[go: up one dir, main page]

CN101323526A - Preparation method of porous silicon nitride-silicon dioxide wave-transparent material - Google Patents

Preparation method of porous silicon nitride-silicon dioxide wave-transparent material Download PDF

Info

Publication number
CN101323526A
CN101323526A CNA2008101503708A CN200810150370A CN101323526A CN 101323526 A CN101323526 A CN 101323526A CN A2008101503708 A CNA2008101503708 A CN A2008101503708A CN 200810150370 A CN200810150370 A CN 200810150370A CN 101323526 A CN101323526 A CN 101323526A
Authority
CN
China
Prior art keywords
porous
sio
hours
mixed powder
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CNA2008101503708A
Other languages
Chinese (zh)
Inventor
殷小玮
张立同
李向明
成来飞
陈超
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northwestern Polytechnical University
Original Assignee
Northwestern Polytechnical University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northwestern Polytechnical University filed Critical Northwestern Polytechnical University
Priority to CNA2008101503708A priority Critical patent/CN101323526A/en
Publication of CN101323526A publication Critical patent/CN101323526A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Ceramic Products (AREA)

Abstract

本发明公开了一种多孔氮化硅-二氧化硅透波材料的制备方法,首先将平均直径为0.1~0.6微米的Si3N4粉与酚醛树脂制成混合粉料,经球磨、烘干后破碎,模压制成坯体;然后在高温管式炉中进行氧化烧结,制备出多孔Si3N4-SiO2复相陶瓷;对多孔Si3N4-SiO2复相陶瓷进行多次浸渍硅溶胶后烘干;对浸渍了硅溶胶的多孔Si3N4-SiO2复相陶瓷在常压流动的氮气中1200~1300℃烧结2~3小时,制成多孔Si3N4-SiO2透波材料。本发明对多孔Si3N4-SiO2复相陶瓷反复浸渍硅溶胶,Si3N4-SiO2复相陶瓷的弯曲强度由现有技术的96.2MPa提高到101~124MPa。

Figure 200810150370

The invention discloses a method for preparing a porous silicon nitride-silicon dioxide wave-transmitting material. Firstly, Si 3 N 4 powder with an average diameter of 0.1-0.6 microns and phenolic resin are made into a mixed powder, which is ball milled and dried. After crushing, it is molded into a green body; then oxidized and sintered in a high-temperature tube furnace to prepare porous Si 3 N 4 -SiO 2 composite ceramics; the porous Si 3 N 4 -SiO 2 composite ceramics are impregnated multiple times Dry the silica sol after drying; sinter the porous Si 3 N 4 -SiO 2 composite ceramics impregnated with silica sol at 1200-1300°C for 2-3 hours in nitrogen flowing at normal pressure to make porous Si 3 N 4 -SiO 2 Wave-transparent material. The invention repeatedly impregnates the porous Si 3 N 4 -SiO 2 multi-phase ceramics with silica sol, and the bending strength of the Si 3 N 4 -SiO 2 multi-phase ceramics is increased from 96.2 MPa in the prior art to 101-124 MPa.

Figure 200810150370

Description

多孔氮化硅-二氧化硅透波材料的制备方法 Preparation method of porous silicon nitride-silicon dioxide wave-transparent material

技术领域 technical field

本发明涉及一种氮化硅-二氧化硅透波材料的制备方法。The invention relates to a preparation method of a silicon nitride-silicon dioxide wave-transmitting material.

背景技术 Background technique

Si3N4-SiO2复合材料是一种极具潜力的高温透波材料。Si 3 N 4 -SiO 2 composite material is a kind of high-temperature wave-transparent material with great potential.

