CN101325118A - Dry-type transformer with vapor-liquid two-phase cooling circuit - Google Patents
Dry-type transformer with vapor-liquid two-phase cooling circuit Download PDFInfo
- Publication number
- CN101325118A CN101325118A CNA2008100274379A CN200810027437A CN101325118A CN 101325118 A CN101325118 A CN 101325118A CN A2008100274379 A CNA2008100274379 A CN A2008100274379A CN 200810027437 A CN200810027437 A CN 200810027437A CN 101325118 A CN101325118 A CN 101325118A
- Authority
- CN
- China
- Prior art keywords
- liquid
- evaporator
- dry
- phase
- type transformer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000007788 liquid Substances 0.000 title claims abstract description 70
- 238000001816 cooling Methods 0.000 title claims abstract description 15
- 230000017525 heat dissipation Effects 0.000 claims abstract description 36
- 239000012071 phase Substances 0.000 claims abstract description 32
- 239000007791 liquid phase Substances 0.000 claims abstract description 29
- 239000012808 vapor phase Substances 0.000 claims abstract description 18
- 239000012530 fluid Substances 0.000 claims abstract description 9
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical group [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims abstract description 8
- PMVSDNDAUGGCCE-TYYBGVCCSA-L Ferrous fumarate Chemical group [Fe+2].[O-]C(=O)\C=C\C([O-])=O PMVSDNDAUGGCCE-TYYBGVCCSA-L 0.000 claims abstract description 3
- 239000000945 filler Substances 0.000 claims description 3
- 238000004804 winding Methods 0.000 claims description 3
- 238000000034 method Methods 0.000 abstract description 12
- 238000001704 evaporation Methods 0.000 abstract description 7
- 230000008020 evaporation Effects 0.000 abstract description 6
- 238000009833 condensation Methods 0.000 abstract description 5
- 238000005381 potential energy Methods 0.000 abstract description 3
- 238000010586 diagram Methods 0.000 description 7
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 3
- 229910052802 copper Inorganic materials 0.000 description 3
- 239000010949 copper Substances 0.000 description 3
- 230000005484 gravity Effects 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 230000009471 action Effects 0.000 description 2
- 229910021529 ammonia Inorganic materials 0.000 description 2
- 239000002826 coolant Substances 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 238000005507 spraying Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000010292 electrical insulation Methods 0.000 description 1
- 239000012772 electrical insulation material Substances 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 238000007710 freezing Methods 0.000 description 1
- 230000008014 freezing Effects 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 231100000252 nontoxic Toxicity 0.000 description 1
- 230000003000 nontoxic effect Effects 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 1
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 1
- 230000010349 pulsation Effects 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
Images
Landscapes
- Cooling Or The Like Of Electrical Apparatus (AREA)
Abstract
本发明公开了一种具有汽液两相散热回路的干式变压器,包括至少一个铁芯以及至少一个绕着铁芯设置的线圈组件,其中,干式变压器具有至少一个汽液两相散热回路,汽液两相散热回路包括设置在线圈组件区域的蒸发器、设置在干式变压器外部的冷凝器、连接在蒸发器的汽相出口与冷凝器的汽相入口之间的汽相管道、连接在冷凝器的液相出口与蒸发器的液相入口之间的液相管道、以及在汽液两相散热回路内循环流动的汽液两相工质。本发明采用在回路内部直接蒸发-冷凝的方式,并利用蒸发把部分热转化为蒸汽的动能和液体的势能,驱动或部分驱动回路循环,实现高效的变压器散热。
The invention discloses a dry-type transformer with a vapor-liquid two-phase heat dissipation circuit, comprising at least one iron core and at least one coil assembly arranged around the iron core, wherein the dry-type transformer has at least one vapor-liquid two-phase heat dissipation circuit, The vapor-liquid two-phase heat dissipation circuit includes an evaporator arranged in the area of the coil assembly, a condenser arranged outside the dry-type transformer, a vapor-phase pipeline connected between the vapor-phase outlet of the evaporator and the vapor-phase inlet of the condenser, and a vapor-phase pipeline connected to the The liquid phase pipeline between the liquid phase outlet of the condenser and the liquid phase inlet of the evaporator, and the vapor-liquid two-phase working fluid circulating in the vapor-liquid two-phase cooling circuit. The invention adopts the method of direct evaporation-condensation inside the loop, and utilizes evaporation to convert part of the heat into kinetic energy of steam and potential energy of liquid to drive or partially drive the loop to realize efficient heat dissipation of the transformer.
Description
技术领域 technical field
本发明涉及一种干式散热的变压器构造;更具体地将,本发明涉及一种具有汽液两相散热回路的干式变压器。The invention relates to a dry-type heat dissipation transformer structure; more specifically, the invention relates to a dry-type transformer with a vapor-liquid two-phase heat dissipation circuit.
背景技术 Background technique
传统的变压器一般使用油浸式散热方式,通过油的自然对流把线圈所产生的热量带出来,散到空气中。但是这种散热方法效率较低。Traditional transformers generally use oil-immersed heat dissipation, and the heat generated by the coil is taken out by the natural convection of the oil and dissipated into the air. However, this cooling method is less efficient.
后来,人们发明了蒸发冷却变压器,通过对变压器线圈表面喷淋(如日本专利第58101407号和第58216409号所公开的相关技术),或利用特殊设计的线圈表面的液体膜蒸发(如美国专利第3887759号和第4011535号所公开的相关技术)进行散热。Later, people invented the evaporative cooling transformer, by spraying the surface of the transformer coil (such as the related technology disclosed in Japanese Patent No. 58101407 and No. No. 3887759 and the related technology disclosed in No. 4011535) to dissipate heat.
