[go: up one dir, main page]

CN101323460B - Method for preparing high specific surface area three-dimensional mesoporous active aluminum oxide by hard template - Google Patents

Method for preparing high specific surface area three-dimensional mesoporous active aluminum oxide by hard template Download PDF

Info

Publication number
CN101323460B
CN101323460B CN200810116503XA CN200810116503A CN101323460B CN 101323460 B CN101323460 B CN 101323460B CN 200810116503X A CN200810116503X A CN 200810116503XA CN 200810116503 A CN200810116503 A CN 200810116503A CN 101323460 B CN101323460 B CN 101323460B
Authority
CN
China
Prior art keywords
dimensional
mesoporous
surface area
specific surface
dimensional mesoporous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN200810116503XA
Other languages
Chinese (zh)
Other versions
CN101323460A (en
Inventor
戴洪兴
张磊
邓积光
何洪
訾学红
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing University of Technology
Original Assignee
Beijing University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing University of Technology filed Critical Beijing University of Technology
Priority to CN200810116503XA priority Critical patent/CN101323460B/en
Publication of CN101323460A publication Critical patent/CN101323460A/en
Application granted granted Critical
Publication of CN101323460B publication Critical patent/CN101323460B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Silicates, Zeolites, And Molecular Sieves (AREA)

Abstract

The invention relates to a method for utilizing a hard template to prepare three-dimensional mesoporous active aluminium oxide with high specific surface area, belonging to the technical field of the preparation of solid mesoporous material. The existing mesoporous active aluminium oxide has the problems of undeveloped pore canal structure and small specific surface area, etc.; the method provided by the invention adopts tetraethoxysilane as a raw material and uses triblock copolymer (EO106PO70EO106) and hexadecyl trimethyl ammonium bromidec as a soft-template agent; three-dimensional mesoporous SBA-16 with different shapes is synthesized by hydro-thermal reaction; then the three-dimensional mesoporous SBA-16 is used as the hard template and sucrose is used as a carbon source to prepare the three-dimensional mesoporous carbon; finally, the three-dimensional mesoporous carbon is used as the hard template, aluminium nitrate is used as an aluminium source, absolute ethyl alcohol is used as a solvent, the three-dimensional mesoporous active aluminium oxide with high specific surface area is synthesized by the processes of a plurality of times of dipping and ignition in the radiation of ultrasonic wave. The method of the invention has low cost and simple and convenient operation, and the prepared three-dimensional mesoporous active aluminium oxide has the advantages of narrow pore size distribution and large specific surface area, etc.

Description

一种利用硬模板制备高比表面积三维介孔活性氧化铝的方法 A method for preparing three-dimensional mesoporous activated alumina with high specific surface area using hard template

技术领域technical field

本发明属于固体介孔材料制备技术领域,具体涉及一种以三维介孔碳为硬模板制备高比表面积三维介孔活性氧化铝的方法。The invention belongs to the technical field of preparation of solid mesoporous materials, and in particular relates to a method for preparing three-dimensional mesoporous activated alumina with high specific surface area by using three-dimensional mesoporous carbon as a hard template.

发明背景Background of the invention

活性氧化铝广泛用作催化剂、载体和吸附剂等,控制其比表面积、孔径大小及其分布极为重要。近年来,随着纳米制备技术的建立,使得多孔固体材料的可控合成变为可能。介孔活性氧化铝具有高比表面积、发达孔道结构等优点,有利于活性组分的分散及反应物分子的吸附与扩散,但是在高温条件下介孔活性氧化铝的大部分孔结构遭到破坏,导致比表面积和活性组分分散度大幅度下降,从而大大地影响了其物化性质。因此,热稳定性是衡量介孔活性氧化铝是否适于作催化剂或载体的一个重要指标。活性氧化铝(即γ-Al2O3)是氧化铝的众多晶型中的一种,通常是利用铝前驱体于400℃至600℃灼烧而获得的。在过去的十年里,国内外学者研究了以非离子表面活性剂(Bagshaw S A,et al.,Angew.Chem.Int.Ed.,1996,35:1102;Gonzá