文献“无压烧结制备Si3N4/SiO2复合材料,徐常明,王士维,黄校先,郭景坤,无机材料学报,21(2006),pp.935-938”公开了一种制备Si3N4-SiO2复相陶瓷的方法,将5vol.%的Si3N4加入到SiO2粉中,采用无压烧结法在1370℃烧结出Si3N4-SiO2复相陶瓷。该陶瓷的弯曲强度为96.2MPa,介电常数为3.63~3.68,其介电常数满足透波材料介电常数小于4.0的要求,但其弯曲强度较差,且烧结温度较高,陶瓷内部几乎没有孔隙。The document "Preparation of Si 3 N 4 /SiO 2 Composite Materials by Pressureless Sintering, Xu Changming, Wang Shiwei, Huang Xiaoxian, Guo Jingkun, Journal of Inorganic Materials, 21(2006), pp.935-938" discloses a method for preparing Si 3 N 4 - SiO 2 composite ceramics method, adding 5vol.% Si 3 N 4 into SiO 2 powder, and adopting a pressureless sintering method to sinter Si 3 N 4 -SiO 2 composite ceramics at 1370°C. The bending strength of the ceramic is 96.2 MPa, and the dielectric constant is 3.63-3.68. Its dielectric constant meets the requirement that the dielectric constant of the wave-transparent material is less than 4.0, but its bending strength is poor, and the sintering temperature is high, and there is almost no porosity.

发明内容 Contents of the invention

为了克服现有技术弯曲强度差的不足,本发明提供一种多孔氮化硅-二氧化硅透波材料的制备方法,通过对多孔Si3N4-SiO2复相陶瓷反复浸渍硅溶胶,可以提高Si3N4-SiO2复相陶瓷的弯曲强度。In order to overcome the deficiencies of poor bending strength in the prior art, the present invention provides a preparation method of porous silicon nitride-silicon dioxide wave-transmitting material, by repeatedly impregnating porous Si 3 N 4 -SiO 2 multiphase ceramics with silica sol, which can Improve the flexural strength of Si 3 N 4 -SiO 2 composite ceramics.

本发明解决其技术问题所采用的技术方案:一种多孔氮化硅-二氧化硅透波材料的制备方法,包括下述步骤:The technical solution adopted by the present invention to solve the technical problem: a method for preparing a porous silicon nitride-silicon dioxide wave-transmitting material, comprising the following steps:

(a)将平均直径为0.1~0.6微米的Si3N4粉与酚醛树脂制成混合粉料,其中酚醛占混合粉料质量含量的10~20%,其余为Si3N4粉,然后以每100克粉料加入200~300毫升的无水乙醇的配比与15~25颗直径8~12毫米的氧化铝球,一起球磨15~20小时,在80~100℃烘干8~10小时,制备出Si3N4质量百分含量为80%~90%的混合粉料;将混合粉料破碎后,过40~60目筛,在80~100MPa压力下模压制成坯体;(a) Si 3 N 4 powder with an average diameter of 0.1 to 0.6 microns and phenolic resin are made into a mixed powder, wherein phenolic resin accounts for 10 to 20% of the mass content of the mixed powder, and the rest is Si 3 N 4 powder, and then For every 100 grams of powder, add 200-300 ml of absolute ethanol and 15-25 alumina balls with a diameter of 8-12 mm, mill together for 15-20 hours, and dry at 80-100 °C for 8-10 hours , preparing a mixed powder with a mass percentage of Si 3 N 4 of 80% to 90%; crushing the mixed powder, passing through a 40 to 60 mesh sieve, and molding under a pressure of 80 to 100 MPa to form a green body;

(b)将坯体放入高温管式炉中在氮气气氛下升温至1200~1300℃,然后在静态空气中保温2~3小时进行氧化烧结,制备出多孔Si3N4-SiO2复相陶瓷;(b) Put the green body into a high-temperature tube furnace and raise the temperature to 1200-1300°C under a nitrogen atmosphere, and then keep it in static air for 2-3 hours for oxidative sintering to prepare a porous Si 3 N 4 -SiO 2 composite phase ceramics;

(c)对多孔Si3N4-SiO2复相陶瓷浸渍1~5次硅溶胶,每次的浸渍时间为30~60分钟,每两次浸渍过程之间要超声清洗3~5分钟,清洗后在烘箱中80~100℃烘干3~5小时;(c) Impregnate the porous Si 3 N 4 -SiO 2 composite ceramics with silica sol for 1 to 5 times, each time for 30 to 60 minutes. Finally, dry in an oven at 80-100°C for 3-5 hours;

