CN101323526A - Preparation method of porous silicon nitride-silicon dioxide wave-transparent material - Google Patents
Preparation method of porous silicon nitride-silicon dioxide wave-transparent material Download PDFInfo
- Publication number
- CN101323526A CN101323526A CNA2008101503708A CN200810150370A CN101323526A CN 101323526 A CN101323526 A CN 101323526A CN A2008101503708 A CNA2008101503708 A CN A2008101503708A CN 200810150370 A CN200810150370 A CN 200810150370A CN 101323526 A CN101323526 A CN 101323526A
- Authority
- CN
- China
- Prior art keywords
- porous
- sio
- hours
- mixed powder
- powder
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910021426 porous silicon Inorganic materials 0.000 title claims abstract description 29
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 title claims abstract description 9
- 239000000377 silicon dioxide Substances 0.000 title claims abstract description 7
- 239000012780 transparent material Substances 0.000 title claims abstract description 6
- 238000002360 preparation method Methods 0.000 title claims description 6
- 229910004298 SiO 2 Inorganic materials 0.000 claims abstract description 31
- 239000000919 ceramic Substances 0.000 claims abstract description 30
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims abstract description 22
- 239000011812 mixed powder Substances 0.000 claims abstract description 21
- 239000000843 powder Substances 0.000 claims abstract description 16
- 229910052757 nitrogen Inorganic materials 0.000 claims abstract description 11
- 238000000034 method Methods 0.000 claims abstract description 8
- 239000005011 phenolic resin Substances 0.000 claims abstract description 8
- 229920001568 phenolic resin Polymers 0.000 claims abstract description 8
- 239000000463 material Substances 0.000 claims abstract description 6
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 6
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 6
- 238000000498 ball milling Methods 0.000 claims description 5
- 238000005245 sintering Methods 0.000 claims description 3
- 239000012299 nitrogen atmosphere Substances 0.000 claims description 2
- 238000007598 dipping method Methods 0.000 claims 2
- 239000000758 substrate Substances 0.000 claims 2
- 238000004140 cleaning Methods 0.000 claims 1
- 238000013467 fragmentation Methods 0.000 claims 1
- 238000006062 fragmentation reaction Methods 0.000 claims 1
- 239000000203 mixture Substances 0.000 claims 1
- 230000003647 oxidation Effects 0.000 claims 1
- 238000007254 oxidation reaction Methods 0.000 claims 1
- -1 phenolic aldehyde Chemical class 0.000 claims 1
- 238000004506 ultrasonic cleaning Methods 0.000 claims 1
- 238000010792 warming Methods 0.000 claims 1
- 239000002131 composite material Substances 0.000 abstract description 18
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical compound O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 abstract description 15
- 238000001035 drying Methods 0.000 abstract description 9
- KXGFMDJXCMQABM-UHFFFAOYSA-N 2-methoxy-6-methylphenol Chemical compound [CH]OC1=CC=CC([CH])=C1O KXGFMDJXCMQABM-UHFFFAOYSA-N 0.000 abstract description 7
- 238000005452 bending Methods 0.000 abstract description 6
- 230000003068 static effect Effects 0.000 description 9
- 239000002245 particle Substances 0.000 description 8
- 229910000831 Steel Inorganic materials 0.000 description 4