Figure S200810116503XD00011
V,et al.,Micropor.Mesopor.Mater.,2001,44-45:203;YangP,et al.,Chem.Mater.,1999,11:2813)、阴离子表面活性剂(Yada M,et al.,Chem.Commun.,1996:769;Vaudry F,et al.,Chem.Mater.,1996,8:1451;Valange S,et al.,Micropor.Mesopor.Mater.,2000,35-36:597)和阳离子表面活性剂(Cabrera S,et al.,Adv.Mater.,1999,11(5):379;Deng W,et al.,Adv.Funct.Mater.,2003,13:61)为模板剂合成介孔氧化铝的方法,但是他们所制得的大多数介孔氧化铝均为无定形(即非晶态)粉末,热稳定性很差,从而大大地限制了其在催化反应中的应用。直至最近,人们才以胺、聚乙二醇或嵌段共聚物为模板剂成功地合成出具有一定结晶度的介孔γ-Al2O3(Hicks R W,et al.,Chem.Mater.,2003,15:78;Zhang Z,et al.,J.Am.Chem.Soc.,2002,124:1592;Bossière C,etal.,Chem.Mater.,2006,18:5238)。Liu等采用“纳米复制”法合成出具有规整孔道结构的γ-Al2O3晶体(Liu Q,et al.,Chem.Mater.,2006,18:5153),即先以SBA-15为模板制得介孔碳(CMK-3),再以CMK-3为模板制得介孔活性氧化铝。然而,该方法所使用的硬模板(介孔硅和介孔碳)均为二维结构且比表面积较低(小于1000m2/g),使得所得介孔活性氧化铝的孔道呈二维结构且比表面积较低(小于400m2/g),限制了其在吸附与催化中的应用。Activated alumina is widely used as a catalyst, carrier and adsorbent, etc., and it is extremely important to control its specific surface area, pore size and distribution. In recent years, with the establishment of nanofabrication technology, the controllable synthesis of porous solid materials has become possible. Mesoporous activated alumina has the advantages of high specific surface area and developed pore structure, which is beneficial to the dispersion of active components and the adsorption and diffusion of reactant molecules. However, most of the pore structure of mesoporous activated alumina is destroyed under high temperature conditions. , resulting in a significant decrease in the specific surface area and dispersion of the active components, thus greatly affecting its physicochemical properties. Therefore, thermal stability is an important indicator to measure whether mesoporous activated alumina is suitable as a catalyst or carrier. Activated alumina (ie, γ-Al 2 O 3 ) is one of many crystal forms of alumina, and is usually obtained by burning an aluminum precursor at 400°C to 600°C. In the past ten years, scholars at home and abroad have studied nonionic surfactants (Bagshaw S A, et al., Angew.Chem.Int.Ed., 1996,35:1102; Gonzá
Figure S200810116503XD00011
V, et al., Micropor.Mesopor.Mater., 2001,44-45:203; YangP, et al., Chem.Mater., 1999,11:2813), anionic surfactant (Yada M, et al. , Chem.Commun., 1996: 769; Vaudry F, et al., Chem. Mater., 1996, 8: 1451; Valange S, et al., Micropor. Mesopor. Mater., 2000, 35-36: 597) And cationic surfactant (Cabrera S, et al., Adv. Mater., 1999, 11 (5): 379; Deng W, et al., Adv. Funct. Mater., 2003, 13: 61) as template methods for synthesizing mesoporous alumina, but most of the mesoporous alumina they produced are amorphous (that is, non-crystalline) powders with poor thermal stability, which greatly limits their application in catalytic reactions . Until recently, people have successfully synthesized mesoporous γ-Al 2 O 3 with certain crystallinity using amine, polyethylene glycol or block copolymer as template (Hicks R W, et al., Chem. Mater., 2003, 15: 78; Zhang Z, et al., J. Am. Chem. Soc., 2002, 124: 1592; Bossière C, et al., Chem. Mater., 2006, 18: 5238). Liu et al. synthesized γ-Al 2 O 3 crystals with regular pore structure by the "nano-replication" method (Liu Q, et al., Chem. Mater., 2006, 18: 5153), that is, SBA-15 was used as a template first Prepare mesoporous carbon (CMK-3), and then use CMK-3 as a template to prepare mesoporous activated alumina. However, the hard templates (mesoporous silicon and mesoporous carbon) used in this method are two-dimensional structure and low specific surface area (less than 1000m 2 /g), so that the pores of the obtained mesoporous activated alumina are two-dimensional structure and The specific surface area is low (less than 400m 2 /g), which limits its application in adsorption and catalysis.

迄今为止,国内外还没有关于利用三维介孔硅模板SBA-16和三维介孔碳为模板合成高比表面积的三维介孔活性氧化铝的文献和专利。So far, there are no literatures and patents about the synthesis of three-dimensional mesoporous activated alumina with high specific surface area using three-dimensional mesoporous silicon template SBA-16 and three-dimensional mesoporous carbon as templates.

发明内容Contents of the invention

本发明的目的在于解决现有技术中的问题,而提供一种孔道结构发达,比表面积高的三维介孔活性氧化铝的合成方法。The purpose of the present invention is to solve the problems in the prior art, and provide a method for synthesizing three-dimensional mesoporous activated alumina with developed pore structure and high specific surface area.

本发明所提供的方法是以高比表面积的三维介孔SBA-16为硬模板合成高比表面积和发达孔结构的三维介孔碳,再以三维介孔碳为硬模板合成高比表面积三维介孔活性氧化铝,具体步骤如下:The method provided by the present invention uses three-dimensional mesoporous SBA-16 with high specific surface area as a hard template to synthesize three-dimensional mesoporous carbon with high specific surface area and developed pore structure, and then uses three-dimensional mesoporous carbon as a hard template to synthesize three-dimensional mesoporous carbon with high specific surface area. Porous activated alumina, the specific steps are as follows:

