CN101324203B - 带排气再循环的用于发电的系统和方法 - Google Patents
带排气再循环的用于发电的系统和方法 Download PDFInfo
- Publication number
- CN101324203B CN101324203B CN200810099697.7A CN200810099697A CN101324203B CN 101324203 B CN101324203 B CN 101324203B CN 200810099697 A CN200810099697 A CN 200810099697A CN 101324203 B CN101324203 B CN 101324203B
- Authority
- CN
- China
- Prior art keywords
- exhaust
- shunting
- stream
- oxygenant
- receive
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000010248 power generation Methods 0.000 title claims abstract description 27
- 238000000034 method Methods 0.000 title description 17
- 239000000446 fuel Substances 0.000 claims abstract description 20
- 238000011084 recovery Methods 0.000 claims abstract description 9
- 239000007789 gas Substances 0.000 claims description 52
- 238000010304 firing Methods 0.000 claims description 28
- 238000001816 cooling Methods 0.000 claims description 26
- 238000004064 recycling Methods 0.000 claims description 19
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 18
- 239000001301 oxygen Substances 0.000 claims description 18
- 229910052760 oxygen Inorganic materials 0.000 claims description 18
- 238000004140 cleaning Methods 0.000 claims description 9
- 239000000463 material Substances 0.000 claims description 7
- MWUXSHHQAYIFBG-UHFFFAOYSA-N Nitric oxide Chemical compound O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 claims description 6
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 claims description 4
- 229930195733 hydrocarbon Natural products 0.000 claims description 4
- 150000002430 hydrocarbons Chemical class 0.000 claims description 4
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims description 4
- 239000000203 mixture Substances 0.000 claims description 4
- 239000004215 Carbon black (E152) Substances 0.000 claims description 3
- 239000011435 rock Substances 0.000 claims description 3
- 239000002551 biofuel Substances 0.000 claims description 2
- 239000001273 butane Substances 0.000 claims description 2
- 239000003245 coal Substances 0.000 claims description 2
- 239000002283 diesel fuel Substances 0.000 claims description 2
- 239000003350 kerosene Substances 0.000 claims description 2
- IJDNQMDRQITEOD-UHFFFAOYSA-N n-butane Chemical compound CCCC IJDNQMDRQITEOD-UHFFFAOYSA-N 0.000 claims description 2
- OFBQJSOFQDEBGM-UHFFFAOYSA-N n-pentane Natural products CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 claims description 2
- -1 naphtha Substances 0.000 claims description 2
- 230000003647 oxidation Effects 0.000 claims description 2
- 238000007254 oxidation reaction Methods 0.000 claims description 2
- 239000001294 propane Substances 0.000 claims description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 claims 3
- 239000003915 liquefied petroleum gas Substances 0.000 claims 3
- OTMSDBZUPAUEDD-UHFFFAOYSA-N Ethane Chemical compound CC OTMSDBZUPAUEDD-UHFFFAOYSA-N 0.000 claims 1
- 239000010779 crude oil Substances 0.000 claims 1
- 239000003921 oil Substances 0.000 claims 1
- 238000001179 sorption measurement Methods 0.000 claims 1
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 abstract description 16
- 238000002485 combustion reaction Methods 0.000 abstract description 12
- 229910002092 carbon dioxide Inorganic materials 0.000 abstract description 8
- 239000001569 carbon dioxide Substances 0.000 abstract description 8
- 239000007800 oxidant agent Substances 0.000 abstract description 7
- 230000001590 oxidative effect Effects 0.000 abstract description 7
- 238000000746 purification Methods 0.000 abstract description 5
- 238000011064 split stream procedure Methods 0.000 abstract 6
- 238000007906 compression Methods 0.000 description 14
- 238000005516 engineering process Methods 0.000 description 14
- 230000006835 compression Effects 0.000 description 13
- 238000002156 mixing Methods 0.000 description 13
- 238000010791 quenching Methods 0.000 description 12
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 10
- 230000000171 quenching effect Effects 0.000 description 9
- 239000000567 combustion gas Substances 0.000 description 7
- 230000008569 process Effects 0.000 description 6
- 238000000926 separation method Methods 0.000 description 5
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical compound S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 4
- 230000006378 damage Effects 0.000 description 4
- 230000007423 decrease Effects 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 239000009337 ESP 102 Substances 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 238000010531 catalytic reduction reaction Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000005611 electricity Effects 0.000 description 2
- 239000003344 environmental pollutant Substances 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 125000002485 formyl group Chemical class [H]C(*)=O 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 231100000719 pollutant Toxicity 0.000 description 2
- 238000007634 remodeling Methods 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 1
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- 230000000274 adsorptive effect Effects 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 238000000889 atomisation Methods 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 229910002091 carbon monoxide Inorganic materials 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000002803 fossil fuel Substances 0.000 description 1
- 239000013505 freshwater Substances 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 239000003129 oil well Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000012716 precipitator Substances 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000012857 repacking Methods 0.000 description 1