- 229960000935 dehydrated alcohol Drugs 0.000 description 4
- 239000010959 steel Substances 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- 238000001272 pressureless sintering Methods 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
Images
Landscapes
- Ceramic Products (AREA)
Abstract
本发明公开了一种多孔氮化硅-二氧化硅透波材料的制备方法,首先将平均直径为0.1~0.6微米的Si3N4粉与酚醛树脂制成混合粉料,经球磨、烘干后破碎,模压制成坯体;然后在高温管式炉中进行氧化烧结,制备出多孔Si3N4-SiO2复相陶瓷;对多孔Si3N4-SiO2复相陶瓷进行多次浸渍硅溶胶后烘干;对浸渍了硅溶胶的多孔Si3N4-SiO2复相陶瓷在常压流动的氮气中1200~1300℃烧结2~3小时,制成多孔Si3N4-SiO2透波材料。本发明对多孔Si3N4-SiO2复相陶瓷反复浸渍硅溶胶,Si3N4-SiO2复相陶瓷的弯曲强度由现有技术的96.2MPa提高到101~124MPa。
The invention discloses a method for preparing a porous silicon nitride-silicon dioxide wave-transmitting material. Firstly, Si 3 N 4 powder with an average diameter of 0.1-0.6 microns and phenolic resin are made into a mixed powder, which is ball milled and dried. After crushing, it is molded into a green body; then oxidized and sintered in a high-temperature tube furnace to prepare porous Si 3 N 4 -SiO 2 composite ceramics; the porous Si 3 N 4 -SiO 2 composite ceramics are impregnated multiple times Dry the silica sol after drying; sinter the porous Si 3 N 4 -SiO 2 composite ceramics impregnated with silica sol at 1200-1300°C for 2-3 hours in nitrogen flowing at normal pressure to make porous Si 3 N 4 -SiO 2 Wave-transparent material. The invention repeatedly impregnates the porous Si 3 N 4 -SiO 2 multi-phase ceramics with silica sol, and the bending strength of the Si 3 N 4 -SiO 2 multi-phase ceramics is increased from 96.2 MPa in the prior art to 101-124 MPa.
Description
技术领域 technical field
本发明涉及一种氮化硅-二氧化硅透波材料的制备方法。The invention relates to a preparation method of a silicon nitride-silicon dioxide wave-transmitting material.
背景技术 Background technique
Si3N4-SiO2复合材料是一种极具潜力的高温透波材料。Si 3 N 4 -SiO 2 composite material is a kind of high-temperature wave-transparent material with great potential.
文献“无压烧结制备Si3N4/SiO2复合材料,徐常明,王士维,黄校先,郭景坤,无机材料学报,21(2006),pp.935-938”公开了一种制备Si3N4-SiO2复相陶瓷的方法,将5vol.%的Si3N4加入到SiO2粉中,采用无压烧结法在1370℃烧结出Si3N4-SiO2复相陶瓷。该陶瓷的弯曲强度为96.2MPa,介电常数为3.63~3.68,其介电常数满足透波材料介电常数小于4.0的要求,但其弯曲强度较差,且烧结温度较高,陶瓷内部几乎没有孔隙。The document "Preparation of Si 3 N 4 /SiO 2 Composite Materials by Pressureless Sintering, Xu Changming, Wang Shiwei, Huang Xiaoxian, Guo Jingkun, Journal of Inorganic Materials, 21(2006), pp.935-938" discloses a method for preparing Si 3 N 4 - SiO 2 composite ceramics method, adding 5vol.% Si 3 N 4 into SiO 2 powder, and adopting a pressureless sintering method to sinter Si 3 N 4 -SiO 2 composite ceramics at 1370°C. The bending strength of the ceramic is 96.2 MPa, and the dielectric constant is 3.63-3.68. Its dielectric constant meets the requirement that the dielectric constant of the wave-transparent material is less than 4.0, but its bending strength is poor, and the sintering temperature is high, and there is almost no porosity.
发明内容 Contents of the invention
为了克服现有技术弯曲强度差的不足,本发明提供一种多孔氮化硅-二氧化硅透波材料的制备方法,通过对多孔Si3N4-SiO2复相陶瓷反复浸渍硅溶胶,可以提高Si3N4-SiO2复相陶瓷的弯曲强度。In order to overcome the deficiencies of poor bending strength in the prior art, the present invention provides a preparation method of porous silicon nitride-silicon dioxide wave-transmitting material, by repeatedly impregnating porous Si 3 N 4 -SiO 2 multiphase ceramics with silica sol, which can Improve the flexural strength of Si 3 N 4 -SiO 2 composite ceramics.