1)以正硅酸乙酯为原料,三嵌段共聚物聚乙二醇-聚丙二醇-聚乙二醇(EO106PO70EO106)和十六烷基三甲基溴化铵为软模板剂,通过水热反应合成三维介孔SBA-16(见文献“Mesa M,et al.,Solid State Sci.,2005,7:990”);1) Using tetraethyl orthosilicate as raw material, triblock copolymer polyethylene glycol-polypropylene glycol-polyethylene glycol (EO 106 PO 70 EO 106 ) and cetyltrimethylammonium bromide as soft template agent, synthesize three-dimensional mesoporous SBA-16 by hydrothermal reaction (see literature "Mesa M, et al., Solid State Sci., 2005, 7:990");

2)以步骤1)中制备的三维介孔SBA-16为硬模板,蔗糖为碳源,制备三维介孔碳(见专利CN101117222);2) Using the three-dimensional mesoporous SBA-16 prepared in step 1) as a hard template and sucrose as a carbon source to prepare three-dimensional mesoporous carbon (see patent CN101117222);

3)将三维介孔碳黑色粉末在搅拌条件下分散于Al(NO3)3的乙醇溶液中,其中,介孔碳粉末与Al(NO3)3的摩尔比为1∶0.24,超声波分散2小时使硝酸铝分子充分进入三维介孔碳的孔道内后,加热使乙醇完全蒸发,将所得固体在氮气气氛中于300℃灼烧2小时;3) Disperse the three-dimensional mesoporous carbon black powder in the ethanol solution of Al(NO 3 ) 3 under stirring conditions, wherein the molar ratio of mesoporous carbon powder to Al(NO 3 ) 3 is 1:0.24, and ultrasonically disperse After 2 hours to make the aluminum nitrate molecules fully enter the pores of the three-dimensional mesoporous carbon, heat to completely evaporate the ethanol, and burn the obtained solid at 300°C for 2 hours in a nitrogen atmosphere;

4)重复步进行骤3)中的分散和灼烧过程2-3次后,将所得固体粉末经无水乙醇洗涤,再在空气气氛中于550℃灼烧2小时,得到高比表面积三维介孔活性氧化铝。4) After repeating the dispersion and burning process in step 3) for 2-3 times, the obtained solid powder was washed with absolute ethanol, and then burned at 550°C for 2 hours in an air atmosphere to obtain a three-dimensional medium with a high specific surface area. Porous activated alumina.

与现有技术相比较,本发明具有以下有益效果:Compared with the prior art, the present invention has the following beneficial effects:

本发明所提供的方法成本低,操作简便,目标产物孔径分布窄(孔容为0.92-0.99cm3/g,平均孔径为7.0-7.3nm),比表面积大(504-564m2/g),并可通过调变介孔碳的形貌和介孔结构等实现对氧化铝粒子形貌、孔结构和比表面积的控制。The method provided by the present invention is low in cost, easy to operate, narrow in target product pore size distribution (pore volume is 0.92-0.99cm 3 /g, average pore size is 7.0-7.3nm), and specific surface area (504-564m 2 /g), The morphology, pore structure and specific surface area of alumina particles can be controlled by adjusting the morphology and mesoporous structure of mesoporous carbon.

附图说明Description of drawings

图1A、1B、1C分别为三维介孔SBA-16的小角度XRD谱图、N2吸附-脱附等温线和孔径分布曲线,其中,曲线(a)对应实施例1制备的多面体状三维有序介孔SBA-16,曲线(b)对应实施例2制备的球状三维介孔SBA-16;图1D为实施例1制备的多面体状三维有序介孔SBA-16的SEM照片;图1E为实施例2制备的球状三维介孔SBA-16的SEM照片;图1F为实施例1制备的多面体状三维有序介孔SBA-16的TEM照片;图1G为实施例2制备的球状三维介孔SBA-16的TEM照片。Fig. 1A, 1B, 1C are respectively the small-angle XRD pattern of three-dimensional mesoporous SBA-16, N Adsorption-desorption isotherm and pore size distribution curve, wherein, curve (a) corresponds to the polyhedral three-dimensional organic matter prepared in Example 1 Ordered mesoporous SBA-16, curve (b) corresponds to the spherical three-dimensional mesoporous SBA-16 prepared in Example 2; Figure 1D is a SEM photo of the polyhedral three-dimensional ordered mesoporous SBA-16 prepared in Example 1; Figure 1E is The SEM photograph of the spherical three-dimensional mesoporous SBA-16 prepared in Example 2; Figure 1F is the TEM photograph of the polyhedral three-dimensional ordered mesoporous SBA-16 prepared in Example 1; Figure 1G is the spherical three-dimensional mesoporous prepared in Example 2 TEM photo of SBA-16.

图2A、2B、2C分别为三维介孔碳的小角度XRD谱图、N2吸附-脱附等温线和孔径分布曲线,其中,曲线(a)对应实施例1制备的三维有序介孔碳,曲线(b)对应实施例2制备的三维蠕虫孔状介孔碳;图2D为实施例1制备的三维有序介孔碳的SEM照片;图2E为实施例2制备的三维蠕虫孔状介孔碳的SEM照片;图2F为实施例1制备的三维有序介孔碳的TEM照片;图2G为实施例1制备的三维蠕虫孔状介孔碳的TEM照片。Figures 2A, 2B, and 2C are the small-angle XRD spectra, N2 adsorption-desorption isotherms, and pore size distribution curves of three-dimensional mesoporous carbon, respectively, wherein curve (a) corresponds to the three-dimensional ordered mesoporous carbon prepared in Example 1 , curve (b) corresponds to the three-dimensional worm-like mesoporous carbon prepared in Example 2; Figure 2D is the SEM photo of the three-dimensional ordered mesoporous carbon prepared in Example 1; Figure 2E is the three-dimensional worm-like mesoporous carbon prepared in Example 2 SEM photo of porous carbon; FIG. 2F is a TEM photo of the three-dimensional ordered mesoporous carbon prepared in Example 1; FIG. 2G is a TEM photo of the three-dimensional wormhole-like mesoporous carbon prepared in Example 1.

