CN101330092A - Phase change memory device and manufacturing method thereof - Google Patents
Phase change memory device and manufacturing method thereof Download PDFInfo
- Publication number
- CN101330092A CN101330092A CNA2007101120157A CN200710112015A CN101330092A CN 101330092 A CN101330092 A CN 101330092A CN A2007101120157 A CNA2007101120157 A CN A2007101120157A CN 200710112015 A CN200710112015 A CN 200710112015A CN 101330092 A CN101330092 A CN 101330092A
- Authority
- CN
- China
- Prior art keywords
- phase change
- insulating layer
- change material
- memory device
- pair
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Semiconductor Memories (AREA)
Abstract
本发明提供一种相变化存储器装置,包括:一基板;多个彼此隔离的底电极,位于上述基板上;一绝缘层,横跨于上述相邻的任两个底电极的部分表面上;一对相变化材料间隙壁,位于上述绝缘层的一对侧壁上,其中上述一对相变化材料间隙壁是分别位于上述相邻的任两个底电极上;一顶电极,位于上述绝缘层上,且覆盖上述一对相变化材料间隙壁。
The present invention provides a phase change memory device, comprising: a substrate; a plurality of bottom electrodes isolated from each other, located on the substrate; an insulating layer, spanning over a portion of the surface of any two adjacent bottom electrodes; a pair of phase change material gap walls, located on a pair of side walls of the insulating layer, wherein the pair of phase change material gap walls are respectively located on any two adjacent bottom electrodes; and a top electrode, located on the insulating layer and covering the pair of phase change material gap walls.
Description
技术领域 technical field
本发明涉及一种相变化存储器装置,尤其涉及一种高存储器密度的相变化存储器装置。The invention relates to a phase-change memory device, in particular to a phase-change memory device with high memory density.
背景技术 Background technique
相变化存储器(phase change memory,PCM)为64MB以下时代独立(stand-alone)非易失性存储器的重要候选元件,其利用加热电极改变相变化存储材料的结晶状态(结晶态(crystalline)或非晶态(amorphous))以达到储存数据的目的。相变化存储器的元件结构如何能够产生最佳的元件电热特性将是决定相变化存储器能否取代快闪存储器(flash memory)成为主流的重要研发方向。然而如何能够利用相同的存储器半导体制造技术产生存储器密度更高的非易失性存储器是重要的发展方向。Phase change memory (phase change memory, PCM) is an important candidate element for stand-alone nonvolatile memory in the era below 64MB, which uses heating electrodes to change the crystalline state (crystalline or nonvolatile) of phase change memory materials. Crystalline (amorphous)) in order to achieve the purpose of storing data. How the element structure of the phase change memory can produce the best electrothermal characteristics of the element will be an important research and development direction to determine whether the phase change memory can replace the flash memory (flash memory) and become the mainstream. However, how to use the same memory semiconductor manufacturing technology to produce a non-volatile memory with higher memory density is an important development direction.
如图1a所示,美国INTEL公司的专利(US 6,501,111)以杯型加热电极(Cup-Shaped Bottom Electrode)206为主体所达成的三维相变化存储器装置(three-dimensional PCM,3D-PCM)212。已将相变化材料207与下电极的接触面积缩小成杯型加热电极206的宽度与相变化材料207的接触面积,以提升存储器密度。然而,上述的立体相变化存储器架构,在单位存储器面积微小化时会遇到瓶颈,较不适合微距解析度小于0.1μm以下的半导体光刻工艺。如图1b所示,意大利STM公司的专利(EP 1339111),利用相变化材料镀膜填入纳米尺寸接触孔57或STM公司所称的微型沟槽(minitrench)58内,缩小相变化材料与杯型加热电极22的接触面积58,以达到提升存储器密度的需求。然而会有孔洞尺寸太小时填不满最底部或出现两边侧壁薄膜顶端接合时出现填不满的缝隙(Seam)的问题。As shown in Figure 1a, the patent (US 6,501,111) of INTEL Corporation of the United States uses a cup-shaped heating electrode (Cup-Shaped Bottom Electrode) 206 as the main body to achieve a three-dimensional phase change memory device (three-dimensional PCM, 3D-PCM) 212. The contact area between the
因此有需要一种相变化存储器装置,以符合提升存储器密度的需求。Therefore, there is a need for a phase change memory device to meet the demand for increasing memory density.