- 239000002594 sorbent Substances 0.000 description 1
- 230000002269 spontaneous effect Effects 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02C—GAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
- F02C3/00—Gas-turbine plants characterised by the use of combustion products as the working fluid
- F02C3/34—Gas-turbine plants characterised by the use of combustion products as the working fluid with recycling of part of the working fluid, i.e. semi-closed cycles with combustion products in the closed part of the cycle
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02C—GAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
- F02C7/00—Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
- F02C7/08—Heating air supply before combustion, e.g. by exhaust gases
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02C—GAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
- F02C7/00—Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
- F02C7/08—Heating air supply before combustion, e.g. by exhaust gases
- F02C7/10—Heating air supply before combustion, e.g. by exhaust gases by means of regenerative heat-exchangers
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E20/00—Combustion technologies with mitigation potential
- Y02E20/16—Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Engine Equipment That Uses Special Cycles (AREA)
Abstract
本发明涉及带排气再循环的用于发电的系统和方法,具体地涉及一种发电系统(10)。其包括燃气透平系统(15),其包括燃烧室(20)、压缩机(16)和膨胀器(24),燃烧室(20)可燃烧燃料流(13),压缩机(16)可接收氧化剂供给流(14),并将压缩的氧化剂(18)供给燃烧室(20),膨胀器(24)可接收来自燃烧室(20)的排放物(22),并产生包含二氧化碳的排气(30)和电能;还包括可改进的排气再循环系统(54),其包括分流器(32)、热回收蒸汽发生器(38)及净化系统(50),分流器(32)可将排气(30)分离成第一分流(34)和第二分流(36),热回收蒸汽发生器(38)可接收第一分流(34)并产生冷却的第一分流(40),净化系统(50)可接收第一冷却分流(40)和第二分流(36),并产生再循环流(52),而再循环流(52)与新鲜的氧化剂(12)进行混合,以产生氧化剂供给流(14)。
Description
技术领域
本发明大致涉及发电和二氧化碳的有效回收。更具体地说,本发明涉及燃气透平排气再循环与减少NOX排放的结合。
背景技术
燃烧含碳燃料(例如,化石燃料)的发电系统,其产生二氧化碳(CO2)作为副产品,因为在燃烧中,碳被转换成CO2。通常空气用作用于燃料燃烧的氧化剂,生成NOX。从发电系统,例如从燃气透平的排气中除去或回收二氧化碳(CO2),其通常由于低的CO2含量和低的(环境)排气压力而并不经济。因此,不幸的是,包含CO2的排气通常被释放至大气,而没有埋置在大洋、矿山、油井、地质盐湖等中。目前需要一种技术,其可为依赖于含碳燃料的发电系统(例如,燃气透平)中所排放的CO2的经济回收提供技术准备,并且减少NOX的生成。
发明内容
在一个方面,一种发电系统包括燃气透平系统。透平系统包括燃烧室、压缩机和膨胀器,燃烧室构造成可燃烧燃料流,压缩机构造成可接收氧化剂供给流,并将压缩的氧化剂供给燃烧室,膨胀器构造成可接收来自燃烧室的排放物,并产生包含二氧化碳的排气和电能。该系统还包括一种可改进的排气再循环系统,其包括分流器、热回收蒸汽发生器以及净化系统,分流器构造成可将排气分离成第一分流和第二分流,热回收蒸汽发生器构造成可接收第一分流并产生冷却的第一分流,净化系统构造成可接收第一冷却的分流和第二分流,并产生再循环流,其中再循环流与新鲜的氧化剂进行混合,以产生氧化剂供给流。
在另一方面,发电系统包括一种燃气透平系统,其包括燃烧室、压缩机和膨胀器,燃烧室构造成可燃烧燃料流,压缩机构造成可接收氧化剂供给流,并将压缩的氧化剂供给燃烧室,膨胀器构造成可接收来自燃烧室的排放物,并产生包含二氧化碳和电能的排气。该系统还包括一种排气再循环单元,其包括分流器、热回收蒸汽发生器、鼓风机以及净化系统,分流器构造成可将排气分离成第一分流和第二分流,热回收蒸汽发生器构造成可接收第一分流并产生冷却的第一分流,鼓风机增大冷却的第一分流中的压力,净化系统构造成可接收第一冷却的分流和第二分流,并产生再循环流,其中再循环流与新鲜的氧化剂进行混合,以产生氧化剂供给流。排气再循环单元还包括第一控制阀和第二控制阀,其中第一控制阀构造成可释放一部分冷却的第一排气,并且第二控制阀构造成可释放一部分再循环流。
一种在减少NOX排放物的条件下发电的方法,其包括压缩供给氧化剂,并在压缩机中产生已压缩的氧化剂,使燃料流和压缩的氧化剂在燃烧室中燃烧,并产生排放物,使来自燃烧室的排放物膨胀,并产生包含二氧化碳的排气和电能。该方法还包括使排气分离成第一分流和第二分流,从第一分流中回收热量,并产生的冷却的第一分流并增加冷却的第一分流的压力。该方法还包括使冷却的第一分流和第二分流再混合,并产生混合的排气,净化混合排气,并产生再循环流且使再循环流与新鲜的氧化剂混合,并产生供给氧化剂。
在另一方面,一种发电方法包括压缩供给氧化剂,并在压缩机中产生压缩的氧化剂,使燃料流和压缩的氧化剂在燃烧室中燃烧,并产生排放物,使来自燃烧室的排放物膨胀,并产生包含二氧化碳的排气和电能。该方法还包括利用柯恩达喷射器将排气分离成第一分流和第二分流,回收第一分流中的热量并产生冷却的第一分流,增加冷却的第一分流的压力,并使冷却的第一分流和第二分流再混合,并产生混合的排气。该方法还包括净化混合的排气,并产生再循环流,使再循环流与新鲜的氧化剂混合,并产生供给氧化剂;以及通过第一控制阀释放一部分冷却的第一排气,并通过第二控制阀释放一部分再循环流。
附图说明
当参照附图阅读以下详细说明时,将更好地理解本发明的这些以及其它特征、方面和优势,其中在所有附图中相似的标号表示相似的部件,其中:
图1是根据本技术实施例的一个典型的集成了排气再循环系统的发电系统的流程图;
图2是根据本技术实施例的另一典型的发电系统排气再循环系统的流程图;
图3是根据本技术实施例的又一典型的发电系统排气再循环系统的流程图;
图4是根据本技术实施例的又一典型的发电系统排气再循环系统的流程图;
图5是根据本技术实施例的另一典型的发电系统排气再循环系统的流程图;
图6显示了在透平工作流体中不同的氧气水平下的NOX生成趋势;
图7显示了不同的排气再循环(EGR)水平下的NOX生成趋势;且
图8显示了在不同的EGR水平下的CO2浓度趋势。
具体实施方式
本技术提供一个或多个典型的燃气透平系统,其工作在发电系统中,以便在低的NOX和CO2排放下发电。来自燃气透平的一部分排气再循环到透平的入口,这部分排气与新鲜的氧化剂例如空气进行混合,之后被导入到透平系统的燃烧室中。结果,同传统的氧化剂相比,用于燃烧的混合氧化剂具有较低的氧气含量,并导致来自燃烧室的排放物中较低的NOX排放。另外,由于一部分排气再循环回到透平系统中,所以燃烧过程中所产生的二氧化碳被浓缩,这种再循环增强了下游CO2的分离工艺。本技术还提供了一种净化工艺,以使排气在再循环回到透平系统中之前被净化。这种净化工艺提供了清洁的排气,以再循环回到透平系统中,从而防止对透平系统的内部构件造成任何伤害。
现在转到附图,图1显示了一个典型的发电系统10,其具有燃气透平系统15。燃气透平系统15包括燃烧室20和压缩机16,燃烧室20构造成可燃烧燃料流13,压缩机16构造成可接收氧化剂供给流14,并将压缩的氧化剂18供给燃烧室20。透平系统15还包括膨胀器24,其构造成可接收来自燃烧室20的排放物22,且产生包含二氧化碳的排气30并通过发电机28产生电能。压缩机16和膨胀器24通常通过公共轴26而联接在一起。发电系统10还包括可改进的排气再循环系统54,其包括分流器32,构造成可将排气30分离成第一分流34和第二分流36。排气再循环系统54还包括热回收蒸汽发生器(HRSG)38(其是未显示的复合循环设备的一部分),其构造成可接收第一分流34,并产生冷却的第一分流40。净化系统50构造成可接收第一冷却的分流46和第二分流36,并产生再循环流52。在操作过程中,再循环流52与新鲜的氧化剂12进行混合,以产生氧化剂供给流14。
应该懂得,来自压缩机16的压缩的氧化剂18,其可包括任何包含氧气的合适的气体,例如空气、富含氧气的空气和耗尽氧气的空气。燃烧室20中的燃烧过程产生了排放物流22。
如图所示,可将来自燃烧室20的排放物流22引进膨胀器24中。如图所示,发电系统10包括连接在透平系统15上的发电机28。供给至膨胀器24中的热的排放物流22的热动力膨胀产生动力以驱动燃气透平系统15,而燃气透平系统15则通过发电机28产生电力。在这个实施例中,来自发电机28的电力可转换成适当形式,并提供给配电网络(未显示)。来自膨胀器24的膨胀的排气30可供给至分流器32中。在一个实施例中,分流器32是一种柯恩达喷射器,其增强了把排气流分离成第一分流和第二分流的作用。HRSG38用于回收第一分流34的热含量,以产生蒸汽。排气流30的温度为大约700°F至大约1100°F,而冷却的第一分流40处于大约60°F至大约200°F的温度下。
在一个实施例中,排气再循环系统54还包括第一控制阀42,其构造成可释放一部分冷却的第一排气44。在一个实施例中,流44被释放至大气中,而在另一实施例中,流44被传送至CO2分离单元中,以分离CO2,之后释放到大气中。冷却的第一分流46的剩余部分与第二分流36混合,以产生混合的排气流48,并将混合的排气流48传送至净化单元50中。净化单元50构造成可从混合的排气流48中除去污染物例如湿气、微粒和酸性气体,之后使其作为再循环流52而再循环回到压缩机16的入口。排气中的杂质和湿气含量妨碍了利用简单的再循环回路来实现CO2的浓缩。由于排气流中存在某些杂质例如粒子和酸性气体,所以来自透平系统的一部分排气的直接再循环可能导致透平失效,并且加速内部构件的磨损。因此净化单元50的存在增强了除去污染物,例如水蒸汽、酸性气体、醛和烃类的作用,并减少了加速燃气透平系统15的内部构件的腐蚀和结垢的机会。如图1中所示,再循环流52与新鲜的氧化剂12混合,以发生用于压缩机16的供给氧化剂14。这种再循环操作通常增加了压缩的氧化剂流18和后续的排气30中的CO2浓度。
燃料流13可包括任何合适的碳氢化合物气体或液体,例如天然气、甲烷、石脑油、丁烷、丙烷、合成气、柴油、煤油、航空燃料、煤衍生燃料、生物燃料、氧化的碳氢化合物原料和其混合物等等。在一个实施例中,燃料主要是天然气(NG),因而,来自燃烧室20的排放物流22可包括水、二氧化碳(CO2)、一氧化碳(CO2)、氮(N2)、氧化氮(NOX)、未燃烧的燃料以及其它化合物。
排气再循环系统54可用作可改进的单元,用于改装到任何现存的燃气透平中,以便在透平系统的工作流体中取得较高的CO2浓度,并且降低NOX的排放。由于当新鲜空气12与包含耗尽氧气的再循环流52混合时,压缩的氧化剂18中的氧气含量的下降,所以降低了来自燃烧室20的NOX的排放。在某些实施例中,压缩的氧化剂流18的氧气水平低至大约13%至大约15%,并且来自燃烧室20的排放物22中的氧气水平可低至体积比小于2%。这种较低的氧气水平导致来自燃烧室20的排放物22中的NOX水平降低至10ppm以下,并且CO2水平体积比高达10%。