图3A、3B、3C分别为蠕虫孔状三维介孔活性氧化铝的小角度XRD谱图、广角度XRD谱图和孔径分布曲线,其中,曲线(a)对应实施例1制备的蠕虫孔状三维介孔活性氧化铝,曲线(b)对应实施例2制备的蠕虫孔状三维介孔活性氧化铝;图3D为实施例1制备的蠕虫孔状三维介孔活性氧化铝的TEM照片,插图为SAED图案;图3E为为实施例2制备的蠕虫孔状三维介孔活性氧化铝的TEM照片,插图为SAED图案。Figures 3A, 3B, and 3C are the small-angle XRD spectrum, wide-angle XRD spectrum, and pore size distribution curves of wormhole-like three-dimensional mesoporous activated alumina, respectively, where curve (a) corresponds to the wormhole-like three-dimensional mesoporous activated alumina prepared in Example 1. Mesoporous activated alumina, curve (b) corresponds to the wormhole-shaped three-dimensional mesoporous activated alumina prepared in Example 2; Figure 3D is a TEM photo of the wormhole-shaped three-dimensional mesoporous activated alumina prepared in Example 1, the illustration is SAED Pattern; Figure 3E is a TEM photo of the wormhole-like three-dimensional mesoporous activated alumina prepared in Example 2, and the inset is the SAED pattern.

以下结合附图和具体实施方式对本发明作进一步说明。The present invention will be further described below in conjunction with the accompanying drawings and specific embodiments.

具体实施方式Detailed ways

下述实施例中参照文献“Mesa M,et al.,Solid State Sci.,2005,7:990”中的方法合成三维介孔SAB-16,具体步骤如下:In the following examples, the three-dimensional mesoporous SAB-16 is synthesized with reference to the method in the literature "Mesa M, et al., Solid State Sci., 2005, 7:990", and the specific steps are as follows:

(a)在室温下,向盐酸溶液中加入三嵌段共聚物EO106PO70EO106和十六烷基三甲基溴化铵后,在强烈搅拌下,加入正硅酸乙酯;(a) At room temperature, after adding the triblock copolymer EO 106 PO 70 EO 106 and cetyltrimethylammonium bromide to the hydrochloric acid solution, under vigorous stirring, add ethyl orthosilicate;

(b)将步骤(a)中所得的混合物转入自压釜中并于95℃恒温水热处理5天,经过滤、去离子水洗涤后于60℃干燥12小时;(b) transfer the mixture obtained in the step (a) into an autoclave and conduct hydrothermal treatment at a constant temperature of 95°C for 5 days, filter and wash with deionized water, and then dry at 60°C for 12 hours;

(c)将步骤(b)中所得的固体粉末置于马弗炉中,以1℃/min的速率升温至550℃并在该温度下灼烧3小时,得到三维介孔SBA-16。(c) Put the solid powder obtained in step (b) in a muffle furnace, raise the temperature to 550° C. at a rate of 1° C./min and burn at this temperature for 3 hours to obtain three-dimensional mesoporous SBA-16.

参照专利CN101117222中公开的方法合成三维介孔碳,具体步骤如下:Referring to the method disclosed in the patent CN101117222 to synthesize three-dimensional mesoporous carbon, the specific steps are as follows:

(a)将三维介孔SBA-16加入到蔗糖、去离子水和质量分数为98%的浓硫酸组成的混合液中,磁力搅拌使混合液中的水分蒸发完毕后,将其依次放入80℃和160℃的烘箱中分别恒温处理6小时;(a) Add the three-dimensional mesoporous SBA-16 into the mixed liquid composed of sucrose, deionized water and concentrated sulfuric acid with a mass fraction of 98%, and after the water in the mixed liquid is evaporated by magnetic stirring, put it into 80 ℃ and 160℃ oven for 6 hours respectively;

(b)重复进行步骤(a)2-3次;(b) repeat step (a) 2-3 times;

(c)将步骤(b)中所得的固体粉末在体积流量为100mL/min的氮气气流中以1℃/min的速率升温至900℃并恒温灼烧2小时;(c) heating the solid powder obtained in step (b) to 900° C. at a rate of 1° C./min in a nitrogen flow with a volume flow rate of 100 mL/min and burning at a constant temperature for 2 hours;

(d)用质量分数为10%的HF溶液洗涤步骤(c)中所得的固体粉末除去硅模板SBA-16,再经干燥后得到三维介孔碳。(d) washing the solid powder obtained in step (c) with 10% HF solution to remove the silicon template SBA-16, and drying to obtain three-dimensional mesoporous carbon.