(d)对浸渍了硅溶胶的多孔Si3N4-SiO2复相陶瓷在常压流动的氮气中1200~1300℃烧结2~3小时,制成多孔Si3N4-SiO2透波材料。(d) Sinter the porous Si 3 N 4 -SiO 2 multiphase ceramics impregnated with silica sol at 1200-1300°C for 2-3 hours in flowing nitrogen at normal pressure to make a porous Si 3 N 4 -SiO 2 wave-transparent material .

本发明的有益效果是:由于通过对多孔Si3N4-SiO2复相陶瓷反复浸渍硅溶胶,Si3N4-SiO2复相陶瓷的弯曲强度由现有技术的96.2MPa提高到101~124MPa,见下表。The beneficial effects of the present invention are: due to repeatedly impregnating silica sol to the porous Si 3 N 4 -SiO 2 multiphase ceramics, the bending strength of the Si 3 N 4 -SiO 2 multiphase ceramics is increased from 96.2MPa in the prior art to 101~ 124MPa, see the table below.

  孔隙率(%) Porosity(%)   密度(g/cm3)Density (g/cm 3 )   弯曲强度(MPa) Bending strength (MPa)   断裂韧性(MPa·m1/2)Fracture toughness (MPa·m 1/2 )   介电常数 Permittivity   介电损耗(×10-3)Dielectric loss (×10 -3 )  实施例1 Example 1   30±1 30±1   1.87±0.02 1.87±0.02   101±4 101±4   0.8±0.1 0.8±0.1   3.56 3.56   3.59 3.59  实施例2 Example 2   27±1 27±1   1.91±0.02 1.91±0.02   108±5 108±5   1.0±0.1 1.0±0.1   3.62 3.62   3.48 3.48  实施例3 Example 3   23±1 23±1   1.97±0.02 1.97±0.02   116±4 116±4   1.2±0.1 1.2±0.1   3.72 3.72   3.16 3.16  实施例4 Example 4   20±1 20±1   2.02±0.02 2.02±0.02   124±3 124±3   1.4±0.1 1.4±0.1   3.80 3.80   3.11 3.11

下面结合附图和实施例对本发明作详细说明。The present invention will be described in detail below in conjunction with the accompanying drawings and embodiments.

附图说明 Description of drawings

附图是本发明多孔氮化硅-二氧化硅透波材料的制备方法流程图。The accompanying drawing is a flow chart of the preparation method of the porous silicon nitride-silicon dioxide wave-transmitting material of the present invention.

具体实施方式 Detailed ways

实施例1:将80克平均粒径为0.6微米的Si3N4粉与20克酚醛树脂混合,倒入300毫升的无水乙醇,并加入15颗直径为8~12毫米的氧化铝球,球磨15小时后取出放入干燥箱中80℃干燥10小时。将干燥后的粉料取出研碎后过40目筛,得到颗粒度均匀的混合粉料。将6克的混合粉料倒入钢模中,采用80MPa的压力将混合粉体模压成条形坯体。将坯体放入高温管式炉中,在高纯氮气保护下升温至1300℃后,然后在静态空气中保温2小时,最后在静态空气中降至室温,获得孔隙率为45%的多孔Si3N4-SiO2复相陶瓷试样。将试样浸入盛有硅溶胶的烧杯中,并在压力为4KPa的真空皿中浸渍30分钟;取出放入盛有水的烧杯中超声清洗3分钟后放入干燥箱中80℃干燥3小时。将试样重复浸渍一遍硅溶胶并烘干,然后在高纯氮气保护下1200℃烧结3小时,获得孔隙率为30±1%的多孔Si3N4-SiO2复相陶瓷。Embodiment 1: 80 grams of Si 3 N 4 powder with an average particle diameter of 0.6 microns are mixed with 20 grams of phenolic resin, poured into 300 milliliters of dehydrated alcohol, and add 15 alumina balls with a diameter of 8 to 12 millimeters, After ball milling for 15 hours, take it out and put it in a drying oven for 10 hours at 80°C. The dried powder is taken out and ground and passed through a 40-mesh sieve to obtain a mixed powder with uniform particle size. Pour 6 grams of mixed powder into a steel mold, and use a pressure of 80 MPa to mold the mixed powder into a bar-shaped green body. Put the body into a high-temperature tube furnace, raise the temperature to 1300°C under the protection of high-purity nitrogen, then keep it in static air for 2 hours, and finally cool it down to room temperature in static air to obtain porous Si with a porosity of 45%. 3 N 4 -SiO 2 composite ceramic samples. Immerse the sample in a beaker filled with silica sol, and immerse it in a vacuum dish with a pressure of 4KPa for 30 minutes; take it out, put it in a beaker filled with water, ultrasonically clean it for 3 minutes, and then put it in a drying oven at 80°C for 3 hours. The sample was repeatedly dipped in silica sol and dried, and then sintered at 1200°C for 3 hours under the protection of high-purity nitrogen to obtain a porous Si 3 N 4 -SiO 2 composite ceramic with a porosity of 30±1%.