发明内容 Contents of the invention
本发明提供一种相变化存储器装置,包括:一基板;多个彼此隔离的底电极,位于上述基板上;一绝缘层,横跨于上述相邻的任两个底电极的部分表面上;一对相变化材料间隙壁,位于上述绝缘层的一对侧壁上,其中上述一对相变化材料间隙壁是分别位于上述相邻的任两个底电极上;一顶电极,位于上述绝缘层上,且覆盖上述一对相变化材料间隙壁。The present invention provides a phase-change memory device, comprising: a substrate; a plurality of mutually isolated bottom electrodes located on the above-mentioned substrate; an insulating layer spanning part of the surface of any two adjacent bottom electrodes; A pair of phase-change material spacers are located on a pair of side walls of the above-mentioned insulating layer, wherein the above-mentioned pair of phase-change material spacers are respectively located on any two adjacent bottom electrodes above; a top electrode is located on the above-mentioned insulating layer , and cover the pair of phase change material spacers.
本发明另提供一种相变化存储器装置的制造方法,包括:提供一基板,其上具有多个底电极,分别由一第一绝缘层隔离;于上述第一绝缘层上形成一相变化材料结构,且横跨于上述相邻的任两个底电极的部分表面上,其中上述相变化材料结构包括一对相变化材料间隙壁,上述一对相变化材料间隙壁是各自电性连接上述相邻的任两个底电极;于上述相变化材料结构上形成一顶电极,且电性连接上述一对相变化材料间隙壁。The present invention also provides a method for manufacturing a phase-change memory device, including: providing a substrate with a plurality of bottom electrodes thereon, each separated by a first insulating layer; forming a phase-change material structure on the first insulating layer , and straddle the partial surfaces of any two adjacent bottom electrodes, wherein the phase change material structure includes a pair of phase change material spacers, and each of the above pair of phase change material spacers is electrically connected to the adjacent Any two bottom electrodes; a top electrode is formed on the phase change material structure and electrically connected to the pair of phase change material spacers.
附图说明 Description of drawings
图1a、1b为已知的相变化存储器装置;Figures 1a and 1b are known phase change memory devices;
图2a、3a、4a、5a、6a、7a、8a和9a为本发明优选实施例的相变化存储器装置的工艺上视图;Figures 2a, 3a, 4a, 5a, 6a, 7a, 8a and 9a are process top views of a phase change memory device according to a preferred embodiment of the present invention;
图2b、3b、4b、5b、6b、7b和9b分别为沿图2a、3a、4a、5a、6a、7a和9a的A-A’切线的工艺剖面图;Fig. 2b, 3b, 4b, 5b, 6b, 7b and 9b are respectively along the A-A' tangent process sectional view of Fig. 2a, 3a, 4a, 5a, 6a, 7a and 9a;
图8b为沿图8a的B-B’切线的工艺剖面图。Fig. 8b is a process sectional view along the line B-B' of Fig. 8a.
主要元件符号说明Description of main component symbols
206~杯型加热电极;206~cup heating electrode;
207~相变化材料;207~Phase change materials;
212~三维相变化存储器装置;212~three-dimensional phase change memory device;
22~杯型加热电极;22~cup-shaped heating electrode;
57~接触孔;57~contact hole;
58~微型沟槽;58~miniature grooves;
500~基板;500~substrate;
502~第一绝缘层;502~the first insulating layer;
504~开口;504~opening;
506~底电极;506~bottom electrode;
507~侧壁;507~side wall;
508~第一方向;508~the first direction;
510~第二方向;510~the second direction;
512、512a、512b~第二绝缘层;512, 512a, 512b~second insulating layer;
514、514a、514b~相变化材料间隙壁;514, 514a, 514b ~ phase change material spacer;
516、516a~第三绝缘层;516, 516a~the third insulating layer;
518~相变化材料结构;518~Phase change material structure;
519~光致抗蚀剂层;519~photoresist layer;
520~第四绝缘层;520~the fourth insulating layer;
522~顶电极;522~top electrode;
530、540~接触面积;530, 540~contact area;
550~相变化存储器装置。550~phase change memory device.
