CN101319958B - Quarter-wave plate fast axis orientation real-time measurement device and method - Google Patents
Quarter-wave plate fast axis orientation real-time measurement device and method Download PDFInfo
- Publication number
- CN101319958B CN101319958B CN2008100406147A CN200810040614A CN101319958B CN 101319958 B CN101319958 B CN 101319958B CN 2008100406147 A CN2008100406147 A CN 2008100406147A CN 200810040614 A CN200810040614 A CN 200810040614A CN 101319958 B CN101319958 B CN 101319958B
- Authority
- CN
- China
- Prior art keywords
- wave plate
- polarizer
- quarter
- photodetector
- array
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000005259 measurement Methods 0.000 title claims abstract description 26
- 238000000034 method Methods 0.000 title claims abstract description 15
- 230000010287 polarization Effects 0.000 claims abstract description 6
- 230000005540 biological transmission Effects 0.000 claims description 17
- 230000003287 optical effect Effects 0.000 claims description 12
- 238000006243 chemical reaction Methods 0.000 claims description 3
- 239000013078 crystal Substances 0.000 claims description 3
- 230000000694 effects Effects 0.000 claims description 3
- 239000000463 material Substances 0.000 claims description 3
- 230000003321 amplification Effects 0.000 claims 1
- 239000002131 composite material Substances 0.000 claims 1
- 238000003199 nucleic acid amplification method Methods 0.000 claims 1
- 230000010363 phase shift Effects 0.000 abstract description 5
- 238000000691 measurement method Methods 0.000 abstract description 2
- 238000010586 diagram Methods 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 3
- 230000008033 biological extinction Effects 0.000 description 2
- 229910021532 Calcite Inorganic materials 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
Images
Landscapes
- Investigating Or Analysing Materials By Optical Means (AREA)
Abstract
一种四分之一波片快轴方位实时测量装置和方法,该装置由准直光源、起偏器、标准四分之一波片、衍射分束元件、聚焦透镜、检偏器阵列、光电探测器阵列、放大电路和信号处理系统组成。测量方法是准直光源出射的平行光束经过起偏器、标准四分之一波片后形成圆偏振光,该圆偏振光经过待测四分之一波片后由衍射分束元件进行分光,多个强度相等的子光束由聚焦透镜聚焦在检偏器阵列上各自产生偏振干涉,形成依次具有一定移相量的干涉光强并由光电探测器阵列所接收,光电探测器阵列输出的电信号经过放大电路后由信号处理系统进行处理即可以实时获得待测四分之一波片的快轴方位角度。
A device and method for real-time measurement of the fast axis azimuth of a quarter wave plate, the device is composed of a collimated light source, a polarizer, a standard quarter wave plate, a diffraction beam splitter element, a focusing lens, an analyzer array, a photodetector array, an amplifier circuit and a signal processing system. The measurement method is that a parallel light beam emitted by the collimated light source passes through a polarizer and a standard quarter wave plate to form a circularly polarized light, the circularly polarized light passes through the quarter wave plate to be measured and is split by the diffraction beam splitter element, a plurality of sub-beams with equal intensity are focused on the analyzer array by a focusing lens, each of which generates polarization interference, forming interference light intensity with a certain phase shift amount in sequence and received by a photodetector array, the electrical signal output by the photodetector array passes through an amplifier circuit and is processed by a signal processing system, so that the fast axis azimuth angle of the quarter wave plate to be measured can be obtained in real time.
Description
技术领域technical field
本发明涉及偏振测量领域,特别是涉及一种四分之一波片快轴方位实时测量装置和方法。The invention relates to the field of polarization measurement, in particular to a device and method for real-time measurement of the fast axis orientation of a quarter-wave plate.
背景技术Background technique
四分之一波片是一种常用的偏振光学元件,在现代光学测量技术和偏振光应用技术等领域有着广泛的应用。快轴方位是四分之一波片的重要光学参数之一,通常情况下四分之一波片的快轴方位并未标明,在其使用过程中需要精确地测量四分之一波片的快轴方位并在此基础上进行调整。Quarter-wave plate is a commonly used polarizing optical element, which is widely used in modern optical measurement technology and polarized light application technology and other fields. The fast-axis orientation is one of the important optical parameters of the quarter-wave plate. Usually, the fast-axis orientation of the quarter-wave plate is not marked, and it is necessary to accurately measure the quarter-wave plate’s The orientation of the fast axis and make adjustments based on this.