本发明解决其技术问题所采用的技术方案:一种多孔氮化硅-二氧化硅透波材料的制备方法,包括下述步骤:The technical solution adopted by the present invention to solve the technical problem: a method for preparing a porous silicon nitride-silicon dioxide wave-transmitting material, comprising the following steps:
(a)将平均直径为0.1~0.6微米的Si3N4粉与酚醛树脂制成混合粉料,其中酚醛占混合粉料质量含量的10~20%,其余为Si3N4粉,然后以每100克粉料加入200~300毫升的无水乙醇的配比与15~25颗直径8~12毫米的氧化铝球,一起球磨15~20小时,在80~100℃烘干8~10小时,制备出Si3N4质量百分含量为80%~90%的混合粉料;将混合粉料破碎后,过40~60目筛,在80~100MPa压力下模压制成坯体;(a) Si 3 N 4 powder with an average diameter of 0.1 to 0.6 microns and phenolic resin are made into a mixed powder, wherein phenolic resin accounts for 10 to 20% of the mass content of the mixed powder, and the rest is Si 3 N 4 powder, and then For every 100 grams of powder, add 200-300 ml of absolute ethanol and 15-25 alumina balls with a diameter of 8-12 mm, mill together for 15-20 hours, and dry at 80-100 °C for 8-10 hours , preparing a mixed powder with a mass percentage of Si 3 N 4 of 80% to 90%; crushing the mixed powder, passing through a 40 to 60 mesh sieve, and molding under a pressure of 80 to 100 MPa to form a green body;
(b)将坯体放入高温管式炉中在氮气气氛下升温至1200~1300℃,然后在静态空气中保温2~3小时进行氧化烧结,制备出多孔Si3N4-SiO2复相陶瓷;(b) Put the green body into a high-temperature tube furnace and raise the temperature to 1200-1300°C under a nitrogen atmosphere, and then keep it in static air for 2-3 hours for oxidative sintering to prepare a porous Si 3 N 4 -SiO 2 composite phase ceramics;
(c)对多孔Si3N4-SiO2复相陶瓷浸渍1~5次硅溶胶,每次的浸渍时间为30~60分钟,每两次浸渍过程之间要超声清洗3~5分钟,清洗后在烘箱中80~100℃烘干3~5小时;(c) Impregnate the porous Si 3 N 4 -SiO 2 composite ceramics with silica sol for 1 to 5 times, each time for 30 to 60 minutes. Finally, dry in an oven at 80-100°C for 3-5 hours;
(d)对浸渍了硅溶胶的多孔Si3N4-SiO2复相陶瓷在常压流动的氮气中1200~1300℃烧结2~3小时,制成多孔Si3N4-SiO2透波材料。(d) Sinter the porous Si 3 N 4 -SiO 2 multiphase ceramics impregnated with silica sol at 1200-1300°C for 2-3 hours in flowing nitrogen at normal pressure to make a porous Si 3 N 4 -SiO 2 wave-transparent material .
本发明的有益效果是:由于通过对多孔Si3N4-SiO2复相陶瓷反复浸渍硅溶胶,Si3N4-SiO2复相陶瓷的弯曲强度由现有技术的96.2MPa提高到101~124MPa,见下表。The beneficial effects of the present invention are: due to repeatedly impregnating silica sol to the porous Si 3 N 4 -SiO 2 multiphase ceramics, the bending strength of the Si 3 N 4 -SiO 2 multiphase ceramics is increased from 96.2MPa in the prior art to 101~ 124MPa, see the table below.
下面结合附图和实施例对本发明作详细说明。The present invention will be described in detail below in conjunction with the accompanying drawings and embodiments.
附图说明 Description of drawings
附图是本发明多孔氮化硅-二氧化硅透波材料的制备方法流程图。The accompanying drawing is a flow chart of the preparation method of the porous silicon nitride-silicon dioxide wave-transmitting material of the present invention.