具体实施方式 Detailed ways
以下利用工艺剖面图,以更详细地说明本发明优选实施例的相变化存储器装置及其制造方法。图2a、3a、4a、5a、6a、7a、8a和9a为本发明优选实施例的相变化存储器装置的工艺上视图。图2b、3b、4b、5b、6b、7b和9b分别为沿图2a、3a、4a、5a、6a、7a和9a的A-A’切线的工艺剖面图。图8b为沿图8a的B-B’切线的工艺剖面图。在本发明各实施例中,相同的符号表示相同或类似的元件。The phase change memory device and its manufacturing method of the preferred embodiment of the present invention will be described in more detail below using process cross-sectional diagrams. Figures 2a, 3a, 4a, 5a, 6a, 7a, 8a and 9a are process top views of a phase change memory device according to a preferred embodiment of the present invention. Figures 2b, 3b, 4b, 5b, 6b, 7b and 9b are process sectional views along the line A-A' of Figures 2a, 3a, 4a, 5a, 6a, 7a and 9a, respectively. Fig. 8b is a process sectional view along the line B-B' of Fig. 8a. In various embodiments of the present invention, the same symbols represent the same or similar elements.
请参考图2a,其显示本发明优选实施例的相变化存储器装置的工艺上视图;请参考图2b,其显示本发明优选实施例的相变化存储器装置的工艺剖面图。首先,提供一基板500,基板500为硅基板。在其他实施例中,可利用锗化硅(SiGe)、块状半导体(bulk semiconductor)、应变半导体(strainedsemiconductor)、化合物半导体(compound semiconductor)、绝缘层上覆硅(silicon on insulator,SOI),或其他常用的半导体基板。基板500也可为包括具有晶体管(transistor)、二极管(diode)、双极结晶体管(bipolar junctiontransistor,BJT)、电阻(resistor)、电容(capacitor)、电感(inductor)等电子元件的基板。Please refer to FIG. 2a, which shows a process top view of a phase-change memory device according to a preferred embodiment of the present invention; please refer to FIG. 2b, which shows a process cross-sectional view of a phase-change memory device according to a preferred embodiment of the present invention. Firstly, a
接着,于基板500上形成第一绝缘层502。可利用化学气相沉积(chemicalvapor deposition,CVD)等薄膜沉积方式形成第一绝缘层502,其可包括氧化硅(SiO2)、氮化硅(Si3N4)或其组合。然后,利用图案化光致抗蚀剂(图未显示)覆盖第一绝缘层502上,定义出开口504的形成位置,再进行一各向异性蚀刻步骤,移除未被光致抗蚀剂覆盖的第一绝缘层502,直到暴露出基板500,然后移除图案化光致抗蚀剂,以形成开口504。接着,全面性形成一导电层(图未显示),并填入开口504中。可利用例如物理气相沉积法(physicalvapor deposition,PVD)、溅镀法(sputtering)、低压化学气相沉积法(lowpressure CVD,LPCVD)和原子层化学气相沉积法(atomic layer CVD,ALD)或无电镀膜法(electroless plating)等方式形成上述导电层。然后,进行例如为化学机械抛光(chemical mechanical polishing,CMP)的平坦化工艺,移除过量的导电层,以形成多个底电极506,分别由第一绝缘层502隔离。如图2a所示,在本发明优选实施例中,底电极506的上视图可为四方形。底电极506可包括金属、合金、金属化合物、半导体材料或其组合。底电极506也可包括基础金属及其合金(例如铝或铜)、耐火金属及其合金(例如钴、钽、镍、钛、钨、钨化钛)、过渡金属氮化物、耐火金属氮化物(例如氮化钴、氮化钽、氮化镍、氮化钛、氮化钨)、金属氮硅化物(例如氮硅化钴、氮硅化钽、氮硅化镍、氮硅化钛、氮硅化钨)、金属硅化物(例如硅化钴、硅化钽、硅化镍、硅化钛、硅化钨)、多晶或非晶半导体材料、导电氧化物材料(例如钇钡铜氧化物(YBCO)、氧化亚铜(Cu2O)、铟锡氧化物(ITO))或其组合。Next, a first
请参考图3a和3b,于第一绝缘层502上沿第一方向508形成第二绝缘层512。可全面性形成例如为氧化硅(SiO2)或氮化硅(Si3N4)的绝缘层于第一绝缘层502和底电极506上。接着,利用图案化光致抗蚀剂(图未显示)覆盖绝缘层上,定义出第二绝缘层512的形成位置,再进行一各向异性蚀刻步骤,移除未被光致抗蚀剂覆盖的绝缘层。然后,移除图案化光致抗蚀剂,以形成条状的第二绝缘层512。在本发明优选实施例中,第二绝缘层512的两侧壁是分别横跨于任两个相邻的底电极506的部分表面上。Referring to FIGS. 3 a and 3 b , a second insulating