实施例1Example 1

1)合成多面体状三维有序介孔SBA-16:1) Synthesis of polyhedral three-dimensional ordered mesoporous SBA-16:

(a)在室温下,向0.4mol/L的盐酸溶液中加入EO106PO70EO106和十六烷基三甲基溴化铵后,在强烈搅拌下,加入正硅酸乙酯,其中,正硅酸乙酯、盐酸、EO106PO70EO106和十六烷基三甲基溴化铵的摩尔比为1∶3.5∶0.005∶0.0038;(a) At room temperature, after adding EO 106 PO 70 EO 106 and cetyltrimethylammonium bromide to the hydrochloric acid solution of 0.4mol/L, under vigorous stirring, add tetraethyl orthosilicate, wherein, The molar ratio of ethyl orthosilicate, hydrochloric acid, EO 106 PO 70 EO 106 and cetyltrimethylammonium bromide is 1: 3.5: 0.005: 0.0038;

(b)将步骤(a)中所得的混合物转移至自压釜中并于95℃恒温水热处理5天,经过滤、去离子水洗涤后于60℃干燥12小时;(b) Transfer the mixture obtained in step (a) to an autoclave and heat-treat it at a constant temperature of 95°C for 5 days, filter and wash with deionized water, and then dry it at 60°C for 12 hours;

(c)将步骤(b)中所得的固体粉末置于马弗炉中,以1℃/min的速率升温至550℃并在该温度下灼烧3小时,得到多面体状三维有序介孔SBA-16,其比表面积、平均孔径和孔容见表1;(c) Put the solid powder obtained in step (b) in a muffle furnace, heat up to 550°C at a rate of 1°C/min and burn at this temperature for 3 hours to obtain a polyhedral three-dimensional ordered mesoporous SBA -16, its specific surface area, average pore diameter and pore volume are shown in Table 1;

2)合成三维有序介孔碳:2) Synthesis of three-dimensional ordered mesoporous carbon:

(a)将多面体状三维有序介孔SBA-16加入到蔗糖、去离子水和质量分数为98%的浓硫酸组成的混合液中,其中,三维介孔SBA-16、蔗糖、去离子水和质量分数为98%的浓硫酸的摩尔比为1∶0.219∶20∶0.0875,不断地搅拌,使混合液中的水分蒸发完毕后,将其依次放入80℃和160℃的烘箱中分别恒温处理6小时;(a) Add polyhedral three-dimensional ordered mesoporous SBA-16 to a mixture of sucrose, deionized water, and concentrated sulfuric acid with a mass fraction of 98%, wherein the three-dimensional mesoporous SBA-16, sucrose, and deionized water The molar ratio of concentrated sulfuric acid with a mass fraction of 98% is 1: 0.219: 20: 0.0875, and it is stirred continuously to evaporate the water in the mixed liquid, and then put it into ovens at 80°C and 160°C in turn to maintain the temperature respectively. 6 hours of processing;

(b)重复进行步骤(a)3次;(b) repeat step (a) 3 times;

(c)将步骤(b)中所得的固体粉末在体积流量为100mL/min的氮气气流中以1℃/min的速率升温至900℃并恒温灼烧2小时;(c) heating the solid powder obtained in step (b) to 900° C. at a rate of 1° C./min in a nitrogen flow with a volume flow rate of 100 mL/min and burning at a constant temperature for 2 hours;

(d)用质量分数为10%的HF溶液洗涤步骤(c)中所得的固体粉末除去硅模板SBA-16,再经干燥后得到三维有序介孔碳,其比表面积、平均孔径和孔容见表1;(d) washing the solid powder obtained in step (c) with a mass fraction of 10% HF solution to remove the silicon template SBA-16, and then drying to obtain a three-dimensional ordered mesoporous carbon, its specific surface area, average pore diameter and pore volume See Table 1;

3)合成蠕虫孔状三维介孔活性氧化铝:在搅拌条件下,将0.4g三维有序介孔碳粉末分散于16mL Al(NO3)3的无水乙醇溶液(0.5mol/L)中,超声波分散2小时使Al(NO3)3分子充分进入三维有序介孔碳的孔道内,40℃加热使乙醇完全蒸发后,将所得固体在体积流量为100mL/min的氮气气流中以1℃/min的速率升温至300℃并灼烧2小时;3) Synthesis of wormhole-like three-dimensional mesoporous activated alumina: Disperse 0.4g three-dimensional ordered mesoporous carbon powder in 16mL Al(NO 3 ) 3 absolute ethanol solution (0.5mol/L) under stirring conditions , ultrasonically dispersed for 2 hours to make Al(NO 3 ) 3 molecules fully enter the pores of the three-dimensional ordered mesoporous carbon, and heated at 40°C to completely evaporate the ethanol, then the obtained solid was dissolved in a nitrogen gas stream with a volume flow rate of 100mL/min at 1 Heat up to 300°C at a rate of ℃/min and burn for 2 hours;

4)重复步骤3)中的浸渍和灼烧过程3次后,将所得固体用无水乙醇洗涤、干燥,并在马弗炉中以1℃/min的速率升温至550℃并恒温灼烧2小时,得到蠕虫孔状三维介孔活性氧化铝,其比表面积、平均孔径和孔容见表1。4) After repeating the impregnation and burning process in step 3) for 3 times, the obtained solid was washed with absolute ethanol, dried, and heated to 550°C in a muffle furnace at a rate of 1°C/min and burned at a constant temperature for 2 hours, the wormhole-like three-dimensional mesoporous activated alumina was obtained, and its specific surface area, average pore diameter and pore volume are shown in Table 1.