对置于地下的变压器,还发明了“热管”(如日本专利第7037725号所公开的相关技术),或“回路热管”(如日本专利第7220936号所公开的相关技术)的散热方法。但是,在以上发明中,变压器都被置于封装容器内,变压器通过绝缘气体、液体或液体的蒸发来冷却;“回路热管”方法还包括多重热交换器,换热效率低。For the transformer placed underground, a heat dissipation method of "heat pipe" (as disclosed in Japanese Patent No. 7037725) or "loop heat pipe" (as disclosed in Japanese Patent No. 7220936) has been invented. However, in the above inventions, the transformers are all placed in packaging containers, and the transformers are cooled by the evaporation of insulating gas, liquid or liquid; the "loop heat pipe" method also includes multiple heat exchangers, and the heat exchange efficiency is low.
随着干式变压器以及散热技术的发展,以上变压器散热方法不能提供高效的散热效率。干式变压器一般采用空气自然对流的散热方式。例如,在发热量较大的低压线圈与高压线圈之间,保留着一道数十毫米的间隙,以便足够量的空气通过,对低压线圈和高压线圈进行散热。但是,这种设计对低功率的干式变压器是有效的,但随着功率的增大,线圈体积增大,同时发热量大,一般的空气自然对流不能有效地对干式变压器进行冷却。With the development of dry-type transformers and heat dissipation technologies, the above heat dissipation methods for transformers cannot provide high heat dissipation efficiency. Dry-type transformers generally adopt the natural convection cooling method of air. For example, there is a gap of tens of millimeters between the low-voltage coil and the high-voltage coil that generate a lot of heat, so that a sufficient amount of air can pass through to dissipate heat from the low-voltage coil and the high-voltage coil. However, this design is effective for low-power dry-type transformers, but with the increase of power, the volume of the coil increases and the heat generation is large. The general natural convection of air cannot effectively cool the dry-type transformer.
因此,提供一种能够实现高效散热的干式变压器成为急需解决的问题。Therefore, it is an urgent problem to provide a dry-type transformer capable of realizing high-efficiency heat dissipation.
发明内容 Contents of the invention
本发明的目的在于提供一种能够实现高效散热的具有汽液两相散热回路的干式变压器。The purpose of the present invention is to provide a dry-type transformer with a vapor-liquid two-phase heat dissipation circuit capable of realizing high-efficiency heat dissipation.
本发明的技术方案是这样实现的:提供一种具有汽液两相散热回路的干式变压器,包括至少一个铁芯以及至少一个绕着铁芯设置的线圈组件,其中,干式变压器具有至少一个汽液两相散热回路,汽液两相散热回路包括设置在线圈组件区域的蒸发器、设置在干式变压器外部的冷凝器、连接在蒸发器的汽相出口与冷凝器的汽相入口之间的汽相管道、连接在冷凝器的液相出口与蒸发器的液相入口之间的液相管道、以及在汽液两相散热回路内循环流动的汽液两相工质。The technical solution of the present invention is achieved by providing a dry-type transformer with a vapor-liquid two-phase heat dissipation circuit, including at least one iron core and at least one coil assembly arranged around the iron core, wherein the dry-type transformer has at least one The vapor-liquid two-phase heat dissipation circuit, the vapor-liquid two-phase heat dissipation circuit includes an evaporator arranged in the area of the coil assembly, a condenser arranged outside the dry-type transformer, and connected between the vapor phase outlet of the evaporator and the vapor phase inlet of the condenser The vapor phase pipeline, the liquid phase pipeline connected between the liquid phase outlet of the condenser and the liquid phase inlet of the evaporator, and the vapor-liquid two-phase working fluid circulating in the vapor-liquid two-phase cooling circuit.
本发明的干式变压器两相回路散热方式是通过处于变压器内部的蒸发器以液体(如水)蒸发的方式吸收线圈所发出的热量,通过回路循环把蒸汽带到变压器外部的冷凝器,重新冷凝成液体,同时把热量通过冷凝器散发到空气中去。与一般的蒸发式散热变压器不同,本发明的蒸发-冷凝过程完成发生在回路的内部,因此体积小,所需冷却工质也少。The dry-type transformer two-phase loop heat dissipation method of the present invention is to absorb the heat emitted by the coil by evaporating the liquid (such as water) through the evaporator inside the transformer, and bring the steam to the condenser outside the transformer through loop circulation, and condense it again into liquid, while dissipating heat into the air through the condenser. Different from general evaporative heat dissipation transformers, the evaporation-condensation process of the present invention occurs inside the circuit, so the volume is small and the required cooling medium is also small.
本发明采用一种回路式的两相散热技术,不仅能对大型干式变压器实现有效的冷却,而且可以减小低压线圈与高压线圈之间的间隙,从而节省线圈线材。The invention adopts a loop-type two-phase heat dissipation technology, which can not only realize effective cooling of large dry-type transformers, but also reduce the gap between low-voltage coils and high-voltage coils, thereby saving coil wires.
本发明还利用(或部分利用)液体的蒸发把部分热转化为蒸汽的动能和液体的势能,驱动(或辅助驱动)回路循环,实现高效的变压器散热。The invention also uses (or partially utilizes) the evaporation of the liquid to convert part of the heat into the kinetic energy of the steam and the potential energy of the liquid to drive (or auxiliary drive) the loop circulation and realize efficient heat dissipation of the transformer.