具体实施方式 Detailed ways
实施例1:将80克平均粒径为0.6微米的Si3N4粉与20克酚醛树脂混合,倒入300毫升的无水乙醇,并加入15颗直径为8~12毫米的氧化铝球,球磨15小时后取出放入干燥箱中80℃干燥10小时。将干燥后的粉料取出研碎后过40目筛,得到颗粒度均匀的混合粉料。将6克的混合粉料倒入钢模中,采用80MPa的压力将混合粉体模压成条形坯体。将坯体放入高温管式炉中,在高纯氮气保护下升温至1300℃后,然后在静态空气中保温2小时,最后在静态空气中降至室温,获得孔隙率为45%的多孔Si3N4-SiO2复相陶瓷试样。将试样浸入盛有硅溶胶的烧杯中,并在压力为4KPa的真空皿中浸渍30分钟;取出放入盛有水的烧杯中超声清洗3分钟后放入干燥箱中80℃干燥3小时。将试样重复浸渍一遍硅溶胶并烘干,然后在高纯氮气保护下1200℃烧结3小时,获得孔隙率为30±1%的多孔Si3N4-SiO2复相陶瓷。Embodiment 1: 80 grams of Si 3 N 4 powder with an average particle diameter of 0.6 microns are mixed with 20 grams of phenolic resin, poured into 300 milliliters of dehydrated alcohol, and add 15 alumina balls with a diameter of 8 to 12 millimeters, After ball milling for 15 hours, take it out and put it in a drying oven for 10 hours at 80°C. The dried powder is taken out and ground and passed through a 40-mesh sieve to obtain a mixed powder with uniform particle size. Pour 6 grams of mixed powder into a steel mold, and use a pressure of 80 MPa to mold the mixed powder into a bar-shaped green body. Put the body into a high-temperature tube furnace, raise the temperature to 1300°C under the protection of high-purity nitrogen, then keep it in static air for 2 hours, and finally cool it down to room temperature in static air to obtain porous Si with a porosity of 45%. 3 N 4 -SiO 2 composite ceramic samples. Immerse the sample in a beaker filled with silica sol, and immerse it in a vacuum dish with a pressure of 4KPa for 30 minutes; take it out, put it in a beaker filled with water, ultrasonically clean it for 3 minutes, and then put it in a drying oven at 80°C for 3 hours. The sample was repeatedly dipped in silica sol and dried, and then sintered at 1200°C for 3 hours under the protection of high-purity nitrogen to obtain a porous Si 3 N 4 -SiO 2 composite ceramic with a porosity of 30±1%.
在室温环境下测试,该陶瓷的密度为1.87±0.02g/cm3、抗弯强度为101±4MPa、断裂韧性为0.8±0.1MPa·m1/2、介电常数为3.56、介电损耗为3.59×10-3。Tested at room temperature, the density of the ceramic is 1.87±0.02g/cm 3 , the flexural strength is 101±4MPa, the fracture toughness is 0.8±0.1MPa·m 1/2 , the dielectric constant is 3.56, and the dielectric loss is 3.59×10 -3 .
实施例2:将85克平均粒径为0.3微米的Si3N4粉与15克酚醛树脂混合,倒入250毫升的无水乙醇,并加入20颗直径为8~12毫米的氧化铝球,球磨18小时后取出放入干燥箱中90℃干燥9小时。将干燥后的粉料取出研碎后过40目筛,得到颗粒度均匀的混合粉料。将5克的混合粉料倒入钢模中,采用90MPa的压力将混合粉体模压成条形坯体。将坯体放入高温管式炉中,在高纯氮气保护下升温至1250℃后,然后在静态空气中保温2.5小时,最后在静态空气中降至室温,获得孔隙率为43%的多孔Si3N4-SiO2复相陶瓷试样。将试样浸入盛有硅溶胶的烧杯中,并在压力为4KPa的真空皿中浸渍40分钟;取出放入盛有水的烧杯中超声清洗4分钟后放入干燥箱中90℃干燥4小时。将试样重复浸渍两遍硅溶胶并烘干,然后在高纯氮气保护下1250℃烧结2.5小时,获得孔隙率为27±1%的多孔Si3N4-SiO2复相陶瓷。Embodiment 2: 85 grams of Si 3 N 4 powders with an average particle diameter of 0.3 microns are mixed with 15 grams of phenolic resin, poured into 250 milliliters of dehydrated alcohol, and add 20 alumina balls with a diameter of 8 to 12 millimeters, After ball milling for 18 hours, take it out and put it in a drying oven at 90°C for 9 hours to dry. The dried powder is taken out and ground and passed through a 40-mesh sieve to obtain a mixed powder with uniform particle size. Pour 5 grams of mixed powder into a steel mold, and use a pressure of 90 MPa to mold the mixed powder into a bar-shaped green body. Put the body into a high-temperature tube furnace, raise the temperature to 1250°C under the protection of high-purity nitrogen, then keep it in static air for 2.5 hours, and finally cool it down to room temperature in static air to obtain porous Si with a porosity of 43%. 