实施例2Example 2

1)合成球状三维介孔SBA-16:1) Synthesis of spherical three-dimensional mesoporous SBA-16:

(a)在室温下,向0.8mol/L的盐酸溶液中加入EO106PO70EO106和十六烷基三甲基溴化铵后,在强烈搅拌下,加入正硅酸乙酯,其中,正硅酸乙酯、盐酸、EO106PO70EO106和十六烷基三甲基溴化铵的摩尔比为1∶6.9∶0.002∶0.0038;(a) At room temperature, after adding EO 106 PO 70 EO 106 and cetyltrimethylammonium bromide to the hydrochloric acid solution of 0.8mol/L, under vigorous stirring, add tetraethyl orthosilicate, wherein, The molar ratio of ethyl orthosilicate, hydrochloric acid, EO 106 PO 70 EO 106 and cetyltrimethylammonium bromide is 1: 6.9: 0.002: 0.0038;

(b)同实施例1中的步骤1)-(a);(b) with step 1)-(a) in embodiment 1;

(c)将步骤(b)中所得的固体粉末置于马弗炉中,以1℃/min的速率升温至550℃并在该温度下灼烧3小时,得到球状三维介孔SBA-16,其比表面积、平均孔径和孔容见表1;(c) Place the solid powder obtained in step (b) in a muffle furnace, heat up to 550°C at a rate of 1°C/min and burn at this temperature for 3 hours to obtain spherical three-dimensional mesoporous SBA-16, Its specific surface area, average pore diameter and pore volume are shown in Table 1;

2)合成三维蠕虫孔状介孔碳:2) Synthesis of three-dimensional worm-like mesoporous carbon:

(a)同实施例1中的步骤2)-(a);(a) with step 2)-(a) in embodiment 1;

(b)重复进行步骤(a)3次;(b) repeat step (a) 3 times;

(c)同实施例1中的步骤2)-(c);(c) with step 2)-(c) in embodiment 1;

(d)用质量分数为10%的HF溶液洗涤步骤(c)中所得的固体粉末除去硅模板SBA-16,再经干燥后得到三维蠕虫孔状介孔碳,其比表面积、平均孔径和孔容见表1;(d) washing the solid powder obtained in step (c) with a mass fraction of 10% HF solution to remove the silicon template SBA-16, and then drying to obtain a three-dimensional worm-like mesoporous carbon, its specific surface area, average pore diameter and pore size See Table 1;

3)合成蠕虫孔三维状介孔活性氧化铝:在搅拌条件下,将0.4g三维蠕虫孔状介孔碳粉末分散于16mL Al(NO3)3的无水乙醇溶液(0.5mol/L)中,超声波分散2小时使Al(NO3)3分子充分进入三维有序介孔碳的孔道内,40℃加热使乙醇完全蒸发后,将所得固体在体积流量为100mL/min的氮气气流中以1℃/min的速率升温至300℃并灼烧2小时;3) Synthesis of wormhole three-dimensional mesoporous activated alumina: Disperse 0.4g three-dimensional wormhole mesoporous carbon powder in 16mL Al(NO 3 ) 3 absolute ethanol solution (0.5mol/L) under stirring conditions In this method, ultrasonic dispersion was performed for 2 hours to allow Al(NO 3 ) 3 molecules to fully enter the pores of the three-dimensional ordered mesoporous carbon, and after heating at 40°C to completely evaporate ethanol, the obtained solid was dissolved in a nitrogen gas stream with a volume flow rate of 100mL/min. Heat up to 300°C at a rate of 1°C/min and burn for 2 hours;

4)重复步骤3)中的浸渍和灼烧过程3次后,将所得固体用无水乙醇洗涤、干燥,并在马弗炉中以1℃/min的速率升温至550℃并恒温灼烧2小时,得到高比表面积蠕虫孔状三维介孔活性氧化铝,其比表面积、平均孔径和孔容见表1。4) After repeating the impregnation and burning process in step 3) for 3 times, the obtained solid was washed with absolute ethanol, dried, and heated to 550°C in a muffle furnace at a rate of 1°C/min and burned at a constant temperature for 2 Hours, high specific surface area wormhole-like three-dimensional mesoporous activated alumina was obtained, and its specific surface area, average pore diameter and pore volume are shown in Table 1.

将所得产物用X射线衍射仪(XRD)、N2吸附-脱附、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、选择区域电子衍射(SAED)等技术进行表征,结果如图1、2和3所示。The resulting product was characterized by techniques such as X-ray diffractometer (XRD), N2 adsorption-desorption, scanning electron microscope (SEM), transmission electron microscope (TEM), selected area electron diffraction (SAED), and the results are shown in Figure 1, 2 and 3 are shown.