在室温环境下测试,该陶瓷的密度为1.87±0.02g/cm3、抗弯强度为101±4MPa、断裂韧性为0.8±0.1MPa·m1/2、介电常数为3.56、介电损耗为3.59×10-3Tested at room temperature, the density of the ceramic is 1.87±0.02g/cm 3 , the flexural strength is 101±4MPa, the fracture toughness is 0.8±0.1MPa·m 1/2 , the dielectric constant is 3.56, and the dielectric loss is 3.59×10 -3 .

实施例2:将85克平均粒径为0.3微米的Si3N4粉与15克酚醛树脂混合,倒入250毫升的无水乙醇,并加入20颗直径为8~12毫米的氧化铝球,球磨18小时后取出放入干燥箱中90℃干燥9小时。将干燥后的粉料取出研碎后过40目筛,得到颗粒度均匀的混合粉料。将5克的混合粉料倒入钢模中,采用90MPa的压力将混合粉体模压成条形坯体。将坯体放入高温管式炉中,在高纯氮气保护下升温至1250℃后,然后在静态空气中保温2.5小时,最后在静态空气中降至室温,获得孔隙率为43%的多孔Si3N4-SiO2复相陶瓷试样。将试样浸入盛有硅溶胶的烧杯中,并在压力为4KPa的真空皿中浸渍40分钟;取出放入盛有水的烧杯中超声清洗4分钟后放入干燥箱中90℃干燥4小时。将试样重复浸渍两遍硅溶胶并烘干,然后在高纯氮气保护下1250℃烧结2.5小时,获得孔隙率为27±1%的多孔Si3N4-SiO2复相陶瓷。Embodiment 2: 85 grams of Si 3 N 4 powders with an average particle diameter of 0.3 microns are mixed with 15 grams of phenolic resin, poured into 250 milliliters of dehydrated alcohol, and add 20 alumina balls with a diameter of 8 to 12 millimeters, After ball milling for 18 hours, take it out and put it in a drying oven at 90°C for 9 hours to dry. The dried powder is taken out and ground and passed through a 40-mesh sieve to obtain a mixed powder with uniform particle size. Pour 5 grams of mixed powder into a steel mold, and use a pressure of 90 MPa to mold the mixed powder into a bar-shaped green body. Put the body into a high-temperature tube furnace, raise the temperature to 1250°C under the protection of high-purity nitrogen, then keep it in static air for 2.5 hours, and finally cool it down to room temperature in static air to obtain porous Si with a porosity of 43%. 3 N 4 -SiO 2 composite ceramic samples. Immerse the sample in a beaker filled with silica sol, and immerse it in a vacuum dish with a pressure of 4KPa for 40 minutes; take it out, put it in a beaker filled with water, ultrasonically clean it for 4 minutes, and then put it in a drying oven at 90°C for 4 hours. The sample was dipped in silica sol twice and dried, and then sintered at 1250°C for 2.5 hours under the protection of high-purity nitrogen to obtain porous Si 3 N 4 -SiO 2 composite ceramics with a porosity of 27±1%.