在本技术中有效地使用排气再循环(EGR)来提高排气中的CO2水平,并同时减少NOX。在任何燃烧过程中,NOX的处理通常是通过选择性的催化还原(SCR)和/或利用预混合的燃烧过程来实现的。本技术提供了对包括排气再循环系统的燃气透平的轻微改进,其可作为燃烧喷嘴的一种改装和较小的改动而应用于现有系统,从而容许更柔性的操作,以实现排气中较低的NOX生成和较高的CO2水平。在一个实施例中,如之前所述,部分冷却的排气44被引导至CO2分离单元(未显示)中。其可涉及任何CO2分离工艺(例如胺处理、PSA、隔膜分离等等)。在分离之后,可将富含CO2的流引导至CO2调节系统中,包括CO2压缩系统。透平系统的排气流中的CO2浓度的提高增强了CO2分离工艺的效率。
图2显示了利用排气再循环系统54的另一典型的发电系统60。净化系统50如图2中所示包括水淬火器(water quench)62和除雾器72。在操作过程中,将雾化的水64引进到水淬火器62中。在某些实施例中,与淬火器62一起提供了冷却器或热交换器(未显示),以便将混合的排气流48的温度降低到大约60°F至大约120°F。雾化水结合温度降造成混合流48中的可凝结物进入淬火水再循环回路62中。一部分水66从淬火水再循环回路62中除去,并被更换成新鲜的水68。来自淬火器62的排出流70供给除雾器72,该除雾器72除去排出流中的剩余微滴,以产生有待再循环回到压缩机16入口处的再循环流52。在一个实施例中,再循环流52在混合室74中与新鲜的氧化剂12例如空气混合,以产生用于压缩机16的供给氧化剂14。
图3显示了另一发电系统80,其中净化单元50包括淬火单元62、热交换器82和除雾器72。在操作过程中,淬火单元中的雾化水64将混合排气48的温度降低至饱和点。离开热交换器82的排出流84被传送至除雾器72中,之后作为再循环流52被传送至压缩机16中。
图4显示了又一发电系统100,其中净化单元50包括淬火单元62、热交换器82、湿静电除尘器(湿ESP)102和除雾器72。在操作过程中,淬火单元62中的雾化水64包括吸附材料,以吸附混合排气48中的任何不想要的物质。淬火单元62中的这种吸附过程可能在离开淬火单元62的排出流70中添加微粒。湿ESP102构造成可从流70中除去微粒。离开热交换器82的排出流84被传送至湿ESP102,之后被传送至除雾器72。来自除雾器72的排出流是再循环流52,其被传送回压缩机16。添加至淬火单元中,以吸附不合适的物质的材料,其依赖于透平系统15中的燃料喷嘴的特性和所需要的净化水平。
图5显示了又一典型的发电系统120。发电系统120包括鼓风机122,其用于在冷却的第一分流46与第二分流36混合之前增加冷却的第一分流46的压力。如图5中所示,来自净化单元50的排出流被传送至第二控制阀130,从而将部分(portion)132释放至紧急组件。在操作过程中,第二控制阀130在排气再循环系统54中的可用性提供另一柔性程度,以控制整个发电系统120的最佳性能。在其中排气再循环系统54的净化单元50或任何其它单元发生故障的情形下,第二控制阀130可释放所有或大部分来自净化单元50的排出流128,并从而免去对燃气透平系统15的内部构件造成任何损伤。在某些实施例中,通过利用第一控制阀42和第二控制阀130,可使高达50%的排气30作为再循环流52而再循环回到压缩机16中。
如图1-5中所述的排气再循环系统利用集成控制系统。控制系统将各单元的操作集成在排气再循环系统中,以取得发电系统的最佳性能。在一个实施例中,通过安装在混合室74入口的连续监测系统(图中未显示)可驱动该控制系统。连续监测系统测量再循环流52中的成分,并为控制系统提供反馈。基于这种反馈,控制系统可调整参数,其包括但不局限于淬火再循环速度、淬火单元中的吸附剂喷射速率、以及排气再循环系统54的若干位置上的气体温度。控制系统还可将燃气透平系统15的操作参数和环境条件集成到整个逻辑中。控制系统可优化发电系统的关键位置上的气体温度,以确保最有效的冷却。
图6显示了在压缩的氧化剂18中不同的氧气水平下的排气30中的NOX水平,其与燃烧室20中的火焰温度有关。当火焰温度从2400升高至3200°F时,使用21%的氧生成的NOX(由点150和152表示)在20-60ppm的范围内。对比而言,当火焰温度从2400升高至3200°F时,使用16.8%的氧生成的NOX(由点154,156和158表示)在2-14ppm的范围内。该结果清楚地显示了使用具有较少氧气含量的氧化剂而生成的NOX的下降,这种下降是使用上述排气再循环系统的结果。
图7显示了随着排气再循环(EGR)的增加,NOX的生成趋势。燃烧室20中的火焰温度从2600°F(由曲线202所示)升高至3100°F(由曲线192所示)。在这之间,曲线194,196,198和200分别代表3000°F、2900°F、2800°F和2700°F的火焰温度。来自燃烧室的排放物22中的氧气浓度随着排气再循环沿着曲线180,182,184,186,188和190的下降而增加。从图7中可以看出,在固定的火焰温度下(例如,代表3100°F的曲线192),随着EGR升高(如箭头204所示),生成的NOX减少。在曲线194,196,198,200和202中显示了类似的观察结果。
图8显示了随着火焰温度(绘制在轴线220中)和EGR的变化,二氧化碳(绘制在轴线222中)的浓度趋势。随着EGR沿着箭头228从0%(由线224所示)增加至40%(由线226所示),由于更大部分的排气作为再循环流52而再循环回到压缩机的入口中,CO2的浓度得以增加。
这里所述的发电系统包括可改进的排气再循环单元,其可作为对透平的一种改进来实现,这种透平需要符合较低NOX生成水平,以及在需要分离CO2的情形中,容许更有效的CO2的分离。这种可改进的方案对于带排气的发电是一种可选方案——该排气的CO2含量是稀薄的,并且具有比燃烧过程中通常观察到的NOX水平较低的NOX水平。在将排气释放至大气之前,来自燃烧室的排放物中的CO2的较高浓度最终对于CO2的分离成本具有显著的影响,节省了高达35%的工厂成本。这种技术容许燃气透平在燃烧器入口低至13%的氧气水平,且出口小于2%的氧气水平下正常运转,同时将NOX降至低于10ppm的水平。在某些实施例中,在不使用选择性的催化还原(SCR)工艺的条件下,NOX水平可低于5ppm。在此处所述的所有实施例中所设有的净化单元,其提供清洁的排气再循环流,该净化工艺通过除去不合适的物质,例如微粒、湿气、醛和酸性气体而防止对透平系统的内部构件造成损伤。因此透平系统在操作上更为可靠。控制排气释放的两个控制阀的使用增加了更大的适应性,以取得发电系统的最佳性能,并且还提供了控制系统,以防止在净化系统发生任何故障的情况下,对透平系统的内部构件造成任何损伤。
虽然在这里只显示和描述了本发明的某些特征,但是本领域中的技术人员将会想到许多改型和变体。因此,应该懂得,附属权利要求意图覆盖所有这些落在本发明的真实精神范围内的改型和变体。
Claims (8)
1.一种发电系统(10),其包括:
燃气透平系统(15),其包括:
燃烧室(20),其构造成可燃烧燃料流(13);
压缩机(16),其构造成可接收氧化剂供给流(14),并将已压缩的氧化剂(18)供给到所述燃烧室(20);和
膨胀器(24),其构造成可接收来自所述燃烧室(20)的排放物(22),并产生包含二氧化碳的排气(30);
以及,
排气再循环系统(54),其包括:
分流器(32),其构造成可将所述排气(30)分离成第一分流(34)和第二分流(36);
热回收蒸汽发生器(38),其构造成可接收所述第一分流(34),并产生冷却的第一分流(40);
鼓风机(122),其增加所述冷却的第一分流(40)中的压力;
净化系统(50),其构造成可接收所述冷却的第一分流(40)并直接接收所述第二分流(36),并产生再循环流(52),其中所述再循环流(52)与新鲜的氧化剂(12)进行混合,以产生所述氧化剂供给流(14);以及
第一控制阀和第二控制阀,其中,所述第一控制阀构造成可释放一部分已冷却的第一排气,并且所述第二控制阀构造成可释放一部分再循环流。
2.根据权利要求1所述的系统,其特征在于,所述净化系统(50)包括水淬火器单元(62)、除雾器(72)和热交换器(82)。
3.根据权利要求2所述的系统,其特征在于,所述热交换器(82)是选自由干燥器、冷凝器、冷却器、吸附式冷却器及其组合所组成的列表中的一种热交换器。
4.根据权利要求1所述的系统,其特征在于,高达50%的所述排气(30)再循环回到所述压缩机中。
5.根据权利要求1所述的系统,其特征在于,所述分流器(32)包括柯恩达喷射器。
6.根据权利要求1所述的系统,其特征在于,所述排气流(30)包括2ppm至14ppm的氮氧化物(NOX)。
7.根据权利要求1所述的系统,其特征在于,所述氧化剂供给流(14)包括空气或氧气耗尽的空气中的一种。
8.根据权利要求1所述的系统,其特征在于,所述燃料流(13)的燃料选自由天然气、甲烷、甲醇、乙醇、乙烷、液化石油气(LPG)、石脑油、丁烷、丙烷、柴油、煤油、航空燃料、煤衍生燃料、生物燃料、瓦斯油、原油、氧化的碳氢化合物原料、炼油厂废气、伴生气及其混合物组成的组。
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US94373407P | 2007-06-13 | 2007-06-13 | |
US60/943,734 | 2007-06-13 | ||
US60/943734 | 2007-06-13 | ||
US11/960,824 | 2007-12-20 | ||
US11/960,824 US8850789B2 (en) | 2007-06-13 | 2007-12-20 | Systems and methods for power generation with exhaust gas recirculation |
US11/960824 | 2007-12-20 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101324203A CN101324203A (zh) | 2008-12-17 |
CN101324203B true CN101324203B (zh) | 2014-10-29 |
Family
ID=40030926
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN200810099697.7A Expired - Fee Related CN101324203B (zh) | 2007-06-13 | 2008-06-13 | 带排气再循环的用于发电的系统和方法 |
Country Status (5)
Country | Link |
---|---|
US (1) | US8850789B2 (zh) |
JP (1) | JP5314938B2 (zh) |
CN (1) | CN101324203B (zh) |
CH (1) | CH704349B1 (zh) |
DE (1) | DE102008002870B4 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9562473B2 (en) | 2013-08-27 | 2017-02-07 | 8 Rivers Capital, Llc | Gas turbine facility |
Families Citing this family (174)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7685737B2 (en) | 2004-07-19 | 2010-03-30 | Earthrenew, Inc. | Process and system for drying and heat treating materials |
US7694523B2 (en) | 2004-07-19 | 2010-04-13 | Earthrenew, Inc. | Control system for gas turbine in material treatment unit |
US7024800B2 (en) | 2004-07-19 | 2006-04-11 | Earthrenew, Inc. | Process and system for drying and heat treating materials |
US7024796B2 (en) | 2004-07-19 | 2006-04-11 | Earthrenew, Inc. | Process and apparatus for manufacture of fertilizer products from manure and sewage |
US7765810B2 (en) * | 2005-11-15 | 2010-08-03 | Precision Combustion, Inc. | Method for obtaining ultra-low NOx emissions from gas turbines operating at high turbine inlet temperatures |
US7610692B2 (en) * | 2006-01-18 | 2009-11-03 | Earthrenew, Inc. | Systems for prevention of HAP emissions and for efficient drying/dehydration processes |