3 N 4 -SiO 2 composite ceramic samples. Immerse the sample in a beaker filled with silica sol, and immerse it in a vacuum dish with a pressure of 4KPa for 40 minutes; take it out, put it in a beaker filled with water, ultrasonically clean it for 4 minutes, and then put it in a drying oven at 90°C for 4 hours. The sample was dipped in silica sol twice and dried, and then sintered at 1250°C for 2.5 hours under the protection of high-purity nitrogen to obtain porous Si 3 N 4 -SiO 2 composite ceramics with a porosity of 27±1%.
在室温环境下测试,该陶瓷的密度为1.91±0.02g/cm3、抗弯强度为108±5MPa、断裂韧性为1.0±0.1MPa·m1/2、介电常数为3.62、介电损耗为3.48×10-3。Tested at room temperature, the density of the ceramic is 1.91±0.02g/cm 3 , the flexural strength is 108±5MPa, the fracture toughness is 1.0±0.1MPa·m 1/2 , the dielectric constant is 3.62, and the dielectric loss is 3.48×10 -3 .
实施例3:将90克平均粒径为0.3微米的Si3N4粉与10克酚醛树脂混合,倒入200毫升的无水乙醇,并加入20颗直径为8~12毫米的氧化铝球,球磨19小时后取出放入干燥箱中90℃干燥8小时。将干燥后的粉料取出研碎后过50目筛,得到颗粒度均匀的混合粉料。将5克的混合粉料倒入钢模中,采用90MPa的压力将混合粉体模压成条形坯体。将坯体放入高温管式炉中,在高纯氮气保护下升温至1250℃后,然后在静态空气中保温2.5小时,最后在静态空气中降至室温,获得孔隙率为42%的多孔Si3N4-SiO2复相陶瓷试样。将试样浸入盛有硅溶胶的烧杯中,并在压力为4KPa的真空皿中浸渍50分钟;取出放入盛有水的烧杯中超声清洗4分钟后放入干燥箱中90℃干燥4小时。将试样重复浸渍三遍硅溶胶并烘干,然后在高纯氮气保护下1250℃烧结2小时,获得孔隙率为23±1%的多孔Si3N4-SiO2复相陶瓷。Embodiment 3: 90 grams of Si 3 N 4 powder with an average particle diameter of 0.3 microns are mixed with 10 grams of phenolic resin, poured into 200 milliliters of dehydrated alcohol, and add 20 alumina balls with a diameter of 8 to 12 millimeters, After ball milling for 19 hours, take it out and put it in a drying oven at 90°C for 8 hours. The dried powder is taken out and ground, and then passed through a 50-mesh sieve to obtain a mixed powder with uniform particle size. Pour 5 grams of mixed powder into a steel mold, and use a pressure of 90 MPa to mold the mixed powder into a bar-shaped green body. Put the body into a high-temperature tube furnace, raise the temperature to 1250°C under the protection of high-purity nitrogen, then keep it in static air for 2.5 hours, and finally cool it down to room temperature in static air to obtain porous Si with a porosity of 42%. 3 N 4 -SiO 2 composite ceramic samples. Immerse the sample in a beaker filled with silica sol, and immerse it in a vacuum dish with a pressure of 4KPa for 50 minutes; take it out, put it in a beaker filled with water, ultrasonically clean it for 4 minutes, and then put it in a drying oven at 90°C for 4 hours. The sample was impregnated with silica sol three times and dried, and then sintered at 1250°C for 2 hours under the protection of high-purity nitrogen to obtain a porous Si 3 N 4 -SiO 2 composite ceramic with a porosity of 23±1%.