在室温环境下测试,该陶瓷的密度为1.91±0.02g/cm3、抗弯强度为108±5MPa、断裂韧性为1.0±0.1MPa·m1/2、介电常数为3.62、介电损耗为3.48×10-3Tested at room temperature, the density of the ceramic is 1.91±0.02g/cm 3 , the flexural strength is 108±5MPa, the fracture toughness is 1.0±0.1MPa·m 1/2 , the dielectric constant is 3.62, and the dielectric loss is 3.48×10 -3 .

实施例3:将90克平均粒径为0.3微米的Si3N4粉与10克酚醛树脂混合,倒入200毫升的无水乙醇,并加入20颗直径为8~12毫米的氧化铝球,球磨19小时后取出放入干燥箱中90℃干燥8小时。将干燥后的粉料取出研碎后过50目筛,得到颗粒度均匀的混合粉料。将5克的混合粉料倒入钢模中,采用90MPa的压力将混合粉体模压成条形坯体。将坯体放入高温管式炉中,在高纯氮气保护下升温至1250℃后,然后在静态空气中保温2.5小时,最后在静态空气中降至室温,获得孔隙率为42%的多孔Si3N4-SiO2复相陶瓷试样。将试样浸入盛有硅溶胶的烧杯中,并在压力为4KPa的真空皿中浸渍50分钟;取出放入盛有水的烧杯中超声清洗4分钟后放入干燥箱中90℃干燥4小时。将试样重复浸渍三遍硅溶胶并烘干,然后在高纯氮气保护下1250℃烧结2小时,获得孔隙率为23±1%的多孔Si3N4-SiO2复相陶瓷。Embodiment 3: 90 grams of Si 3 N 4 powder with an average particle diameter of 0.3 microns are mixed with 10 grams of phenolic resin, poured into 200 milliliters of dehydrated alcohol, and add 20 alumina balls with a diameter of 8 to 12 millimeters, After ball milling for 19 hours, take it out and put it in a drying oven at 90°C for 8 hours. The dried powder is taken out and ground, and then passed through a 50-mesh sieve to obtain a mixed powder with uniform particle size. Pour 5 grams of mixed powder into a steel mold, and use a pressure of 90 MPa to mold the mixed powder into a bar-shaped green body. Put the body into a high-temperature tube furnace, raise the temperature to 1250°C under the protection of high-purity nitrogen, then keep it in static air for 2.5 hours, and finally cool it down to room temperature in static air to obtain porous Si with a porosity of 42%. 3 N 4 -SiO 2 composite ceramic samples. Immerse the sample in a beaker filled with silica sol, and immerse it in a vacuum dish with a pressure of 4KPa for 50 minutes; take it out, put it in a beaker filled with water, ultrasonically clean it for 4 minutes, and then put it in a drying oven at 90°C for 4 hours. The sample was impregnated with silica sol three times and dried, and then sintered at 1250°C for 2 hours under the protection of high-purity nitrogen to obtain a porous Si 3 N 4 -SiO 2 composite ceramic with a porosity of 23±1%.

在室温环境下测试,该陶瓷的密度为1.97±0.02g/cm3、抗弯强度为116±4MPa、断裂韧性为1.2±0.1MPa·m1/2、介电常数为3.72、介电损耗为3.16×10-3Tested at room temperature, the density of the ceramic is 1.97±0.02g/cm 3 , the flexural strength is 116±4MPa, the fracture toughness is 1.2±0.1MPa·m 1/2 , the dielectric constant is 3.72, and the dielectric loss is 3.16×10 -3 .