回路的驱动方式视变压器的结构、散热量等技术要求而定,回路主要部件的结构及其所处的位置也因此有所不同。回路的驱动方式包括泵驱动,重力驱动和毛细力驱动。对散热量需求较小的一般采用蒸发-重力驱动和毛细力驱动方式,其特点是无运动机械部件及外部能源;对散热量需求大的一般采用泵驱动方式。依蒸发器的结构(如螺旋式蒸发器),蒸发器可通过电绝缘连接器与回路连接,使液体在回路内循环的同时,抑制或降低电涡流损耗。电绝缘连接可以在蒸发器进口或出口端,也可以在蒸发器进口和出口端同时连接。The driving method of the circuit depends on the technical requirements such as the structure of the transformer and heat dissipation, and the structure and location of the main components of the circuit are also different. The drive mode of the circuit includes pump drive, gravity drive and capillary force drive. Those with small heat dissipation requirements generally adopt evaporation-gravity drive and capillary force drive, which are characterized by no moving mechanical parts and external energy; those with large heat dissipation requirements generally adopt pump drive methods. According to the structure of the evaporator (such as a spiral evaporator), the evaporator can be connected to the circuit through an electrically insulating connector, so that the liquid circulates in the circuit while suppressing or reducing the eddy current loss. The electrically insulating connection can be at the inlet or outlet of the evaporator, or at the same time at the inlet and outlet of the evaporator.
两相回路的工质可以是(但不局限于)水、氨、丙烯等;一般要求是无毒、非易燃、非导电流体,并且其凝固点要低于变压器工作环境的最低温度;工质可以纯物质,也可以是两种或两种以上不同物质所组成的混合物,例如,质量比为9∶1的水氨混合物。The working fluid of the two-phase circuit can be (but not limited to) water, ammonia, propylene, etc.; the general requirements are non-toxic, non-flammable, non-conductive fluid, and its freezing point should be lower than the lowest temperature of the transformer working environment; It can be a pure substance, or a mixture of two or more different substances, for example, a mixture of water and ammonia with a mass ratio of 9:1.
可选择地,冷凝器可以设置在干式变压器的上方。此时,进一步包括设置在冷凝器的液相出口与蒸发器的液相入口之间的储液器,储液器也位于干式变压器的上方。此时,优选地,蒸发器的液相入口之前设置单向阀、过滤器以及电绝缘连接器;并且,单向阀与绝缘连接器可集成为一个整体。储液器的底壁向储液器的出口端倾斜。可选择地,当储液器位于干式变压器的上方时,冷凝器和储液器可以结合成冷凝储液器。Optionally, the condenser can be arranged above the dry-type transformer. In this case, it further includes a liquid accumulator disposed between the liquid phase outlet of the condenser and the liquid phase inlet of the evaporator, and the liquid accumulator is also located above the dry-type transformer. At this time, preferably, a one-way valve, a filter, and an electrically insulating connector are provided before the liquid phase inlet of the evaporator; and the one-way valve and the insulating connector can be integrated as a whole. The bottom wall of the reservoir slopes toward the outlet end of the reservoir. Alternatively, when the accumulator is located above the dry-type transformer, the condenser and the accumulator can be combined into a condensate accumulator.
可选择地,进一步包括设置在液相管道中的循环泵,此时,冷凝器和储液器可以设置在干式变压器外部的任意位置,比如干式变压器的上方或下方。此时,优选地,蒸发器的液相入口之前设置与循环泵并联的单向阀。Optionally, it further includes a circulation pump arranged in the liquid phase pipeline. At this time, the condenser and the liquid reservoir can be arranged at any position outside the dry-type transformer, such as above or below the dry-type transformer. At this time, preferably, a one-way valve connected in parallel with the circulation pump is provided before the liquid phase inlet of the evaporator.
可选择地,进一步包括设置在冷凝器的液相出口与蒸发器的液相入口之间的储液器,储液器位于干式变压器的下方。此时,优选地,储液器内设置至少一个毛细吸液芯,毛细吸液芯至少向上延伸至蒸发器入口处。Optionally, it further includes a liquid accumulator disposed between the liquid phase outlet of the condenser and the liquid phase inlet of the evaporator, and the liquid accumulator is located below the dry-type transformer. At this time, preferably, at least one capillary liquid absorbing wick is arranged in the liquid reservoir, and the capillary liquid absorbing wick extends upwards at least to the inlet of the evaporator.
其中,线圈组件包括靠近铁芯的低压线圈和位于低压线圈外围的高压线圈,低压线圈与高压线圈之间设有间隙,蒸发器可以布置在该间隙内,或者,蒸发器也可以布置在低压线圈和/或高压线圈的内部,或者,蒸发器可以紧贴低压线圈的外表面。Among them, the coil assembly includes a low-voltage coil close to the iron core and a high-voltage coil located on the periphery of the low-voltage coil. There is a gap between the low-voltage coil and the high-voltage coil, and the evaporator can be arranged in the gap, or the evaporator can also be arranged on the low-voltage coil. and/or the interior of the high voltage coil, alternatively, the evaporator can be attached to the outer surface of the low voltage coil.
具体地,蒸发器包括至少一条换热管和/或换热板。Specifically, the evaporator includes at least one heat exchange tube and/or heat exchange plate.