在室温环境下测试,该陶瓷的密度为1.97±0.02g/cm3、抗弯强度为116±4MPa、断裂韧性为1.2±0.1MPa·m1/2、介电常数为3.72、介电损耗为3.16×10-3。Tested at room temperature, the density of the ceramic is 1.97±0.02g/cm 3 , the flexural strength is 116±4MPa, the fracture toughness is 1.2±0.1MPa·m 1/2 , the dielectric constant is 3.72, and the dielectric loss is 3.16×10 -3 .
实施例4:将90克平均粒径为0.1微米的Si3N4粉与10克酚醛树脂混合,倒入200毫升的无水乙醇,并加入25颗直径为8~12毫米的氧化铝球,球磨20小时后取出放入干燥箱中100℃干燥8小时。将干燥后的粉料取出研碎后过60目筛,得到颗粒度均匀的混合粉料。将5克的混合粉料倒入钢模中,采用100MPa的压力将混合粉体模压成条形坯体。将坯体放入高温管式炉中,在高纯氮气保护下升温至1200℃后,然后在静态空气中保温3小时,最后在静态空气中降至室温,获得孔隙率为41%的多孔Si3N4-SiO2复相陶瓷试样。将试样浸入盛有硅溶胶的烧杯中,并在压力为3KPa的真空皿中浸渍60分钟;取出放入盛有水的烧杯中超声清洗5分钟后放入干燥箱中100℃干燥5小时。将试样重复浸渍四遍硅溶胶并烘干,然后在高纯氮气保护下1300℃烧结2小时,获得孔隙率为20±1%的多孔Si3N4-SiO2复相陶瓷。Embodiment 4: 90 grams of Si 3 N 4 powders with an average particle diameter of 0.1 micron are mixed with 10 grams of phenolic resin, poured into 200 milliliters of dehydrated alcohol, and add 25 alumina balls with a diameter of 8 to 12 millimeters, After ball milling for 20 hours, take it out and put it in a drying oven for 8 hours at 100°C. The dried powder is taken out and ground, and passed through a 60-mesh sieve to obtain a mixed powder with uniform particle size. Pour 5 grams of mixed powder into a steel mold, and press the mixed powder into a bar-shaped green body with a pressure of 100 MPa. Put the body into a high-temperature tube furnace, raise the temperature to 1200°C under the protection of high-purity nitrogen, then keep it in static air for 3 hours, and finally cool it down to room temperature in static air to obtain porous Si with a porosity of 41%. 3 N 4 -SiO 2 composite ceramic samples. Immerse the sample in a beaker filled with silica sol, and immerse it in a vacuum dish with a pressure of 3KPa for 60 minutes; take it out, put it in a beaker filled with water, ultrasonically clean it for 5 minutes, and then put it in a drying oven at 100°C for 5 hours. The sample was impregnated with silica sol four times and dried, and then sintered at 1300°C for 2 hours under the protection of high-purity nitrogen to obtain porous Si 3 N 4 -SiO 2 composite ceramics with a porosity of 20±1%.
在室温环境下测试,该陶瓷的密度为2.02±0.02g/cm3、抗弯强度为124±3MPa、断裂韧性为1.4±0.1MPa·m1/2、介电常数为3.8、介电损耗为3.11×10-3。Tested at room temperature, the density of the ceramic is 2.02±0.02g/cm 3 , the flexural strength is 124±3MPa, the fracture toughness is 1.4±0.1MPa·m 1/2 , the dielectric constant is 3.8, and the dielectric loss is 3.11×10 -3 .