实施例4:将90克平均粒径为0.1微米的Si3N4粉与10克酚醛树脂混合,倒入200毫升的无水乙醇,并加入25颗直径为8~12毫米的氧化铝球,球磨20小时后取出放入干燥箱中100℃干燥8小时。将干燥后的粉料取出研碎后过60目筛,得到颗粒度均匀的混合粉料。将5克的混合粉料倒入钢模中,采用100MPa的压力将混合粉体模压成条形坯体。将坯体放入高温管式炉中,在高纯氮气保护下升温至1200℃后,然后在静态空气中保温3小时,最后在静态空气中降至室温,获得孔隙率为41%的多孔Si3N4-SiO2复相陶瓷试样。将试样浸入盛有硅溶胶的烧杯中,并在压力为3KPa的真空皿中浸渍60分钟;取出放入盛有水的烧杯中超声清洗5分钟后放入干燥箱中100℃干燥5小时。将试样重复浸渍四遍硅溶胶并烘干,然后在高纯氮气保护下1300℃烧结2小时,获得孔隙率为20±1%的多孔Si3N4-SiO2复相陶瓷。Embodiment 4: 90 grams of Si 3 N 4 powders with an average particle diameter of 0.1 micron are mixed with 10 grams of phenolic resin, poured into 200 milliliters of dehydrated alcohol, and add 25 alumina balls with a diameter of 8 to 12 millimeters, After ball milling for 20 hours, take it out and put it in a drying oven for 8 hours at 100°C. The dried powder is taken out and ground, and passed through a 60-mesh sieve to obtain a mixed powder with uniform particle size. Pour 5 grams of mixed powder into a steel mold, and press the mixed powder into a bar-shaped green body with a pressure of 100 MPa. Put the body into a high-temperature tube furnace, raise the temperature to 1200°C under the protection of high-purity nitrogen, then keep it in static air for 3 hours, and finally cool it down to room temperature in static air to obtain porous Si with a porosity of 41%. 3 N 4 -SiO 2 composite ceramic samples. Immerse the sample in a beaker filled with silica sol, and immerse it in a vacuum dish with a pressure of 3KPa for 60 minutes; take it out, put it in a beaker filled with water, ultrasonically clean it for 5 minutes, and then put it in a drying oven at 100°C for 5 hours. The sample was impregnated with silica sol four times and dried, and then sintered at 1300°C for 2 hours under the protection of high-purity nitrogen to obtain porous Si 3 N 4 -SiO 2 composite ceramics with a porosity of 20±1%.

在室温环境下测试,该陶瓷的密度为2.02±0.02g/cm3、抗弯强度为124±3MPa、断裂韧性为1.4±0.1MPa·m1/2、介电常数为3.8、介电损耗为3.11×10-3Tested at room temperature, the density of the ceramic is 2.02±0.02g/cm 3 , the flexural strength is 124±3MPa, the fracture toughness is 1.4±0.1MPa·m 1/2 , the dielectric constant is 3.8, and the dielectric loss is 3.11×10 -3 .

Claims (1)

1, a kind of preparation method of porous silicon nitride-silicon dioxide transmitted wave material is characterized in that comprising the steps:
(a) with average diameter be 0.1~0.6 micron Si 3N 4Powder and phenolic resins are made mixed powder, and wherein phenolic aldehyde accounts for 10~20% of mixed powder mass content, and all the other are Si 3N 4Powder adds the alumina balls of proportioning and 8~12 millimeters of 15~25 diameters of 200~300 milliliters absolute ethyl alcohol then with per 100 gram powders, ball milling is 15~20 hours together, dries 8~10 hours at 80~100 ℃, prepares Si 3N 4The quality percentage composition is 80%~90% mixed powder; After the mixed powder fragmentation, cross 40~60 mesh sieves, be pressed into base substrate at 80~100MPa pressure counterdie;
(b) base substrate is put into high temperature process furnances and under nitrogen atmosphere, be warming up to 1200~1300 ℃, in still air, be incubated then 2~3 hours and carry out oxidation and sinter, prepare porous Si 3N 4-SiO 2Complex phase ceramic;
(c) to porous Si 3N 4-SiO 21~5 Ludox of complex phase ceramic dipping, each dip time is 30~60 minutes, wants ultrasonic cleaning 3~5 minutes between per twice dipping process, after cleaning in baking oven 80~100 ℃ dried 3~5 hours;
(d) to having flooded the porous Si of Ludox 3N 4-SiO 2Complex phase ceramic 1200~1300 ℃ of sintering 2~3 hours in the nitrogen of atmospheric flow are made porous Si 3N 4-SiO 2Electromagnetic wave transparent material.
CNA2008101503708A 2008-07-17 2008-07-17 Preparation method of porous silicon nitride-silicon dioxide wave-transparent material Pending CN101323526A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNA2008101503708A CN101323526A (en) 2008-07-17 2008-07-17 Preparation method of porous silicon nitride-silicon dioxide wave-transparent material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNA2008101503708A CN101323526A (en) 2008-07-17 2008-07-17 Preparation method of porous silicon nitride-silicon dioxide wave-transparent material