可选择地,蒸发器包括八条或八条以上的换热管,八条或八条以上的换热管在蒸发器的液相入口与汽相出口之间并联设置。优选地,蒸发器包括上歧管连接器和下歧管连接器。此处,歧管连接器是一种将多根管与单根管或少数管相连接的连接装置。上歧管连接器和下歧管连接器可以进一步设置有单向阀、过滤器和/或温度传感器如铠装热电偶。蒸发器的汽相出口和液相入口分别设置在上歧管连接器和下歧管连接器,八条或八条以上的换热管的上下端分别与上歧管器连接和下歧管连接器连通。Optionally, the evaporator includes eight or more heat exchange tubes, and the eight or more heat exchange tubes are arranged in parallel between the liquid phase inlet and the vapor phase outlet of the evaporator. Preferably, the evaporator includes upper and lower manifold connectors. Here, a manifold connector is a connecting device that connects multiple pipes with a single pipe or a small number of pipes. The upper and lower manifold connectors may further be provided with one-way valves, filters and/or temperature sensors such as armored thermocouples. The vapor phase outlet and the liquid phase inlet of the evaporator are respectively set at the upper manifold connector and the lower manifold connector, and the upper and lower ends of eight or more heat exchange tubes are respectively connected with the upper manifold and the lower manifold connector .
另外一种方式是,蒸发器蒸发器可以包括上环管和下环管,而八条或八条以上的换热管的上下端可分别与上环管和下环管连通。In another way, the evaporator evaporator may include an upper ring pipe and a lower ring pipe, and the upper and lower ends of eight or more heat exchange tubes may communicate with the upper ring pipe and the lower ring pipe respectively.
可选择地,蒸发器包括四条或四条以上的换热板,四条或四条以上的换热板在蒸发器的液相入口与汽相出口之间并联设置。Optionally, the evaporator includes four or more heat exchange plates, and the four or more heat exchange plates are arranged in parallel between the liquid phase inlet and the vapor phase outlet of the evaporator.
可选择地,蒸发器包括四条或四条以上的换热板和四条或四条以上的换热管,四条或四条以上的换热板和四条或四条以上的换热管在蒸发器的液相入口与汽相出口之间并联设置。Optionally, the evaporator includes four or more heat exchange plates and four or more heat exchange tubes, and the four or more heat exchange plates and four or more heat exchange tubes are connected between the liquid phase inlet and the four or more heat exchange tubes of the evaporator. The vapor phase outlets are set in parallel.
可选择地,蒸发器的换热管由干式变压器的管式线圈绕线构成。Optionally, the heat exchange tubes of the evaporator are formed of tubular coil windings of a dry-type transformer.
可选择地,蒸发器包括至少一条环绕低压线圈外表面的螺旋形换热管。Optionally, the evaporator includes at least one spiral heat exchange tube surrounding the outer surface of the low-pressure coil.
可选择地,换热板和/或换热管设置在低压线圈的内部。Optionally, the heat exchange plate and/or the heat exchange tube are arranged inside the low voltage coil.
优选地,蒸发器与汽相管道和液相管道的连接处分别设有绝缘连接器,包括把单向阀、过滤器以及歧管连接器集成一体的绝缘连接器。Preferably, insulated connectors are respectively provided at the connections between the evaporator and the vapor phase pipeline and the liquid phase pipeline, including an insulated connector integrating a one-way valve, a filter and a manifold connector.
可选择地,包括多条并联的换热管,每条换热管可以为波浪状或脉冲状,或者类似阶梯状。Optionally, it includes a plurality of parallel heat exchange tubes, and each heat exchange tube may be in a wave shape or a pulse shape, or similar to a stepped shape.
可选择地,多条换热管可以相互交错层叠。Optionally, a plurality of heat exchange tubes may be interlaced and stacked.
可选择地,换热管蒸发器的横截面可以是圆的,也可以是偏平的;沿换热管的方向,管壁可以压制成与线圈外形相吻合的形状,以增大换热面积。Optionally, the cross-section of the heat exchange tube evaporator can be round or flat; along the direction of the heat exchange tube, the tube wall can be pressed into a shape matching the shape of the coil to increase the heat exchange area.
此外,回路中也可以设有阀门、过滤器等其他部件。In addition, other components such as valves and filters may also be provided in the circuit.
本发明的有益效果是:1、本发明采用在回路内部直接蒸发-冷凝的方式,并利用蒸发把部分热转化为蒸汽的动能和液体的势能,驱动或部分驱动回路循环,实现高效的变压器散热;2、本发明的蒸发-冷凝过程完全发生在回路的内部,因此,冷却回路结构的体积小,所需冷却工质也少;3、本发明的散热方式还可以缩小低压线圈与高压线圈之间的间隙,从而缩小变压器体积、节省材料。The beneficial effects of the present invention are: 1. The present invention adopts the method of direct evaporation-condensation inside the circuit, and utilizes evaporation to convert part of the heat into kinetic energy of steam and potential energy of liquid, and drives or partially drives the circuit to circulate, so as to realize high-efficiency transformer heat dissipation 2, the evaporation-condensation process of the present invention completely takes place inside the circuit, therefore, the volume of the cooling circuit structure is small, and the required cooling medium is also less; 3, the heat dissipation method of the present invention can also reduce the distance between the low-voltage coil and the high-voltage coil The gap between them reduces the size of the transformer and saves materials.
以下结合附图和实施例,来进一步说明本发明,但本发明不局限于这些实施例,任何在本发明基本精神上的改进或替代,仍属于本发明权利要求书中所要求保护的范围。The present invention will be further described below in conjunction with the accompanying drawings and embodiments, but the present invention is not limited to these embodiments, and any improvement or substitution on the basic spirit of the present invention still belongs to the scope of protection claimed in the claims of the present invention.