请参考图4a和4b,于该第二绝缘层的一对侧壁507上形成一对相变化材料间隙壁514。在本发明优选实施例中,可顺应性形成一相变化材料层(phase change film,PC film),并覆盖第一绝缘层502、底电极506和该第二绝缘层512。可利用例如物理气相沉积法(physical vapor deposition,PVD)、热蒸镀法(thermal evaporation)、脉冲激光蒸镀(pulsed laser deposition)或有机金属化学气相沉积法(metal organic chemical vapor deposition,MOCVD)等方式形成上述相变化材料层。然后,进行一各向异性蚀刻步骤,移除位于第一绝缘层502、底电极506及第二绝缘层512顶面的部分相变化材料层,以于第二绝缘层512的侧壁507上形成相变化材料间隙壁514。相变化材料间隙壁514可包括二元、三元或四元硫属化合物(chalcogenide),例如锑化镓(GaSb)、碲化锗(GeTe)、锗-锑-碲合金(Ge-Sb-Te,GST)、银-铟-锑-碲合金(Ag-In-Sb-Te)或其组合。Referring to FIGS. 4 a and 4 b , a pair of phase
请参考图5a和5b,其显示第三绝缘层516的形成方式。在本发明优选实施例中,可全面性形成第三绝缘层516,并覆盖于第二绝缘层512和相变化材料间隙壁514。接着,进行一例如为化学机械抛光(CMP)的平坦化工艺,移除部分第三绝缘层516直到露出相变化材料间隙壁514,以形成第二绝缘层512a、相变化材料间隙壁514a。第三绝缘层516可包括氧化硅(SiO2)、氮化硅(Si3N4)或其组合。Please refer to FIGS. 5 a and 5 b , which illustrate how the third insulating
请参考图6a和6b,其显示图案化光致抗蚀剂层519的形成方式。可全面性覆盖一光致抗蚀剂层,接着,利用光刻工艺,沿第二方向510形成图案化光致抗蚀剂层519,并覆盖部分第二绝缘层512a、第三绝缘层516及相变化材料间隙壁514a。Please refer to FIGS. 6 a and 6 b , which illustrate how the patterned
请参考图7a和7b,其显示本发明优选实施例的相变化材料结构518的形成方式。可利用各向异性蚀刻方式,移除未被图案化光致抗蚀剂层519覆盖的部分第二绝缘层512a、第三绝缘层516及相变化材料间隙壁514a。最后,移除图案化光致抗蚀剂层519,以形成第三绝缘层516a和多个不相连的相变化材料结构518,其中相变化材料结构518是包括第二绝缘层512b和相变化材料间隙壁514b。如图7a和7b所示,相变化材料结构518的第二绝缘层512b是横跨于相邻的任两个底电极506的部分表面上,且相变化材料结构518的每个相变化材料间隙壁514b是分别位于相邻的任两个底电极506上,其中相变化材料间隙壁514b与底电极506的接触面积530小于底电极506的面积,且相变化材料间隙壁514b与底电极506的接触面积530可由相变化材料间隙壁514b的薄膜厚度及图案化光致抗蚀剂层519的宽度控制,相比于已知技术利用光刻工艺形成的加热电极而言,可达成接触面积最小化,控制更为精确的效果。Please refer to FIGS. 7 a and 7 b , which illustrate the formation of the phase
请参考图8a和8b,其显示第四绝缘层520的形成方式。在本发明优选实施例中,可全面性形成第四绝缘层520,并覆盖于相变化材料结构518。接着,进行一例如为化学机械抛光(CMP)的平坦化工艺,移除部分第四绝缘层520直到露出相变化材料结构518。第四绝缘层520可包括氧化硅(SiO2)、氮化硅(Si3N4)或其组合。在本发明优选实施例中,第一绝缘层502、第二绝缘层512b、第三绝缘层516a和第四绝缘层520可包括相同的材料。如图8a和8b所示,相变化材料结构518彼此隔离。如果沿第一方向508看去,每个相变化材料结构518是被第四绝缘层520隔离;如果沿第二方向510看去,每个相变化材料间隙壁514b是被第二绝缘层512b或第三绝缘层516a隔离。因此,当其中一个相变化材料结构518的相变化材料间隙壁514b改变状态时,不会影响另一个相邻的相变化材料间隙壁514b,而造成储存数据的误判。Please refer to FIGS. 8 a and 8 b , which illustrate the formation of the fourth insulating
请参考图9a和9b,于相变化材料结构518上形成顶电极522,且电性连接相变化材料间隙壁514b。可利用例如物理气相沉积法(physical vapordeposition,PVD)、溅镀法(sputtering)、低压化学气相沉积法(low pressure CVD,LPCVD)和原子层化学气相沉积法(atomic layer CVD,ALD)或无电镀膜法(electroless plating)等方式全面性形成一导电层。接着,利用图案化光致抗蚀剂(图未显示)覆盖导电层上,定义出顶电极522的形成位置,再进行一各向异性蚀刻步骤,移除未被光致抗蚀剂覆盖的导电层。然后,移除图案化光致抗蚀剂,以形成顶电极522。相变化材料间隙壁514b与顶电极522的接触面积540小于顶电极522的面积,且相变化材料间隙壁514b与顶电极522的接触面积540可由相变化材料间隙壁514b的薄膜厚度及图案化光致抗蚀剂层519的宽度控制,相比于已知技术利用光刻工艺形成的加热电极而言,可达成接触面积最小化,控制更为精确的效果。顶电极522可包括金属、合金、金属化合物、半导体材料、相变化材料或其组合。顶电极522也可包括基础金属及其合金(例如铝或铜)、耐火金属及其合金(例如钴、钽、镍、钛、钨、钨化钛)、过渡金属氮化物、耐火金属氮化物(例如氮化钴、氮化钽、氮化镍、氮化钛、氮化钨)、金属氮硅化物(例如氮硅化钴、氮硅化钽、氮硅化镍、氮硅化钛、氮硅化钨)、金属硅化物(例如硅化钴、硅化钽、硅化镍、硅化钛、硅化钨)、多晶或非晶半导体材料、导电氧化物材料(例如钇钡铜氧化物(YBCO)、氧化亚铜(Cu2O)、铟锡氧化物(ITO))或其组合。经过上述工艺后,形成本发明优选实施例的相变化存储器装置550。Referring to FIGS. 9 a and 9 b , a