Publications (1)

Publication Number Publication Date
CN101323526A true CN101323526A (en) 2008-12-17

Family

ID=40187255

Family Applications (1)

Application Number Title Priority Date Filing Date
CNA2008101503708A Pending CN101323526A (en) 2008-07-17 2008-07-17 Preparation method of porous silicon nitride-silicon dioxide wave-transparent material

Country Status (1)

Country Link
CN (1) CN101323526A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103058696A (en) * 2012-12-14 2013-04-24 西北工业大学 Preparation method for silicon nitride matrix
CN103121846A (en) * 2013-02-21 2013-05-29 西北农林科技大学 Method for preparing porous silicon nitride-silicon dioxide wave-transmitting material by adopting low-temperature drying method
CN105819866A (en) * 2016-03-22 2016-08-03 烟台大学 Method for preparing silicon nitride-silicon dioxide gradient wave-transmitting composite ceramic
CN107188596A (en) * 2017-05-28 2017-09-22 烟台大学 Many gradient pores silicon nitride and silicon carbide complex phase ceramics and its production and use
CN109384459A (en) * 2018-11-23 2019-02-26 航天特种材料及工艺技术研究所 A kind of fiber-reinforcement silicon dioxide thermal insulation ceramics material and its preparation method and application
CN110218102A (en) * 2019-05-09 2019-09-10 航天特种材料及工艺技术研究所 Hydrophobic type SiO2f/SiO2Electromagnetic wave transparent material and preparation method thereof
CN110590339A (en) * 2019-09-30 2019-12-20 哈尔滨理工大学 A kind of preparation method of alumina ceramic part
CN111960838A (en) * 2020-08-31 2020-11-20 武汉科技大学 Silicon nitride framework reinforced quartz-based ceramics for photovoltaic grade silicon smelting and preparation method thereof
CN112341207A (en) * 2020-11-20 2021-02-09 哈尔滨工业大学 A kind of silicon nitride-silicon oxynitride column hole composite ceramic material and preparation method thereof
CN114790107A (en) * 2022-04-29 2022-07-26 江苏大学 A method for preparing SiO2-Si3N4 composite ceramics at low temperature by using polysilicon cutting waste