US7942008B2 (en) * | 2006-10-09 | 2011-05-17 | General Electric Company | Method and system for reducing power plant emissions |
US20110185701A1 (en) * | 2007-09-28 | 2011-08-04 | Central Research Institute of Electric Power Indus try | Turbine equipment and power generating plant |
US7861511B2 (en) * | 2007-10-30 | 2011-01-04 | General Electric Company | System for recirculating the exhaust of a turbomachine |
US8056318B2 (en) * | 2007-11-08 | 2011-11-15 | General Electric Company | System for reducing the sulfur oxides emissions generated by a turbomachine |
US7874141B2 (en) * | 2007-11-16 | 2011-01-25 | General Electric Company | Auxiliary fluid source for an EGR purge system |
DK2238678T3 (en) | 2008-01-22 | 2016-02-01 | Accio Energy Inc | Electro-hydrodynamic wind energy system |
US8502507B1 (en) | 2012-03-29 | 2013-08-06 | Accio Energy, Inc. | Electro-hydrodynamic system |
US20130293034A1 (en) | 2008-01-22 | 2013-11-07 | Accio Energy, Inc. | Electro-hydrodynamic wind energy system |
US8734545B2 (en) | 2008-03-28 | 2014-05-27 | Exxonmobil Upstream Research Company | Low emission power generation and hydrocarbon recovery systems and methods |
US8984857B2 (en) | 2008-03-28 | 2015-03-24 | Exxonmobil Upstream Research Company | Low emission power generation and hydrocarbon recovery systems and methods |
US8397482B2 (en) * | 2008-05-15 | 2013-03-19 | General Electric Company | Dry 3-way catalytic reduction of gas turbine NOx |
US20110247334A1 (en) * | 2008-09-24 | 2011-10-13 | Peregrine Blackbird Pty Limited | Distributed power generation system for surface transport |
PL2344738T3 (pl) | 2008-10-14 | 2019-09-30 | Exxonmobil Upstream Research Company | Sposób i układ do sterowania produktami spalania |
US7926256B2 (en) | 2008-10-27 | 2011-04-19 | General Electric Company | Inlet system for an EGR system |
US8015822B2 (en) * | 2008-11-21 | 2011-09-13 | General Electric Company | Method for controlling an exhaust gas recirculation system |
KR101071678B1 (ko) * | 2008-12-29 | 2011-10-11 | (주)귀뚜라미동광보일러 | 증기 보일러의 관수 순환촉진장치 |
US10018115B2 (en) | 2009-02-26 | 2018-07-10 | 8 Rivers Capital, Llc | System and method for high efficiency power generation using a carbon dioxide circulating working fluid |
US9416728B2 (en) | 2009-02-26 | 2016-08-16 | 8 Rivers Capital, Llc | Apparatus and method for combusting a fuel at high pressure and high temperature, and associated system and device |
US8596075B2 (en) | 2009-02-26 | 2013-12-03 | Palmer Labs, Llc | System and method for high efficiency power generation using a carbon dioxide circulating working fluid |
SG176670A1 (en) | 2009-06-05 | 2012-01-30 | Exxonmobil Upstream Res Co | Combustor systems and methods for using same |
CH701236A1 (de) * | 2009-06-09 | 2010-12-15 | Alstom Technology Ltd | Vorrichtung zur Schalldämpfung in einem Strömungskanal einer Gasturbine, welche Vorrichtung Zuführungselemente für rezirkulierte Abgase in den Ansaugluftstrom aufweist. |
US8327651B2 (en) * | 2009-07-07 | 2012-12-11 | Hamilton Sundstrand Corporation | Transcritical fluid cooling for aerospace applications |
EP2290202A1 (en) * | 2009-07-13 | 2011-03-02 | Siemens Aktiengesellschaft | Cogeneration plant and cogeneration method |
US8479489B2 (en) * | 2009-08-27 | 2013-07-09 | General Electric Company | Turbine exhaust recirculation |
RU2525996C2 (ru) * | 2009-11-02 | 2014-08-20 | Сименс Акциенгезелльшафт | Способ дооборудования работающей на ископаемом топливе энергоустановки устройством отделения диоксида углерода |
MY158169A (en) | 2009-11-12 | 2016-09-15 | Exxonmobil Upstream Res Co | Low emission power generation and hydrocarbon recovery systems and methods |
US20110138766A1 (en) * | 2009-12-15 | 2011-06-16 | General Electric Company | System and method of improving emission performance of a gas turbine |
US20110146282A1 (en) * | 2009-12-18 | 2011-06-23 | General Electric Company | System and method for reducing sulfur compounds within fuel stream for turbomachine |
US8117822B2 (en) * | 2010-04-19 | 2012-02-21 | King Fahd University Of Petroleum & Minerals | Carbon-free gas turbine |
US20110265445A1 (en) * | 2010-04-30 | 2011-11-03 | General Electric Company | Method for Reducing CO2 Emissions in a Combustion Stream and Industrial Plants Utilizing the Same |
JP5913305B2 (ja) * | 2010-07-02 | 2016-04-27 | エクソンモービル アップストリーム リサーチ カンパニー | 低エミッション発電システム及び方法 |
EA026404B1 (ru) * | 2010-07-02 | 2017-04-28 | Эксонмобил Апстрим Рисерч Компани | Интегрированная система и способ производства энергии |
SG186157A1 (en) * | 2010-07-02 | 2013-01-30 | Exxonmobil Upstream Res Co | Stoichiometric combustion of enriched air with exhaust gas recirculation |
TWI593878B (zh) * | 2010-07-02 | 2017-08-01 | 艾克頌美孚上游研究公司 | 用於控制燃料燃燒之系統及方法 |
JP6046612B2 (ja) | 2010-07-02 | 2016-12-21 | エクソンモービル アップストリーム リサーチ カンパニー | 低エミッショントリプルサイクル発電システム及び方法 |
JP5913304B2 (ja) * | 2010-07-02 | 2016-04-27 | エクソンモービル アップストリーム リサーチ カンパニー | 低エミッショントリプルサイクル発電システム及び方法 |
WO2012018458A1 (en) | 2010-08-06 | 2012-02-09 | Exxonmobil Upstream Research Company | System and method for exhaust gas extraction |
CA2805089C (en) | 2010-08-06 | 2018-04-03 | Exxonmobil Upstream Research Company | Systems and methods for optimizing stoichiometric combustion |
US9856769B2 (en) | 2010-09-13 | 2018-01-02 | Membrane Technology And Research, Inc. | Gas separation process using membranes with permeate sweep to remove CO2 from combustion exhaust |
US8220247B2 (en) * | 2010-09-13 | 2012-07-17 | Membrane Technology And Research, Inc. | Power generation process with partial recycle of carbon dioxide |
US9457313B2 (en) | 2010-09-13 | 2016-10-04 | Membrane Technology And Research, Inc. | Membrane technology for use in a power generation process |