在本发明优选实施例中,每一个顶电极522是电性连接两个相变化材料间隙壁514b,而每一个相变化材料间隙壁514b是各自电性连接至相邻的任两个底电极506上,其中每一个底电极506与顶电极522形成一个相变化存储器位(bit),所以每一个相变化存储器装置550具有两个位(bit)。In a preferred embodiment of the present invention, each
本发明优选实施例的相变化存储器装置550的主要元件包括一基板500;多个彼此隔离的底电极506,位于上述基板500上。一相变化材料结构518,横跨于上述相邻的任两个底电极506的部分表面上,其中上述相变化材料结构518包括一第二绝缘层512b,横跨于上述相邻的任两个底电极506的部分表面上;一对相变化材料间隙壁514b,位于上述第二绝缘层512b的一对侧壁507上,其中上述一对相变化材料间隙壁514b是分别位于上述相邻的任两个底电极506上。一顶电极522,位于上述相变化材料结构518上,且覆盖上述一对相变化材料间隙壁514b。The main components of the phase
本发明优选实施例的相变化存储器装置,具有以下优点:(1)相变化材料间隙壁与加热电极的接触面积可由相变化材料间隙壁的薄膜厚度及定义相变化材料结构的图案化光致抗蚀剂层的宽度控制,相比于已知技术利用光刻工艺形成的加热电极而言,可达成接触面积最小化,控制更为精确的效果,且可大为降低存储器的面积,达到高存储器密度的要求。(2)相邻的相变化材料结构是被绝缘层隔离,而不会互相影响而造成储存数据的误判。(3)相变化材料间隙壁直接与底电极与顶电极接触,取代已知相变化存储器装置中的加热电极,以达成自加热(self-heating)的效果。(4)相变化存储器的重置电流Ireset(使相变化材料转变成非晶态(amorphous)所需电流)和写入电流Iset(使相变化材料转变成结晶态(crystalline)所需电流)可由相变化材料间隙壁的薄膜厚度及定义相变化材料结构的图案化光致抗蚀剂层的宽度控制,以适应不同的需求。(5)本发明的相变化存储器装置的工艺可与传统互补式金属氧化物半导体晶体管(complementary metal-oxide-silicon transistor,CMOS transistor)工艺相容,不需另外研发特殊工艺。The phase change memory device of the preferred embodiment of the present invention has the following advantages: (1) The contact area between the phase change material spacer and the heating electrode can be determined by the film thickness of the phase change material spacer and the patterned photoresist that defines the phase change material structure. The width control of the etchant layer, compared with the heating electrode formed by the photolithography process in the known technology, can achieve the effect of minimizing the contact area and controlling more accurately, and can greatly reduce the area of the memory to achieve high memory efficiency. Density requirements. (2) Adjacent phase-change material structures are isolated by insulating layers, and will not affect each other to cause misjudgment of stored data. (3) The phase change material spacer is directly in contact with the bottom electrode and the top electrode, replacing the heating electrode in the known phase change memory device, so as to achieve the effect of self-heating. (4) The reset current I reset of the phase-change memory (the current required to make the phase-change material change into an amorphous state (amorphous)) and the write current I set (the current required to make the phase-change material change into a crystalline state (crystalline) ) can be controlled by the film thickness of the phase change material spacer and the width of the patterned photoresist layer defining the phase change material structure, so as to meet different requirements. (5) The process of the phase change memory device of the present invention is compatible with the conventional complementary metal-oxide-silicon transistor (CMOS transistor) process, and no special process needs to be developed.