  样品samples   平均孔径(nm)Average pore size (nm)   比表面积(m<sup>2</sup>/g)Specific surface area (m<sup>2</sup>/g)   孔容(cm<sup>3</sup>/g)Pore volume (cm<sup>3</sup>/g)   多面体状三维有序介孔SBA-16Polyhedral three-dimensional ordered mesoporous SBA-16   3.63.6   10111011   1.001.00   球状三维介孔SBA-16Spherical three-dimensional mesoporous SBA-16   3.53.5   809809   0.670.67   三维有序介孔碳Three-dimensional ordered mesoporous carbon   3.13.1   16001600   1.421.42   三维蠕虫孔状介孔碳Three-dimensional wormhole-like mesoporous carbon   3.53.5   966966   0.910.91   蠕虫孔状三维介孔活性氧化铝Wormhole-like three-dimensional mesoporous activated alumina   7.07.0   564564   0.990.99

  样品samples   平均孔径(nm)Average pore size (nm)   比表面积(m<sup>2</sup>/g)Specific surface area (m<sup>2</sup>/g)   孔容(cm<sup>3</sup>/g)Pore volume (cm<sup>3</sup>/g)   蠕虫孔状三维介孔活性氧化铝Wormhole-like three-dimensional mesoporous activated alumina   7.37.3   504504   0.920.92

表1、本发明所制备的三维介孔SBA-16、三维介孔碳和三维介孔活性氧化铝的比表面积、平均孔径和孔容。Table 1. Specific surface area, average pore diameter and pore volume of three-dimensional mesoporous SBA-16, three-dimensional mesoporous carbon and three-dimensional mesoporous activated alumina prepared in the present invention.

Claims (1)

1.一种利用硬模板制备高比表面积三维介孔活性氧化铝的方法,其特征在于,包括以下步骤:1. A method utilizing hard template to prepare three-dimensional mesoporous activated alumina with high specific surface area, is characterized in that, comprises the following steps: 1)以正硅酸乙酯为原料,三嵌段共聚物聚乙二醇-聚丙二醇-聚乙二醇EO106PO70EO106和十六烷基三甲基溴化铵为软模板剂,通过水热反应合成三维介孔SBA-16;1) Using tetraethyl orthosilicate as raw material, triblock copolymer polyethylene glycol-polypropylene glycol-polyethylene glycol EO 106 PO 70 EO 106 and cetyltrimethylammonium bromide as soft templating agent, Synthesis of three-dimensional mesoporous SBA-16 by hydrothermal reaction; 2)以步骤1)中制备的三维介孔SBA-16为硬模板,蔗糖为碳源,制备三维介孔碳;2) using the three-dimensional mesoporous SBA-16 prepared in step 1) as a hard template and sucrose as a carbon source to prepare three-dimensional mesoporous carbon; 3)将步骤2)中制备的三维介孔碳粉末在搅拌条件下分散于Al(NO3)3的乙醇溶液中,其中,介孔碳粉末与Al(NO3)3的摩尔比为1∶0.24,超声波分散2小时后,加热使乙醇完全蒸发,将所得固体在氮气气氛中于300℃灼烧2小时;3) Disperse the three-dimensional mesoporous carbon powder prepared in step 2) in an ethanol solution of Al(NO 3 ) 3 under stirring conditions, wherein the molar ratio of the mesoporous carbon powder to Al(NO 3 ) 3 is 1:0.24, after ultrasonic dispersion for 2 hours, heat to evaporate ethanol completely, and burn the obtained solid at 300°C for 2 hours in a nitrogen atmosphere; 4)重复进行步骤3)2-3次后,将所得固体粉末用无水乙醇洗涤,再在空气气氛中于550℃灼烧2小时,得到高比表面积三维介孔活性氧化铝。4) After repeating step 3) 2-3 times, the obtained solid powder was washed with absolute ethanol, and then burned at 550° C. for 2 hours in an air atmosphere to obtain a three-dimensional mesoporous activated alumina with high specific surface area.
CN200810116503XA 2008-07-11 2008-07-11 Method for preparing high specific surface area three-dimensional mesoporous active aluminum oxide by hard template Expired - Fee Related CN101323460B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN200810116503XA CN101323460B (en) 2008-07-11 2008-07-11 Method for preparing high specific surface area three-dimensional mesoporous active aluminum oxide by hard template

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN200810116503XA CN101323460B (en) 2008-07-11 2008-07-11 Method for preparing high specific surface area three-dimensional mesoporous active aluminum oxide by hard template

Publications (2)

Publication Number Publication Date
CN101323460A CN101323460A (en) 2008-12-17
CN101323460B true CN101323460B (en) 2010-08-18

Family

ID=40187191

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200810116503XA Expired - Fee Related CN101323460B (en) 2008-07-11 2008-07-11 Method for preparing high specific surface area three-dimensional mesoporous active aluminum oxide by hard template

Country Status (1)