附图说明 Description of drawings
图1为本发明实施例1的干式变压器的示意图。Fig. 1 is a schematic diagram of a dry-type transformer according to
图2为本发明实施例2的干式变压器的示意图。Fig. 2 is a schematic diagram of a dry-type transformer according to Embodiment 2 of the present invention.
图3为本发明实施例3的干式变压器的示意图。Fig. 3 is a schematic diagram of a dry-type transformer according to Embodiment 3 of the present invention.
图4为本发明的一种笼式热管蒸发器构造的横向剖视示意图。Fig. 4 is a schematic cross-sectional view of a cage heat pipe evaporator structure of the present invention.
图5为本发明的一种笼式热管蒸发器构造的纵向剖视示意图。Fig. 5 is a schematic longitudinal sectional view of a cage heat pipe evaporator structure of the present invention.
图6为本发明的一种板式热管蒸发器构造的横向剖视示意图。Fig. 6 is a schematic cross-sectional view of a structure of a plate heat pipe evaporator according to the present invention.
图7为本发明的一种板式热管蒸发器构造的纵向剖视示意图。Fig. 7 is a schematic longitudinal sectional view of a structure of a plate heat pipe evaporator according to the present invention.
图8为本发明的一种三相干式变压器的示意图。Fig. 8 is a schematic diagram of a three-phase dry-type transformer of the present invention.
图9为本发明的一种脉动式热管蒸发器构造的横向剖视示意图。Fig. 9 is a schematic cross-sectional view of a structure of a pulsating heat pipe evaporator according to the present invention.
图10为本发明的一种脉动式热管蒸发器构造的纵向剖视示意图。Fig. 10 is a schematic longitudinal sectional view of a structure of a pulsating heat pipe evaporator according to the present invention.
图11为本发明的一种脉动阶梯状热管蒸发器构造的示意图。Fig. 11 is a schematic diagram of a structure of a pulsating stepped heat pipe evaporator according to the present invention.
图12为本发明的一种电绝缘歧管连接器构造的示意图,其中(a)为上歧管连接器的纵向剖面图;(b)为下歧管连接器的纵向剖面图;(c)为歧管连接器与蒸发器连接端的横向剖面图。Fig. 12 is a schematic diagram of the structure of an electrical insulation manifold connector of the present invention, wherein (a) is a longitudinal sectional view of the upper manifold connector; (b) is a longitudinal sectional view of the lower manifold connector; (c) It is a cross-sectional view of the connection end of the manifold connector and the evaporator.
图13为本发明采用的另一种绝缘连接器构造的示意图。Fig. 13 is a schematic diagram of another insulating connector structure adopted in the present invention.
图14为为本发明的一种笼式散热结构的立体示意图。FIG. 14 is a schematic perspective view of a cage heat dissipation structure of the present invention.
具体实施方式 Detailed ways
实施例1Example 1
请参照图1,本实施例采用一种蒸发-重力驱动的干式变压器两相散热回路结构。该干式变压器可以为三相变压器,包括三个铁芯,如图8所示。现以一个铁芯进行说明。铁芯30和环绕铁芯30设置的线圈组件,而线圈组件一般包括低压线圈50和高压线圈70,低压线圈50和高压线圈70之间设有充满电绝缘填料的间隙57。Please refer to FIG. 1 , this embodiment adopts an evaporation-gravity-driven dry-type transformer two-phase cooling circuit structure. The dry-type transformer may be a three-phase transformer, including three iron cores, as shown in FIG. 8 . An iron core is now used for illustration. The
该两相散热回路包括与干式变压器内部的线圈组件有良好热接触的蒸发器100、处于变压器外部的冷凝器300和储液器500,并通过流体管路(包括汽相管道610和液相管道630)构成回路。蒸发器100可采用(但不局限于)紧贴低压线圈50外表面设置的螺旋管130,进出口处采用电绝缘连接器(图未示),以构成液体回路,但不构成电回路,以减少涡流损耗。其中,螺旋管130在低压线圈50外部用紫铜管或不锈钢管绕制而成,所制得的金属螺旋管将与低压线圈50有良好的热接触。The two-phase cooling circuit includes an
可以通过设计把冷凝器300、储液器500集成在一起,使储液器500具备冷凝和冷却的功能,同时使储液器500内部的液面变化不大。The
当变压器工作时,其产生的热量使蒸发器100内的液体蒸发成蒸汽,由于蒸汽的密度低,蒸汽上升,在冷凝器300内凝聚为液体;由于蒸发器100内部以及从蒸发器100到冷凝器300之间的管道内均充满蒸汽或液-汽两相混合物,而从储液器500到蒸发器100之间则充满液体,在重力的作用下,密度高的液体向下流动,从而构成一个两相循环回路。回路的最大驱动力取决于含汽量以及储液器500相对于蒸发器100的高度;而回路的流量取决于蒸发量(变压器的发热量)。在蒸发器100的入口,依需要可连接一个小孔节流阀(图未示)。When the transformer is working, the heat generated by it causes the liquid in the
其优点是无需外部驱动(能耗),无运动部件。The advantage is that no external drive (energy consumption) is required and no moving parts.