虽然本发明已以优选实施例揭露如上,然其并非用以限定本发明,任何本领域技术人员,在不脱离本发明的精神和范围的前提下,可做些许更动与润饰,因此本发明的保护范围当视所附权利要求所界定者为准。Although the present invention has been disclosed above with preferred embodiments, it is not intended to limit the present invention. Any person skilled in the art can make some changes and modifications without departing from the spirit and scope of the present invention. Therefore, the present invention The scope of protection shall prevail as defined by the appended claims.
Claims (17)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNA2007101120157A CN101330092A (en) | 2007-06-19 | 2007-06-19 | Phase change memory device and manufacturing method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNA2007101120157A CN101330092A (en) | 2007-06-19 | 2007-06-19 | Phase change memory device and manufacturing method thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
CN101330092A true CN101330092A (en) | 2008-12-24 |
Family
ID=40205790
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNA2007101120157A Pending CN101330092A (en) | 2007-06-19 | 2007-06-19 | Phase change memory device and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101330092A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104779349A (en) * | 2015-04-15 | 2015-07-15 | 中国科学院上海微系统与信息技术研究所 | Phase change memory cell and manufacturing method thereof |
-
2007
- 2007-06-19 CN CNA2007101120157A patent/CN101330092A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104779349A (en) * | 2015-04-15 | 2015-07-15 | 中国科学院上海微系统与信息技术研究所 | Phase change memory cell and manufacturing method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7655941B2 (en) | Phase change memory device and method for fabricating the same | |
KR100668846B1 (en) | Manufacturing method of phase change memory device | |
US7972895B2 (en) | Memory cell device with coplanar electrode surface and method | |
CN101355137B (en) | Phase change memory device and manufacturing method thereof | |
CN102522374B (en) | A phase-change memory device with a columnar bottom electrode and its manufacturing method | |
CN1967896B (en) | Isolated phase change memory cell and method of making same | |
KR100533958B1 (en) | Phase-change memory device and method of manufacturing the same | |
CN101393964B (en) | Phase change memory device with different grain sizes and forming method thereof | |
US7671355B2 (en) | Method of fabricating a phase change memory and phase change memory | |
US7663135B2 (en) | Memory cell having a side electrode contact | |
US20060108667A1 (en) | Method for manufacturing a small pin on integrated circuits or other devices | |
US8273598B2 (en) | Method for forming a self-aligned bit line for PCRAM and self-aligned etch back process | |
CN101013736A (en) | Tubular Phase Change Memory | |
CN102934229A (en) | Resistance variable memory cell structures and methods | |
JP2010503194A (en) | Method of manufacturing resistance switching device and device obtained by the method | |
CN102104055A (en) | Variable resistance memory device | |
US7858961B2 (en) | Phase change memory devices and methods for fabricating the same | |
US7989795B2 (en) | Phase change memory device and method for fabricating the same | |
US20080173860A1 (en) | Phase change memory device and method of fabricating the same | |
TW202117936A (en) | Semiconductor device and memory cell | |
US20080186762A1 (en) | Phase-change memory element | |
CN101604728A (en) | Phase change memory device and manufacturing method thereof | |
CN100573951C (en) | Phase change memory device and method of manufacturing the same | |
CN101330092A (en) | Phase change memory device and manufacturing method thereof | |
US20070267669A1 (en) | Phase-changeable memory device and method of manufacturing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
WD01 | Invention patent application deemed withdrawn after publication |
Open date: 20081224 |