US8220248B2 (en) * | 2010-09-13 | 2012-07-17 | Membrane Technology And Research, Inc | Power generation process with partial recycle of carbon dioxide |
US8869889B2 (en) | 2010-09-21 | 2014-10-28 | Palmer Labs, Llc | Method of using carbon dioxide in recovery of formation deposits |
US20120067054A1 (en) | 2010-09-21 | 2012-03-22 | Palmer Labs, Llc | High efficiency power production methods, assemblies, and systems |
US8166766B2 (en) | 2010-09-23 | 2012-05-01 | General Electric Company | System and method to generate electricity |
CA2813062C (en) * | 2010-09-24 | 2018-10-30 | James Charles Juranitch | Renewable combined cycle low turbine boost |
WO2012054503A1 (en) | 2010-10-18 | 2012-04-26 | Accio Energy, Inc. | System and method for controlling electric fields in electro-hydrodynamic applications |
EP2444632A1 (en) * | 2010-10-19 | 2012-04-25 | Alstom Technology Ltd | Method for regulating the flue gas recirculation of a power plant |
US8726628B2 (en) * | 2010-10-22 | 2014-05-20 | General Electric Company | Combined cycle power plant including a carbon dioxide collection system |
US9062569B2 (en) | 2010-10-29 | 2015-06-23 | General Electric Company | Systems, methods, and apparatus for regenerating a catalytic material |
JP6041418B2 (ja) * | 2010-12-16 | 2016-12-07 | 臼井国際産業株式会社 | 重油以下の低質燃料を使用する大排気量船舶用ディーゼルエンジンの排気ガス浄化装置 |
TWI563166B (en) | 2011-03-22 | 2016-12-21 | Exxonmobil Upstream Res Co | Integrated generation systems and methods for generating power |
TWI563165B (en) | 2011-03-22 | 2016-12-21 | Exxonmobil Upstream Res Co | Power generation system and method for generating power |
TWI563164B (en) * | 2011-03-22 | 2016-12-21 | Exxonmobil Upstream Res Co | Integrated systems incorporating inlet compressor oxidant control apparatus and related methods of generating power |
TWI593872B (zh) * | 2011-03-22 | 2017-08-01 | 艾克頌美孚上游研究公司 | 整合系統及產生動力之方法 |
TWI564474B (zh) * | 2011-03-22 | 2017-01-01 | 艾克頌美孚上游研究公司 | 於渦輪系統中控制化學計量燃燒的整合系統和使用彼之產生動力的方法 |
US9297311B2 (en) * | 2011-03-22 | 2016-03-29 | Alstom Technology Ltd | Gas turbine power plant with flue gas recirculation and oxygen-depleted cooling gas |
CN102182570B (zh) * | 2011-04-11 | 2013-06-05 | 重庆市农业科学院 | 沼气发电控制方法 |
US9222410B2 (en) | 2011-04-13 | 2015-12-29 | General Electric Company | Power plant |
US8671688B2 (en) | 2011-04-13 | 2014-03-18 | General Electric Company | Combined cycle power plant with thermal load reduction system |
ITCO20110017A1 (it) * | 2011-05-19 | 2012-11-20 | Nuovo Pignone Spa | Sistema di turbina a gas integrato e metodo |
EP2535101A1 (en) * | 2011-06-13 | 2012-12-19 | Alstom Technology Ltd | Flue gas recirculation with CO2 enrichment membrane |
US20130008315A1 (en) * | 2011-07-05 | 2013-01-10 | Dawn White | System and method for energy and particle extraction from an exhaust system |
JP5787838B2 (ja) * | 2011-07-27 | 2015-09-30 | アルストム テクノロジー リミテッドALSTOM Technology Ltd | 排気ガス再循環を備えるガスタービン発電プラント及びその作動方法 |
DE102011110213A1 (de) * | 2011-08-16 | 2013-02-21 | Thyssenkrupp Uhde Gmbh | Verfahren und Vorrichtung zur Rückführung von Abgas aus einer Gasturbine mit nachfolgendem Abhitzekessel |
US8453462B2 (en) | 2011-08-25 | 2013-06-04 | General Electric Company | Method of operating a stoichiometric exhaust gas recirculation power plant |
US8266913B2 (en) * | 2011-08-25 | 2012-09-18 | General Electric Company | Power plant and method of use |
US8245492B2 (en) | 2011-08-25 | 2012-08-21 | General Electric Company | Power plant and method of operation |
US8245493B2 (en) | 2011-08-25 | 2012-08-21 | General Electric Company | Power plant and control method |
US8453461B2 (en) | 2011-08-25 | 2013-06-04 | General Electric Company | Power plant and method of operation |
US8266883B2 (en) | 2011-08-25 | 2012-09-18 | General Electric Company | Power plant start-up method and method of venting the power plant |
US8713947B2 (en) | 2011-08-25 | 2014-05-06 | General Electric Company | Power plant with gas separation system |
US8347600B2 (en) | 2011-08-25 | 2013-01-08 | General Electric Company | Power plant and method of operation |
US9127598B2 (en) | 2011-08-25 | 2015-09-08 | General Electric Company | Control method for stoichiometric exhaust gas recirculation power plant |
US8205455B2 (en) | 2011-08-25 | 2012-06-26 | General Electric Company | Power plant and method of operation |
US8720179B2 (en) | 2011-10-07 | 2014-05-13 | General Electric Company | Power plant including an exhaust gas recirculation system for injecting recirculated exhaust gases in the fuel and compressed air of a gas turbine engine |
CN103975043B (zh) | 2011-10-24 | 2015-11-25 | 沙特阿拉伯石油公司 | 通过使汽车的二氧化碳转化为燃料以降低机动车源排放 |
IN2014KN01081A (zh) | 2011-11-02 | 2015-10-09 | 8 Rivers Capital Llc | |
EP2795084B1 (en) * | 2011-12-19 | 2020-02-05 | Ansaldo Energia IP UK Limited | Control of the gas composition in a gas turbine power plant with flue gas recirculation |
CN104428490B (zh) | 2011-12-20 | 2018-06-05 | 埃克森美孚上游研究公司 | 提高的煤层甲烷生产 |
EA028822B1 (ru) | 2012-02-11 | 2018-01-31 | Палмер Лэбс, Ллк | Реакция парциального окисления с быстрым охлаждением в закрытом цикле |
DE102012208221A1 (de) | 2012-02-22 | 2013-08-22 | Siemens Aktiengesellschaft | Verfahren zum Nachrüsten eines Gasturbinenkraftwerks |
EP2642092B1 (en) | 2012-03-19 | 2014-10-08 | Alstom Technology Ltd | Method for operating a combined cycle power plant and plant to carry out such a method |
EP2642097A1 (de) | 2012-03-21 | 2013-09-25 | Alstom Technology Ltd | Verfahren zum Betrieb einer Gasturbine sowie Gasturbine zur Durchführung des Verfahrens |
US20130255267A1 (en) * | 2012-03-30 | 2013-10-03 | General Electric Company | System and method of improving emission performance of a gas turbine |
US9353682B2 (en) | 2012-04-12 | 2016-05-31 | General Electric Company | Methods, systems and apparatus relating to combustion turbine power plants with exhaust gas recirculation |