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNA2008101503708A CN101323526A (en) | 2008-07-17 | 2008-07-17 | Preparation method of porous silicon nitride-silicon dioxide wave-transparent material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNA2008101503708A CN101323526A (en) | 2008-07-17 | 2008-07-17 | Preparation method of porous silicon nitride-silicon dioxide wave-transparent material |
Publications (1)
Publication Number | Publication Date |
---|---|
CN101323526A true CN101323526A (en) | 2008-12-17 |
Family
ID=40187255
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNA2008101503708A Pending CN101323526A (en) | 2008-07-17 | 2008-07-17 | Preparation method of porous silicon nitride-silicon dioxide wave-transparent material |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101323526A (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103058696A (en) * | 2012-12-14 | 2013-04-24 | 西北工业大学 | Preparation method for silicon nitride matrix |
CN103121846A (en) * | 2013-02-21 | 2013-05-29 | 西北农林科技大学 | Method for preparing porous silicon nitride-silicon dioxide wave-transmitting material by adopting low-temperature drying method |
CN105819866A (en) * | 2016-03-22 | 2016-08-03 | 烟台大学 | Method for preparing silicon nitride-silicon dioxide gradient wave-transmitting composite ceramic |
CN107188596A (en) * | 2017-05-28 | 2017-09-22 | 烟台大学 | Many gradient pores silicon nitride and silicon carbide complex phase ceramics and its production and use |
CN109384459A (en) * | 2018-11-23 | 2019-02-26 | 航天特种材料及工艺技术研究所 | A kind of fiber-reinforcement silicon dioxide thermal insulation ceramics material and its preparation method and application |
CN110218102A (en) * | 2019-05-09 | 2019-09-10 | 航天特种材料及工艺技术研究所 | Hydrophobic type SiO2f/SiO2Electromagnetic wave transparent material and preparation method thereof |
CN110590339A (en) * | 2019-09-30 | 2019-12-20 | 哈尔滨理工大学 | A kind of preparation method of alumina ceramic part |
CN111960838A (en) * | 2020-08-31 | 2020-11-20 | 武汉科技大学 | Silicon nitride framework reinforced quartz-based ceramics for photovoltaic grade silicon smelting and preparation method thereof |
CN112341207A (en) * | 2020-11-20 | 2021-02-09 | 哈尔滨工业大学 | A kind of silicon nitride-silicon oxynitride column hole composite ceramic material and preparation method thereof |
CN114790107A (en) * | 2022-04-29 | 2022-07-26 | 江苏大学 | A method for preparing SiO2-Si3N4 composite ceramics at low temperature by using polysilicon cutting waste |
-
2008
- 2008-07-17 CN CNA2008101503708A patent/CN101323526A/en active Pending
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103058696A (en) * | 2012-12-14 | 2013-04-24 | 西北工业大学 | Preparation method for silicon nitride matrix |
CN103058696B (en) * | 2012-12-14 | 2015-04-29 | 西北工业大学 | Preparation method for silicon nitride matrix |
CN103121846A (en) * | 2013-02-21 | 2013-05-29 | 西北农林科技大学 | Method for preparing porous silicon nitride-silicon dioxide wave-transmitting material by adopting low-temperature drying method |
CN103121846B (en) * | 2013-02-21 | 2014-01-29 | 西北农林科技大学 | A method for preparing porous silicon nitride-silicon dioxide wave-transmitting material by low-temperature drying method |
CN105819866A (en) * | 2016-03-22 | 2016-08-03 | 烟台大学 | Method for preparing silicon nitride-silicon dioxide gradient wave-transmitting composite ceramic |
CN107188596A (en) * | 2017-05-28 | 2017-09-22 | 烟台大学 | Many gradient pores silicon nitride and silicon carbide complex phase ceramics and its production and use |
CN109384459A (en) * | 2018-11-23 | 2019-02-26 | 航天特种材料及工艺技术研究所 | A kind of fiber-reinforcement silicon dioxide thermal insulation ceramics material and its preparation method and application |
CN109384459B (en) * | 2018-11-23 | 2020-12-29 | 航天特种材料及工艺技术研究所 | A kind of fiber reinforced silica thermal insulation ceramic material and its preparation method and application |
CN110218102A (en) * | 2019-05-09 | 2019-09-10 | 航天特种材料及工艺技术研究所 | Hydrophobic type SiO2f/SiO2Electromagnetic wave transparent material and preparation method thereof |
