) | High-strength and high-plasticity hypoeutectic aluminium-silicon alloy material manufactured through gravity casting and room-temperature cold rolling, and manufacturing method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20100901 |
|
CF01 | Termination of patent right due to non-payment of annual fee |