Country Link
CN (1) CN101323460B (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103638896A (en) * 2013-12-23 2014-03-19 重庆出入境检验检疫局检验检疫技术中心 Mesoporous nanometer aluminium oxide solid phase adsorbing agent and preparation method and application thereof
CN105621462B (en) * 2014-10-30 2017-05-17 中国石油化工股份有限公司 Method for preparing aluminium oxide material
CN104445296B (en) * 2014-11-25 2016-02-10 重庆文理学院 A kind of synthetic method of spherical MgO nano particle
CN104549156B (en) * 2015-01-28 2017-06-06 中南大学 The meso-porous carbon material and its application process of a kind of Supported alumina
CN108190906A (en) * 2018-01-23 2018-06-22 浙江睿升环保科技有限公司 A kind of method that ordered mesoporous material SBA-16 is prepared using attapulgite
CN115231597B (en) * 2022-07-08 2023-07-25 太原理工大学 Fly ash-based mesoporous silicon-aluminum composite oxide material and preparation method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5911966A (en) * 1997-07-14 1999-06-15 Basf Aktiengesellschaft High surface area alumina solid
CN1807246A (en) * 2005-04-13 2006-07-26 中国科学院大连化学物理研究所 Ordered mesopore alumina preparation method
CN101024503A (en) * 2007-02-08 2007-08-29 北京化工大学 Method for preparing ordered mesoporous aluminium oxide
CN101117222A (en) * 2007-07-13 2008-02-06 北京工业大学 A method for synthesizing high specific surface area mesoporous carbon molecular sieves using hard templates
CN101134586A (en) * 2007-07-20 2008-03-05 北京化工大学 A kind of preparation method of nano-alumina hollow sphere

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5911966A (en) * 1997-07-14 1999-06-15 Basf Aktiengesellschaft High surface area alumina solid
CN1807246A (en) * 2005-04-13 2006-07-26 中国科学院大连化学物理研究所 Ordered mesopore alumina preparation method
CN101024503A (en) * 2007-02-08 2007-08-29 北京化工大学 Method for preparing ordered mesoporous aluminium oxide
CN101117222A (en) * 2007-07-13 2008-02-06 北京工业大学 A method for synthesizing high specific surface area mesoporous carbon molecular sieves using hard templates
CN101134586A (en) * 2007-07-20 2008-03-05 北京化工大学 A kind of preparation method of nano-alumina hollow sphere

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Qian Liu et al.Preparation of ordered mesoporous crystalline aluminareplicatedby mesoporous carbon.Microporous and Mesoporous Materials116.2008,116461-468. *

Also Published As

Publication number Publication date
CN101323460A (en) 2008-12-17

Similar Documents

Publication Publication Date Title
CN101323460B (en) Method for preparing high specific surface area three-dimensional mesoporous active aluminum oxide by hard template
CN100575266C (en) A method for synthesizing ordered mesoporous manganese oxide or cobalt oxide using hard template
JP2008535756A (en) Mesoporous particles
CN106669756B (en) Nano-layered g-C3N4Preparation method of/Ag @ AgCl composite photocatalytic material
CN103663473B (en) Ordered meso-porous earth silicon material and preparation method thereof
CN105819422A (en) A kind of preparation method of nitrogen-doped hollow mesoporous carbon sphere
CN107899540A (en) Fe is prepared using sol-gal process3O4The method of 41 magnetic composites of@MCM
CN107128947A (en) A kind of preparation method of the middle zeolite molecular sieves of micro-diplopore ZSM 5
CN101559954B (en) Method for preparing mesoporous molecular sieve with high hydrothermal stability by using ionic liquid as template
CN103193630A (en) LNNU-1 serial nanometer MOF (Metal Organic Framework) type porous material and preparation method thereof
CN104909378A (en) Preparation method of monodisperse porous silicon dioxide microspheres
CN108675315A (en) A kind of preparation method of macropore-microporous molecular sieve catalyst ZSM-5
CN113501548A (en) Mesoporous metal oxide hollow material with high specific surface area and preparation method thereof
CN103274482A (en) Mesoporous Co3O4 material with high specific surface area and crystallized pore walls and its preparation method and application
CN101857235B (en) Method for preparing mesoporous silicon dioxide microspheres by using laurylamine as template
CN105153204B (en) Micro-diplopore metal-organic framework materials and preparation method in a kind of CuBTC types
CN104944411B (en) Method for preparing nano mesoporous carbon microspheres by adopting soft template
CN108373538A (en) Utilize the method for bimetal salt room temperature Fast back-projection algorithm multi-stage porous ZIF-90 materials
CN104402067B (en) A kind of method that directly high specific surface area and mesoporous metal-oxide is prepared in thermal decomposition
CN108355634B (en) Mesoporous TiO 22Method for preparing photocatalyst
CN106745039B (en) A kind of size adjustable and the nanometer Ti-Si zeolite molecular sieve and preparation method thereof with ultra-high yield
CN102583404A (en) Mesoporous silicon dioxide nanometer particle and preparation method
CN100419132C (en) Preparation method of tetragonal and hexagonal wormhole mesoporous single crystal cubic magnesium oxide particles
CN105366700B (en) A kind of synthetic method of high-ratio surface petal-shaped magnesium aluminate spinel nano sky ball
CN108311094A (en) A kind of method of Fast back-projection algorithm load type gold metal nano-particle

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20100818

Termination date: 20120711