US20130269357A1 (en) * | 2012-04-12 | 2013-10-17 | General Electric Company | Method and system for controlling a secondary flow system |
CN104769255B (zh) * | 2012-04-12 | 2017-08-25 | 埃克森美孚上游研究公司 | 用于化学计量排气再循环燃气涡轮机系统的系统和方法 |
US20130269360A1 (en) * | 2012-04-12 | 2013-10-17 | General Electric Company | Method and system for controlling a powerplant during low-load operations |
US20130269358A1 (en) * | 2012-04-12 | 2013-10-17 | General Electric Company | Methods, systems and apparatus relating to reheat combustion turbine engines with exhaust gas recirculation |
US9784185B2 (en) | 2012-04-26 | 2017-10-10 | General Electric Company | System and method for cooling a gas turbine with an exhaust gas provided by the gas turbine |
US10273880B2 (en) | 2012-04-26 | 2019-04-30 | General Electric Company | System and method of recirculating exhaust gas for use in a plurality of flow paths in a gas turbine engine |
US20130294887A1 (en) * | 2012-05-01 | 2013-11-07 | General Electric Company | Gas turbine air processing system |
US9365932B2 (en) * | 2012-06-20 | 2016-06-14 | General Electric Company | Erosion and corrosion resistant coatings for exhaust gas recirculation based gas turbines |
US9347375B2 (en) | 2012-06-22 | 2016-05-24 | General Electronic Company | Hot EGR driven by turbomachinery |
US20140182298A1 (en) * | 2012-12-28 | 2014-07-03 | Exxonmobil Upstream Research Company | Stoichiometric combustion control for gas turbine system with exhaust gas recirculation |
US9611756B2 (en) | 2012-11-02 | 2017-04-04 | General Electric Company | System and method for protecting components in a gas turbine engine with exhaust gas recirculation |
US9599070B2 (en) | 2012-11-02 | 2017-03-21 | General Electric Company | System and method for oxidant compression in a stoichiometric exhaust gas recirculation gas turbine system |
US10107495B2 (en) | 2012-11-02 | 2018-10-23 | General Electric Company | Gas turbine combustor control system for stoichiometric combustion in the presence of a diluent |
US9574496B2 (en) | 2012-12-28 | 2017-02-21 | General Electric Company | System and method for a turbine combustor |
US9869279B2 (en) | 2012-11-02 | 2018-01-16 | General Electric Company | System and method for a multi-wall turbine combustor |
US10215412B2 (en) | 2012-11-02 | 2019-02-26 | General Electric Company | System and method for load control with diffusion combustion in a stoichiometric exhaust gas recirculation gas turbine system |
US9631815B2 (en) | 2012-12-28 | 2017-04-25 | General Electric Company | System and method for a turbine combustor |
US9803865B2 (en) | 2012-12-28 | 2017-10-31 | General Electric Company | System and method for a turbine combustor |
US9708977B2 (en) | 2012-12-28 | 2017-07-18 | General Electric Company | System and method for reheat in gas turbine with exhaust gas recirculation |
US10138815B2 (en) | 2012-11-02 | 2018-11-27 | General Electric Company | System and method for diffusion combustion in a stoichiometric exhaust gas recirculation gas turbine system |
US8869420B1 (en) * | 2012-11-19 | 2014-10-28 | Mousa Mohammad Nazhad | Energy-efficient process and apparatus for drying feedstock |
US20140150402A1 (en) * | 2012-11-30 | 2014-06-05 | General Electric Company | System and method for burning vanadium-containing fuels |
US10208677B2 (en) | 2012-12-31 | 2019-02-19 | General Electric Company | Gas turbine load control system |
US9581081B2 (en) | 2013-01-13 | 2017-02-28 | General Electric Company | System and method for protecting components in a gas turbine engine with exhaust gas recirculation |
US9512759B2 (en) | 2013-02-06 | 2016-12-06 | General Electric Company | System and method for catalyst heat utilization for gas turbine with exhaust gas recirculation |
US9938861B2 (en) | 2013-02-21 | 2018-04-10 | Exxonmobil Upstream Research Company | Fuel combusting method |
TW201502356A (zh) | 2013-02-21 | 2015-01-16 | Exxonmobil Upstream Res Co | 氣渦輪機排氣中氧之減少 |
US10221762B2 (en) | 2013-02-28 | 2019-03-05 | General Electric Company | System and method for a turbine combustor |
TW201500635A (zh) | 2013-03-08 | 2015-01-01 | Exxonmobil Upstream Res Co | 處理廢氣以供用於提高油回收 |
US20140250945A1 (en) | 2013-03-08 | 2014-09-11 | Richard A. Huntington | Carbon Dioxide Recovery |
US9618261B2 (en) | 2013-03-08 | 2017-04-11 | Exxonmobil Upstream Research Company | Power generation and LNG production |
US9784182B2 (en) | 2013-03-08 | 2017-10-10 | Exxonmobil Upstream Research Company | Power generation and methane recovery from methane hydrates |
US9422868B2 (en) * | 2013-04-09 | 2016-08-23 | General Electric Company | Simple cycle gas turbomachine system having a fuel conditioning system |
US9617914B2 (en) | 2013-06-28 | 2017-04-11 | General Electric Company | Systems and methods for monitoring gas turbine systems having exhaust gas recirculation |
US9631542B2 (en) | 2013-06-28 | 2017-04-25 | General Electric Company | System and method for exhausting combustion gases from gas turbine engines |
US9835089B2 (en) | 2013-06-28 | 2017-12-05 | General Electric Company | System and method for a fuel nozzle |
TWI654368B (zh) | 2013-06-28 | 2019-03-21 | 美商艾克頌美孚上游研究公司 | 用於控制在廢氣再循環氣渦輪機系統中的廢氣流之系統、方法與媒體 |
US9650727B2 (en) * | 2013-07-03 | 2017-05-16 | Applied Materials, Inc. | Reactor gas panel common exhaust |
JP6220586B2 (ja) * | 2013-07-22 | 2017-10-25 | 8 リバーズ キャピタル,エルエルシー | ガスタービン設備 |
US9587510B2 (en) | 2013-07-30 | 2017-03-07 | General Electric Company | System and method for a gas turbine engine sensor |
US9903588B2 (en) | 2013-07-30 | 2018-02-27 | General Electric Company | System and method for barrier in passage of combustor of gas turbine engine with exhaust gas recirculation |