实施例2Example 2
请参照图2,本实施例采用一种毛细力驱动的干式变压器两相散热回路结构。其中,储液器500置于回路的最下方,从储液器500到蒸发器100,管道内有毛细吸液芯700,使液体反重力作用爬至蒸发器100,并在蒸发器100内蒸发吸热。蒸汽上升至冷凝器300重新凝聚为液体后,沿冷凝器300到储液器500的管道返回到储液器500。通过设计,储液器500可具有对液体进行进一步冷却的功能。该结构驱动力的大小取决于吸液芯700的毛细力,最大流量取决于吸液芯700的驱动力和流阻。蒸发器100可采用(但不局限于)紧贴低压线圈50外表面设置的螺旋管130。Please refer to FIG. 2 , this embodiment adopts a two-phase heat dissipation circuit structure of a dry-type transformer driven by capillary force. Among them, the
实施例3Example 3
请参照图2,本实施例采用一种循环泵驱动的干式变压器两相散热回路结构。其中,储液器500置于回路的最上或最下方,其起到液体补偿作用;当回路上的工作压力要求高于一个大气压时,其处于回路最上方;而工作压力要求低于一个大气压时,其处于回路最下方。液体在泵800的作用下流动至蒸发器100,并在蒸发器100内蒸发吸热,形成两相流体继续上流至冷凝器300,两相流体凝聚为液体后,吸回至泵800的入口,形成一个循环。Please refer to FIG. 2 , this embodiment adopts a two-phase cooling circuit structure of a dry-type transformer driven by a circulating pump. Among them, the
由于回路由循环泵800驱动,因此,其流量与蒸发量无关,系统的散热能力取决于冷凝器300上翅片的散热面积。还可进一步采用电扇(图未示),通过强制对流(甚至喷雾)的方式,可明显加大冷凝器300上的散热能力。蒸发器100可采用,但不局限于,紧贴低压线圈50外表面设置的螺旋管130,进出口处采用电绝缘连接器(图未示),以构成液体回路,但不构成电回路,以减少涡流损耗。Since the circuit is driven by the circulation pump 800, its flow has nothing to do with the evaporation amount, and the heat dissipation capacity of the system depends on the heat dissipation area of the fins on the
对储液器在变压器上方的回路,可选择地,在蒸发器入口安装与循环泵并联的单向阀,当变压器处于或接近空载(低发热量)时,不必开动循环泵,仅由实施例1的工作方式进行散热。For the circuit where the liquid reservoir is above the transformer, optionally, a check valve connected in parallel with the circulation pump is installed at the inlet of the evaporator. When the transformer is at or close to no-load (low calorific value), it is not necessary to start the circulation pump. The working mode of Example 1 is used to dissipate heat.
该系统的蒸发器100比较简单、系统运行的稳定性高、散热量大。The
实施例4Example 4
作为本发明的另一种方案,其它部分与实施例1、2或3相同,不同之处在于:对于大功率的变压器,其低压线圈50可用紫铜管绕制而成;铜管本身导电,管内作蒸发器100使用。As another scheme of the present invention, other parts are identical with
实施例5Example 5
作为本发明的另一种方案,其它部分与实施例1、2或3相同,不同之处在于:如图4、图5所示,蒸发器100为笼式热管蒸发器。该蒸发器100由上下取向的换热管150分别与上、下两个非闭合的环形管156连接而成(非闭合环形管156是为了抑制涡流损耗),是一个并联的流体流道结构;上、下环形管156分别是蒸发器100的出口和进口。As another solution of the present invention, other parts are the same as those in
实施例6Example 6
作为本发明的另一种方案,其它部分与实施例1、2或3相同,不同之处在于:如图6、图7所示,蒸发器100采用板式热管或“热板”蒸发器100。与笼式热管蒸发器100相似,把数条管换成具有内部结构的空心薄板160,一来可增加接触(换热)面积,二来可节省蒸发器100的空间。As another solution of the present invention, other parts are the same as those in
“热板”的上、下端分别与上、下两个非闭合的环形管166连接而成,上、下环形管166分别是蒸发器100的出口和进口。The upper and lower ends of the "hot plate" are respectively connected to the upper and lower two non-closed
由于“热板”薄,在本实施例中被安装在低压线圈50的内部,增强散热效果。Since the "hot plate" is thin, it is installed inside the low-
同时,在该实施方式中,还采用了上下取向的换热管150。Meanwhile, in this embodiment, the
实施例7Example 7
作为本发明的另一种方案,其它部分与实施例6相同,不同之处在于:空心薄板160安装在低压线圈50和高压线圈70之间设有间隙57内,(间隙57内浇注绝缘填料),并紧贴低压线圈50的外表面。并且,可以不设上下取向的换热管150。As another solution of the present invention, other parts are the same as in Embodiment 6, except that the hollow
实施例8Example 8
作为本发明的另一种方案,其它部分与实施例1、2或3相同,不同之处在于:蒸发器100的换热管150采用如图9、图10所示的脉动式构造。As another solution of the present invention, the other parts are the same as in
实施例9Example 9
作为本发明的另一种方案,其它部分与实施例1、2或3相同,不同之处在于:蒸发器100的换热管150采用如图11所示的阶梯状脉动构造。As another solution of the present invention, the other parts are the same as in
实施例10Example 10
作为本发明的另一种方案,其它部分与实施例5相同,不同之处在于:如图14所示,换热管1030分别与电绝缘的上、下歧管连接器960、970连接,形成笼式”的散热结构。该歧管连接器可与(但不局限于)铠装热电偶1000、结合成一个整体,其构造如图12(a)-(c)所示,其中,图12(a)为上歧管连接器960的纵向剖面图,其包括铠装热电偶1000、电绝缘材料950、歧管通道1010以及汽体出口通道1020;(b)为下歧管连接器970的纵向剖面图,其包括铠装热电偶1000、电绝缘材料950、单向阀990、过滤器995、歧管通道1010以及液体入口通道1025;(c)为歧管连接器与蒸发器连接端的横向剖面图。As another solution of the present invention, other parts are the same as in Embodiment 5, the difference is that, as shown in FIG. Cage type heat dissipation structure. The manifold connector can be integrated with (but not limited to) the armored thermocouple 1000, and its structure is shown in Figure 12(a)-(c), wherein, Figure 12 (a) is a longitudinal section view of
另外,进一步与实施例5不同的是,该实施例的线圈可以是圆柱形的。In addition, further different from Embodiment 5, the coil of this embodiment may be cylindrical.