CN110590339A (en) * | 2019-09-30 | 2019-12-20 | 哈尔滨理工大学 | A kind of preparation method of alumina ceramic part |
CN111960838A (en) * | 2020-08-31 | 2020-11-20 | 武汉科技大学 | Silicon nitride framework reinforced quartz-based ceramics for photovoltaic grade silicon smelting and preparation method thereof |
CN111960838B (en) * | 2020-08-31 | 2022-01-14 | 武汉科技大学 | Silicon nitride framework reinforced quartz-based ceramic for photovoltaic silicon smelting and preparation method thereof |
CN112341207A (en) * | 2020-11-20 | 2021-02-09 | 哈尔滨工业大学 | A kind of silicon nitride-silicon oxynitride column hole composite ceramic material and preparation method thereof |
CN114790107A (en) * | 2022-04-29 | 2022-07-26 | 江苏大学 | A method for preparing SiO2-Si3N4 composite ceramics at low temperature by using polysilicon cutting waste |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101323526A (en) | Preparation method of porous silicon nitride-silicon dioxide wave-transparent material | |
US9861129B2 (en) | Preparation method of porous ceramic, porous ceramic, and electronic cigarette | |
CN101698591B (en) | Fiber composite carbon aerogel material and preparation method thereof | |
CN114262230B (en) | Silicon nitride-silicon carbide porous ceramic wave-absorbing material and preparation method thereof | |
CN105272262B (en) | A kind of method of raising SiC/SiC ceramic matric composite consistency | |
CN102898141B (en) | Preparation method of high-heat-conduction aluminum nitride ceramic shaped part | |
CN107188596B (en) | Porous gradient silicon nitride-silicon carbide composite ceramic and preparation method and application thereof | |
CN102351563B (en) | Preparation method for silicon nitride porous ceramic with multilevel pore size structure and high porosity | |
CN109928756B (en) | Silicon carbide reinforced carbon-based composite material and preparation method thereof | |
CN101691301A (en) | Preparation method of surface dense porous silicon nitride ceramic wave-transmitting material | |
WO2021073100A1 (en) | Method for preparing high-strength ceramic filter membrane | |
CN103693997B (en) | A kind of structure of porous ceramic surface ceramic of compact coating and preparation method | |
CN100462333C (en) | A kind of preparation method of SiC/Si tubular composite ceramics | |
CN103641510B (en) | Add the method that PMMA pore-forming material prepares O-Sialon porous ceramics | |
CN104529507A (en) | Porous silicon nitride/silicon carbide composite ceramic material and preparation method thereof | |
CN102765940B (en) | Normal pressure solid phase sintering microporous silicon carbide ceramic and preparation method thereof | |
CN103232228B (en) | Preparation method of porous aluminum oxide composite ceramic | |
CN110746192A (en) | High-thermal-conductivity pure porous silicon carbide material and preparation method and application thereof | |
CN113929962A (en) | A kind of high temperature resistant composite coating on aerogel surface and preparation method thereof | |
CN107759251A (en) | A kind of preparation method of porous ceramic surface high tenacity ceramic coating | |
CN107778006A (en) | High temperature resistant SiC zirconia ceramic aerogel heat-proof composite materials and its preparation method and application | |
CN108484210A (en) | A kind of carborundum porous ceramics preparation method that porosity is high | |
CN102249652B (en) | Fiber composite material with microwave absorbing function and preparation method thereof | |
CN104844250B (en) | A kind of high temperature resistant porous interlayer electromagnetic wave transparent material and preparation method thereof | |
CN100567215C (en) | A kind of preparation method of beryllium oxide ceramic material with high thermal conductivity and high flexural strength |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
WD01 | Invention patent application deemed withdrawn after publication |
Open date: 20081217 |