US9951658B2 (en) | 2013-07-31 | 2018-04-24 | General Electric Company | System and method for an oxidant heating system |
US9752458B2 (en) | 2013-12-04 | 2017-09-05 | General Electric Company | System and method for a gas turbine engine |
US10030588B2 (en) | 2013-12-04 | 2018-07-24 | General Electric Company | Gas turbine combustor diagnostic system and method |
US10227920B2 (en) | 2014-01-15 | 2019-03-12 | General Electric Company | Gas turbine oxidant separation system |
US9863267B2 (en) | 2014-01-21 | 2018-01-09 | General Electric Company | System and method of control for a gas turbine engine |
US9915200B2 (en) | 2014-01-21 | 2018-03-13 | General Electric Company | System and method for controlling the combustion process in a gas turbine operating with exhaust gas recirculation |
US10079564B2 (en) | 2014-01-27 | 2018-09-18 | General Electric Company | System and method for a stoichiometric exhaust gas recirculation gas turbine system |
JP2017519929A (ja) * | 2014-03-26 | 2017-07-20 | エクソンモービル アップストリーム リサーチ カンパニー | 再循環された排気ガスの調整のためのシステム及び方法 |
US10047633B2 (en) | 2014-05-16 | 2018-08-14 | General Electric Company | Bearing housing |
WO2015199690A1 (en) * | 2014-06-26 | 2015-12-30 | Siemens Energy, Inc. | Axial stage combustion system with exhaust gas recirculation |
US10060359B2 (en) | 2014-06-30 | 2018-08-28 | General Electric Company | Method and system for combustion control for gas turbine system with exhaust gas recirculation |
US10655542B2 (en) | 2014-06-30 | 2020-05-19 | General Electric Company | Method and system for startup of gas turbine system drive trains with exhaust gas recirculation |
US9885290B2 (en) | 2014-06-30 | 2018-02-06 | General Electric Company | Erosion suppression system and method in an exhaust gas recirculation gas turbine system |
TWI691644B (zh) | 2014-07-08 | 2020-04-21 | 美商八河資本有限公司 | 具改良效率之功率生產方法及系統 |
ES2904874T3 (es) | 2014-09-09 | 2022-04-06 | 8 Rivers Capital Llc | Método de producción de dióxido de carbono líquido de baja presión procedente de un sistema de producción de energía |
US11231224B2 (en) | 2014-09-09 | 2022-01-25 | 8 Rivers Capital, Llc | Production of low pressure liquid carbon dioxide from a power production system and method |
US11686258B2 (en) | 2014-11-12 | 2023-06-27 | 8 Rivers Capital, Llc | Control systems and methods suitable for use with power production systems and methods |
MA40950A (fr) | 2014-11-12 | 2017-09-19 | 8 Rivers Capital Llc | Systèmes et procédés de commande appropriés pour une utilisation avec des systèmes et des procédés de production d'énergie |
US10961920B2 (en) | 2018-10-02 | 2021-03-30 | 8 Rivers Capital, Llc | Control systems and methods suitable for use with power production systems and methods |
US9869247B2 (en) | 2014-12-31 | 2018-01-16 | General Electric Company | Systems and methods of estimating a combustion equivalence ratio in a gas turbine with exhaust gas recirculation |
US9819292B2 (en) | 2014-12-31 | 2017-11-14 | General Electric Company | Systems and methods to respond to grid overfrequency events for a stoichiometric exhaust recirculation gas turbine |
US10788212B2 (en) | 2015-01-12 | 2020-09-29 | General Electric Company | System and method for an oxidant passageway in a gas turbine system with exhaust gas recirculation |
US10094566B2 (en) | 2015-02-04 | 2018-10-09 | General Electric Company | Systems and methods for high volumetric oxidant flow in gas turbine engine with exhaust gas recirculation |
US10253690B2 (en) | 2015-02-04 | 2019-04-09 | General Electric Company | Turbine system with exhaust gas recirculation, separation and extraction |
US10316746B2 (en) | 2015-02-04 | 2019-06-11 | General Electric Company | Turbine system with exhaust gas recirculation, separation and extraction |
US10267270B2 (en) | 2015-02-06 | 2019-04-23 | General Electric Company | Systems and methods for carbon black production with a gas turbine engine having exhaust gas recirculation |
US10145269B2 (en) | 2015-03-04 | 2018-12-04 | General Electric Company | System and method for cooling discharge flow |
US10480792B2 (en) | 2015-03-06 | 2019-11-19 | General Electric Company | Fuel staging in a gas turbine engine |
EA036619B1 (ru) | 2015-06-15 | 2020-11-30 | 8 Риверз Кэпитл, Ллк | Система и способ запуска установки генерации мощности |
EA037523B1 (ru) | 2016-02-18 | 2021-04-07 | 8 Риверз Кэпитл, Ллк | Система и способ выработки энергии с использованием процесса получения метана |
EP4234906A3 (en) | 2016-02-26 | 2023-11-08 | 8 Rivers Capital, LLC | Systems and methods for controlling a power plant |
US10641173B2 (en) | 2016-03-15 | 2020-05-05 | Bechtel Power Corporation | Gas turbine combined cycle optimized for post-combustion CO2 capture |
CN106050421B (zh) * | 2016-07-06 | 2018-01-09 | 石家庄新华能源环保科技股份有限公司 | 携带燃料的二氧化碳楼宇供能系统 |
KR102451300B1 (ko) | 2016-09-13 | 2022-10-07 | 8 리버스 캐피탈, 엘엘씨 | 부분 산화를 이용한 동력 생산을 위한 시스템 및 방법 |
US9782718B1 (en) | 2016-11-16 | 2017-10-10 | Membrane Technology And Research, Inc. | Integrated gas separation-turbine CO2 capture processes |
ES2960368T3 (es) | 2017-08-28 | 2024-03-04 | 8 Rivers Capital Llc | Optimización de calor de baja calidad de ciclos de energía recuperativa de CO2 supercrítico |
CA3092762A1 (en) | 2018-03-02 | 2019-09-06 | 8 Rivers Capital, Llc | Systems and methods for power production using a carbon dioxide working fluid |
MX2022004844A (es) | 2019-10-22 | 2022-05-18 | 8 Rivers Capital Llc | Esquemas de control y metodos para la regulacion termica de sistemas de produccion de energia. |
JP2024540726A (ja) * | 2021-11-02 | 2024-11-01 | チャート・エナジー・アンド・ケミカルズ,インコーポレーテッド | 排気ガス再循環による炭素回収システムおよび方法 |
CN117927398B (zh) * | 2024-03-21 | 2024-06-18 | 潍柴动力股份有限公司 | 一种尾气再循环控制系统、方法、电子设备及介质 |