实施例11Example 11
作为本发明的另一种方案,其它部分与实施例1相同,不同之处在于:采用如图13所示的绝缘连接器将液体连接至蒸发器,该绝缘连接器可与带铠装热电偶1000、电绝缘单向阀990和过滤器995结合成一个整体。As another solution of the present invention, the other parts are the same as in
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2008100274379A CN101325118B (en) | 2008-04-14 | 2008-04-14 | Dry-type transformer with vapour-liquid two phase heat-radiation loop |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2008100274379A CN101325118B (en) | 2008-04-14 | 2008-04-14 | Dry-type transformer with vapour-liquid two phase heat-radiation loop |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101325118A true CN101325118A (en) | 2008-12-17 |
CN101325118B CN101325118B (en) | 2011-07-20 |
Family
ID=40188594
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2008100274379A Expired - Fee Related CN101325118B (en) | 2008-04-14 | 2008-04-14 | Dry-type transformer with vapour-liquid two phase heat-radiation loop |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101325118B (en) |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102109258A (en) * | 2010-08-05 | 2011-06-29 | 中国科学院理化技术研究所 | Low-temperature loop heat pipe device |
CN102804293A (en) * | 2009-06-05 | 2012-11-28 | Abb技术有限公司 | Transformer coil and transformer having passive cooling |
CN103053000A (en) * | 2010-08-03 | 2013-04-17 | 特莱福公司 | Method for manufacturing manifold of liquid-cooled, core-structure electric power engineering component, and manifold of liquid-cooled, core-structure electric power engineering component |
CN103268808A (en) * | 2013-06-06 | 2013-08-28 | 国家电网公司 | An Immersion Evaporative Cooling Transformer |
CN103617871A (en) * | 2013-12-11 | 2014-03-05 | 株洲南车奇宏散热技术有限公司 | Method and device for cooling reactor or transformer through isolated refrigerants |
CN103887042A (en) * | 2014-04-14 | 2014-06-25 | 汇网电气有限公司 | Cooling structure device of transformer |
CN103943315A (en) * | 2014-04-14 | 2014-07-23 | 汇网电气有限公司 | Dry type transformer capable of conducting efficient cooling |
CN104183368A (en) * | 2013-05-22 | 2014-12-03 | 上海东普电器制造有限公司 | Double-water-cooling integrated temperature-reducing system for clean energy transformer |
WO2016086495A1 (en) * | 2014-12-02 | 2016-06-09 | 北京空间飞行器总体设计部 | Gravity-driven two-phase fluid loop |
CN106876114A (en) * | 2017-04-18 | 2017-06-20 | 江西明正变电设备有限公司 | A kind of dry-type transformer |
CN107863228A (en) * | 2017-12-12 | 2018-03-30 | 贵州电网有限责任公司凯里剑河供电局 | Distribution transforming radiating temperature-controlling system based on taiwan area measure and control device |
EP3517777A1 (en) * | 2018-01-30 | 2019-07-31 | General Electric Company | Multisiphon passive cooling system |
CN110613172A (en) * | 2019-09-30 | 2019-12-27 | 深圳麦克韦尔科技有限公司 | Electronic atomization device and atomizer thereof |
US10590916B2 (en) | 2018-01-22 | 2020-03-17 | General Electric Company | Multisiphon passive cooling system |
CN113470939A (en) * | 2021-06-18 | 2021-10-01 | 江苏新特变科技股份有限公司 | Cooling structure of dry-type transformer |
CN113939138A (en) * | 2020-06-29 | 2022-01-14 | 中兴通讯股份有限公司 | Heat sinks and communication equipment |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1506985A (en) * | 2002-12-11 | 2004-06-23 | 王小平 | Heat radiator for green high-energy transformer |
CN1862719A (en) * | 2005-11-17 | 2006-11-15 | 中国科学院电工研究所 | Evaporation cooling transformer |
CN200962364Y (en) * | 2006-05-31 | 2007-10-17 | 天津泰达节能技术投资咨询有限公司 | Resin casting dry transformer using the thermal pipe for heat dispersion |
CN1913058A (en) * | 2006-08-21 | 2007-02-14 | 马兴凯 | Transformer cooled by evaporation |
CN201259816Y (en) * | 2008-04-14 | 2009-06-17 | 中山大学 | Dry transformer having gas-liquid dual phase heat radiation loop |
-
2008
- 2008-04-14 CN CN2008100274379A patent/CN101325118B/en not_active Expired - Fee Related
Cited By (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102804293A (en) * | 2009-06-05 | 2012-11-28 | Abb技术有限公司 | Transformer coil and transformer having passive cooling |
CN102804293B (en) * | 2009-06-05 | 2017-03-01 | Abb技术有限公司 | Transformer coil with passive cooling and transformator |
CN103053000B (en) * | 2010-08-03 | 2016-06-08 | 特莱福公司 | The manifold of the power engineering assembly of liquid-cooling type core construction and manufacture method thereof |
CN103053000A (en) * | 2010-08-03 | 2013-04-17 | 特莱福公司 | Method for manufacturing manifold of liquid-cooled, core-structure electric power engineering component, and manifold of liquid-cooled, core-structure electric power engineering component |
CN102109258B (en) * | 2010-08-05 | 2013-03-13 | 中国科学院理化技术研究所 | Low-temperature loop heat pipe device |