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103058696A (en) * 2012-12-14 2013-04-24 西北工业大学 Preparation method for silicon nitride matrix
CN103058696B (en) * 2012-12-14 2015-04-29 西北工业大学 Preparation method for silicon nitride matrix
CN103121846A (en) * 2013-02-21 2013-05-29 西北农林科技大学 Method for preparing porous silicon nitride-silicon dioxide wave-transmitting material by adopting low-temperature drying method
CN103121846B (en) * 2013-02-21 2014-01-29 西北农林科技大学 A method for preparing porous silicon nitride-silicon dioxide wave-transmitting material by low-temperature drying method
CN105819866A (en) * 2016-03-22 2016-08-03 烟台大学 Method for preparing silicon nitride-silicon dioxide gradient wave-transmitting composite ceramic
CN107188596A (en) * 2017-05-28 2017-09-22 烟台大学 Many gradient pores silicon nitride and silicon carbide complex phase ceramics and its production and use
CN109384459A (en) * 2018-11-23 2019-02-26 航天特种材料及工艺技术研究所 A kind of fiber-reinforcement silicon dioxide thermal insulation ceramics material and its preparation method and application
CN109384459B (en) * 2018-11-23 2020-12-29 航天特种材料及工艺技术研究所 A kind of fiber reinforced silica thermal insulation ceramic material and its preparation method and application
CN110218102A (en) * 2019-05-09 2019-09-10 航天特种材料及工艺技术研究所 Hydrophobic type SiO2f/SiO2Electromagnetic wave transparent material and preparation method thereof
CN110590339A (en) * 2019-09-30 2019-12-20 哈尔滨理工大学 A kind of preparation method of alumina ceramic part
CN111960838A (en) * 2020-08-31 2020-11-20 武汉科技大学 Silicon nitride framework reinforced quartz-based ceramics for photovoltaic grade silicon smelting and preparation method thereof
CN111960838B (en) * 2020-08-31 2022-01-14 武汉科技大学 Silicon nitride framework reinforced quartz-based ceramic for photovoltaic silicon smelting and preparation method thereof
CN112341207A (en) * 2020-11-20 2021-02-09 哈尔滨工业大学 A kind of silicon nitride-silicon oxynitride column hole composite ceramic material and preparation method thereof
CN114790107A (en) * 2022-04-29 2022-07-26 江苏大学 A method for preparing SiO2-Si3N4 composite ceramics at low temperature by using polysilicon cutting waste

Similar Documents

Publication Publication Date Title
CN101323526A (en) Preparation method of porous silicon nitride-silicon dioxide wave-transparent material
US9861129B2 (en) Preparation method of porous ceramic, porous ceramic, and electronic cigarette
CN101698591B (en) Fiber composite carbon aerogel material and preparation method thereof
CN114262230B (en) Silicon nitride-silicon carbide porous ceramic wave-absorbing material and preparation method thereof
CN105272262B (en) A kind of method of raising SiC/SiC ceramic matric composite consistency
CN102898141B (en) Preparation method of high-heat-conduction aluminum nitride ceramic shaped part
CN107188596B (en) Porous gradient silicon nitride-silicon carbide composite ceramic and preparation method and application thereof
CN102351563B (en) Preparation method for silicon nitride porous ceramic with multilevel pore size structure and high porosity
CN109928756B (en) Silicon carbide reinforced carbon-based composite material and preparation method thereof
CN101691301A (en) Preparation method of surface dense porous silicon nitride ceramic wave-transmitting material
WO2021073100A1 (en) Method for preparing high-strength ceramic filter membrane
CN103693997B (en) A kind of structure of porous ceramic surface ceramic of compact coating and preparation method
CN100462333C (en) A kind of preparation method of SiC/Si tubular composite ceramics
CN103641510B (en) Add the method that PMMA pore-forming material prepares O-Sialon porous ceramics
CN104529507A (en) Porous silicon nitride/silicon carbide composite ceramic material and preparation method thereof
CN102765940B (en) Normal pressure solid phase sintering microporous silicon carbide ceramic and preparation method thereof
CN103232228B (en) Preparation method of porous aluminum oxide composite ceramic
CN110746192A (en) High-thermal-conductivity pure porous silicon carbide material and preparation method and application thereof
CN113929962A (en) A kind of high temperature resistant composite coating on aerogel surface and preparation method thereof
CN107759251A (en) A kind of preparation method of porous ceramic surface high tenacity ceramic coating
CN107778006A (en) High temperature resistant SiC zirconia ceramic aerogel heat-proof composite materials and its preparation method and application
CN108484210A (en) A kind of carborundum porous ceramics preparation method that porosity is high
CN102249652B (en) Fiber composite material with microwave absorbing function and preparation method thereof
CN104844250B (en) A kind of high temperature resistant porous interlayer electromagnetic wave transparent material and preparation method thereof
CN100567215C (en) A kind of preparation method of beryllium oxide ceramic material with high thermal conductivity and high flexural strength

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Open date: 20081217