CN119607796B (zh) * | 2024-12-17 | 2025-06-03 | 复信(江苏)环境科技有限公司 | 一种石油化工储罐油气回收装置 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1207453A (zh) * | 1997-06-27 | 1999-02-10 | 株式会社日立制作所 | 排气再循环式联合电站 |
US6655150B1 (en) * | 1999-02-19 | 2003-12-02 | Norsk Hydro Asa | Method for removing and recovering CO2 from exhaust gas |
US20030221409A1 (en) * | 2002-05-29 | 2003-12-04 | Mcgowan Thomas F. | Pollution reduction fuel efficient combustion turbine |
US20070028622A1 (en) * | 2005-08-03 | 2007-02-08 | General Electric Company | One-piece baffle infrared suppressor apparatus and method |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2862202D1 (en) | 1978-10-05 | 1983-04-21 | Texaco Development Corp | Process for the production of gas mixtures containing co and h2 by the partial oxidation of hydrocarbonaceous fuel with generation of power by expansion in a turbine |
NL8001472A (nl) * | 1980-03-12 | 1981-10-01 | Tno | Installatie voor warmteterugwinning bij verbrandingsmachine met compressor. |
US5412936A (en) * | 1992-12-30 | 1995-05-09 | General Electric Co. | Method of effecting start-up of a cold steam turbine system in a combined cycle plant |
NO180520C (no) * | 1994-02-15 | 1997-05-07 | Kvaerner Asa | Fremgangsmåte til fjerning av karbondioksid fra forbrenningsgasser |
JP3794168B2 (ja) * | 1997-06-27 | 2006-07-05 | 株式会社日立製作所 | 排気再循環型コンバインドプラント |
US6824710B2 (en) * | 2000-05-12 | 2004-11-30 | Clean Energy Systems, Inc. | Working fluid compositions for use in semi-closed brayton cycle gas turbine power systems |
JP2002129977A (ja) | 2000-10-20 | 2002-05-09 | Mitsubishi Heavy Ind Ltd | ガスタービン設備 |
EP1429000A1 (de) * | 2002-12-09 | 2004-06-16 | Siemens Aktiengesellschaft | Verfahren und Vorrichtung zum Betrieb einer Gasturbine mit einer fossilbefeuerten Brennkammer |
DE10325111A1 (de) * | 2003-06-02 | 2005-01-05 | Alstom Technology Ltd | Verfahren zur Erzeugung von Energie in einer eine Gasturbine umfassende Energieerzeugungsanlage sowie Energieerzeugungsanlage zur Durchführung des Verfahrens |
JP3999706B2 (ja) * | 2003-06-06 | 2007-10-31 | 三菱重工業株式会社 | ガスタービン燃焼器及びそれを用いたガスタービン機器 |
US20050235649A1 (en) * | 2004-01-09 | 2005-10-27 | Siemens Westinghouse Power Corporation | Method for operating a gas turbine |
US7354029B1 (en) * | 2004-05-28 | 2008-04-08 | Alex Rutstein | Apparatus and method for treating process fluids |
DE102004028531A1 (de) * | 2004-06-11 | 2006-01-05 | Alstom Technology Ltd | Verfahren zum Betrieb einer Kraftwerksanlage, und Kraftwerksanlage |
DE102005015151A1 (de) * | 2005-03-31 | 2006-10-26 | Alstom Technology Ltd. | Gasturbinenanlage |
US7266940B2 (en) * | 2005-07-08 | 2007-09-11 | General Electric Company | Systems and methods for power generation with carbon dioxide isolation |
-
2007
- 2007-12-20 US US11/960,824 patent/US8850789B2/en active Active
-
2008
- 2008-05-28 DE DE102008002870.3A patent/DE102008002870B4/de active Active
- 2008-06-05 CH CH00857/08A patent/CH704349B1/de not_active IP Right Cessation
- 2008-06-10 JP JP2008151209A patent/JP5314938B2/ja not_active Expired - Fee Related
- 2008-06-13 CN CN200810099697.7A patent/CN101324203B/zh not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1207453A (zh) * | 1997-06-27 | 1999-02-10 | 株式会社日立制作所 | 排气再循环式联合电站 |
US6655150B1 (en) * | 1999-02-19 | 2003-12-02 | Norsk Hydro Asa | Method for removing and recovering CO2 from exhaust gas |
US20030221409A1 (en) * | 2002-05-29 | 2003-12-04 | Mcgowan Thomas F. | Pollution reduction fuel efficient combustion turbine |
US20070028622A1 (en) * | 2005-08-03 | 2007-02-08 | General Electric Company | One-piece baffle infrared suppressor apparatus and method |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9562473B2 (en) | 2013-08-27 | 2017-02-07 | 8 Rivers Capital, Llc | Gas turbine facility |
Also Published As
Publication number | Publication date |
---|---|
US20080309087A1 (en) | 2008-12-18 |
JP5314938B2 (ja) | 2013-10-16 |
CH704349B1 (de) | 2012-07-13 |
US8850789B2 (en) | 2014-10-07 |
DE102008002870A1 (de) | 2008-12-24 |
DE102008002870B4 (de) | 2024-01-18 |
CN101324203A (zh) | 2008-12-17 |
JP2008309153A (ja) | 2008-12-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101324203B (zh) | 带排气再循环的用于发电的系统和方法 | |
JP6348416B2 (ja) | 低エミッションタービンシステムにおいて化学量論的燃焼を制御するシステム及び方法 | |
JP6099057B2 (ja) | 入口圧縮機用酸化剤制御装置を備えた低エミッションタービンシステム及び関連方法 | |
JP5043602B2 (ja) | 二酸化炭素の単離を伴う発電用システム及び方法 | |
RU2658406C2 (ru) | Интеграция адсорбции при переменном давлении с энергоустановкой для улавливания/утилизации co2 и производства n2 | |
CN101016490B (zh) | 一种处理包含氢及二氧化碳的气体混合物的方法 | |
JP5906555B2 (ja) | 排ガス再循環方式によるリッチエアの化学量論的燃焼 | |
US8991149B2 (en) | Dry 3-way catalytic reduction of gas turbine NOX | |
US6588212B1 (en) | Combustion turbine fuel inlet temperature management for maximum power outlet | |
JP5913304B2 (ja) | 低エミッショントリプルサイクル発電システム及び方法 | |
CN102858429B (zh) | 二氧化碳捕获系统和方法 | |
CN101899329B (zh) | 用于处理包括不希望的排放气体的流的系统和方法 | |
US20100018218A1 (en) | Power plant with emissions recovery | |
CN101855003B (zh) | 用于处理瞬态过程气体的系统和方法 | |
CN103442783A (zh) | 用于在低排放涡轮机系统中捕获二氧化碳的系统和方法 | |
WO2007053310A1 (en) | Methods and systems for gasification system waste gas decomposition | |
MX2012014223A (es) | Sistema y metodos de generacion de potencia de triple ciclo de baja emision. | |
KR20100037627A (ko) | 발전 방법 및 시스템 | |
EP2644998A2 (en) | System and method of improving emission performance of a gas turbine | |
CN110523246B (zh) | 一种合成气净化后co2尾气的环保处理方法 | |
WO2008019555A1 (fr) | Générateur pour turbine à poudre de charbon et procédé de production de combustible à poudre de charbon biphasique | |
PL128336B1 (en) | Integrated method of partial oxidation of hydrocarbon fuel and generation of energy |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20141029 |
|
CF01 | Termination of patent right due to non-payment of annual fee |