CN102109258A (en) * | 2010-08-05 | 2011-06-29 | 中国科学院理化技术研究所 | Low-temperature loop heat pipe device |
CN104183368B (en) * | 2013-05-22 | 2018-01-23 | 上海东普电器制造有限公司 | The double water cooling synthesis cooling systems of clean energy resource transformer |
CN104183368A (en) * | 2013-05-22 | 2014-12-03 | 上海东普电器制造有限公司 | Double-water-cooling integrated temperature-reducing system for clean energy transformer |
CN103268808A (en) * | 2013-06-06 | 2013-08-28 | 国家电网公司 | An Immersion Evaporative Cooling Transformer |
CN103617871A (en) * | 2013-12-11 | 2014-03-05 | 株洲南车奇宏散热技术有限公司 | Method and device for cooling reactor or transformer through isolated refrigerants |
CN103943315A (en) * | 2014-04-14 | 2014-07-23 | 汇网电气有限公司 | Dry type transformer capable of conducting efficient cooling |
CN103887042A (en) * | 2014-04-14 | 2014-06-25 | 汇网电气有限公司 | Cooling structure device of transformer |
CN103943315B (en) * | 2014-04-14 | 2016-04-06 | 汇网电气有限公司 | A kind of dry-type transformer of temperature with high efficiency |
WO2016086495A1 (en) * | 2014-12-02 | 2016-06-09 | 北京空间飞行器总体设计部 | Gravity-driven two-phase fluid loop |
CN106876114A (en) * | 2017-04-18 | 2017-06-20 | 江西明正变电设备有限公司 | A kind of dry-type transformer |
CN107863228B (en) * | 2017-12-12 | 2019-09-03 | 贵州电网有限责任公司凯里剑河供电局 | Distribution transforming heat dissipation temperature-controlling system based on platform area measure and control device |
CN107863228A (en) * | 2017-12-12 | 2018-03-30 | 贵州电网有限责任公司凯里剑河供电局 | Distribution transforming radiating temperature-controlling system based on taiwan area measure and control device |
US10590916B2 (en) | 2018-01-22 | 2020-03-17 | General Electric Company | Multisiphon passive cooling system |
EP3517777A1 (en) * | 2018-01-30 | 2019-07-31 | General Electric Company | Multisiphon passive cooling system |
CN110613172A (en) * | 2019-09-30 | 2019-12-27 | 深圳麦克韦尔科技有限公司 | Electronic atomization device and atomizer thereof |
CN113939138A (en) * | 2020-06-29 | 2022-01-14 | 中兴通讯股份有限公司 | Heat sinks and communication equipment |
CN113470939A (en) * | 2021-06-18 | 2021-10-01 | 江苏新特变科技股份有限公司 | Cooling structure of dry-type transformer |
CN113470939B (en) * | 2021-06-18 | 2024-02-02 | 江苏新特变科技股份有限公司 | Cooling structure of dry-type transformer |
Also Published As
Publication number | Publication date |
---|---|
CN101325118B (en) | 2011-07-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101325118A (en) | Dry-type transformer with vapor-liquid two-phase cooling circuit | |
CN201259816Y (en) | Dry transformer having gas-liquid dual phase heat radiation loop | |
JP4578552B2 (en) | Cooling device and power conversion device | |
CN103208356B (en) | A kind of gas-insulated power transformer of heat pipe cooling | |
CN101252822B (en) | A kind of EHD strengthened miniature cooling device | |
CN103424018A (en) | Liquid phase-change heat transfer type pumping cooling system with booster pump | |
WO2014005806A1 (en) | Electro-magnetic device comprising a cooling arrangement including a specifically arranged thermosyphon | |
CN115668414A (en) | Heat exchanger and electric device comprising a heat exchanger | |
CN209267372U (en) | Cooling units, winding assemblies, generators and wind turbines | |
CN102648504A (en) | Heat exchanger systems for dry-type transformers | |
JP2011142298A (en) | Boiling cooler | |
CN202648481U (en) | Liquid phase change heat transfer type pumping cooling system with booster pump | |
CN101814464A (en) | Silicon controlled thyristor device micro slot group composite phase change integrated cooling heat dissipation method and device | |
CN117382454A (en) | A device and method for efficient passive heat dissipation of DC charging piles using heat pipes | |
CN100366345C (en) | Evaporative Cooling Electromagnetic Separator | |
CN202613833U (en) | Magnetic cold accumulation device for magnetic refrigerator | |
KR100990535B1 (en) | Double tube heat pipe radiator for transformer | |
RU2513118C2 (en) | Evaporative-condensing cooling system for current-conducting elements (versions) | |
CN118155985A (en) | Cooling device and cooling method for power transformer | |
CN210224017U (en) | High aspect ratio foam metal microchannel phase change cooling device combined with aluminum substrate | |
CN106653297A (en) | Transformer automatic cooling system | |
US20100162748A1 (en) | Heat generator | |
WO2007104190A1 (en) | Transformer using separating heat pype for radiating heat | |
CN207587496U (en) | A kind of vapour-cooled transformer | |
CN221437758U (en) | A device for efficiently passively cooling a DC charging pile using a heat pipe |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20110720 Termination date: 20170414 |