在先技术[1](参见王伟,李国华,吴福全等.测量波片延迟量和快轴方位的新方法.中国激光,Vol.30,1121-1123,2003)描述了一种可以测量四分之一波片快轴方位的装置,该装置主要由光源、起偏器、检偏器和光电探测器组成。在测量过程中,匀速转动被测四分之一波片并对出射光强进行连续测量,获得出射光强随时间变化的曲线,利用变化曲线中第一个最大值出现的时间与被测四分之一波片的转动速度来计算出被测四分之一波片的快轴方位。由于需要连续转动被测四分之一波片,该装置无法实现快轴方位的实时测量,且需要能够连续稳定地旋转四分之一波片的精密旋转机构,同时光源的光强波动会改变出射光强随时间变化的曲线,而引入较大的测量误差。The prior art [1] (refer to Wang Wei, Li Guohua, Wu Fuquan, etc. A new method for measuring wave plate retardation and fast axis orientation. China Laser, Vol.30, 1121-1123, 2003) describes a method that can measure four One-third wave plate fast axis orientation device, the device is mainly composed of light source, polarizer, analyzer and photodetector. During the measurement process, rotate the measured quarter-wave plate at a constant speed and continuously measure the outgoing light intensity to obtain the curve of the outgoing light intensity changing with time. The rotation speed of the quarter-wave plate is used to calculate the fast-axis orientation of the quarter-wave plate under test. Since the measured quarter-wave plate needs to be rotated continuously, the device cannot realize real-time measurement of the fast axis orientation, and requires a precision rotating mechanism that can continuously and stably rotate the quarter-wave plate, while the light intensity fluctuation of the light source will change The curve of the emitted light intensity changing with time will introduce a large measurement error.
在先技术[2](参见Zhengping Wang,Qingbo Li,Qiao Tan,et al..Method ofmeasuring practical retardance and judging the fast or slow axis of a quarter-wave plate.Measurement,Vol.39,729-735,2006)描述了一种测量四分之一波片快轴方位的装置,该装置主要由光源、起偏器、反射棱镜、检偏器和光功率计组成。在快轴方位测量过程中,首先采用其它测量方法如消光法找到被测四分之一波片的某一主轴,将该主轴作为选定轴并使其与起偏器的透光轴成45°角。接着转动检偏器使其透光轴与起偏器的透光轴平行、垂直,在两种状态下光功率计获得两个光强信号。然后将被测四分之一波片转动90°,在检偏器的透光轴与起偏器的透光轴平行、垂直的两种状态下再得到两个光强信号。最后利用这四个光强信号计算出相位延迟量,通过判断相位延迟量的正负来确定选定轴是快轴还是慢轴。由于需要多次转动被测四分之一波片和检偏器,该装置无法实现快轴方位的实时测量,其测量精度受光强波动的影响而对光源稳定性要求很高,需要精密的旋转机构而使装置的结构复杂。Prior technology [2] (see Zhengping Wang, Qingbo Li, Qiao Tan, et al..Method of measuring practical retardance and judging the fast or slow axis of a quarter-wave plate. Measurement, Vol.39, 729-735, 2006 ) describes a device for measuring the orientation of the fast axis of a quarter-wave plate, which is mainly composed of a light source, a polarizer, a reflecting prism, an analyzer and an optical power meter. In the fast-axis azimuth measurement process, first use other measurement methods such as extinction method to find a certain main axis of the quarter-wave plate to be measured, take this main axis as the selected axis and make it 45° to the transmission axis of the polarizer ° angle. Then rotate the polarizer so that the light transmission axis is parallel and perpendicular to the light transmission axis of the polarizer, and the optical power meter obtains two light intensity signals in the two states. Then turn the quarter-wave plate to be tested by 90°, and obtain two light intensity signals under the two states that the light transmission axis of the analyzer is parallel to the light transmission axis of the polarizer, and they are vertical. Finally, the phase delay is calculated by using these four light intensity signals, and whether the selected axis is the fast axis or the slow axis is determined by judging the positive or negative of the phase delay. Due to the need to rotate the measured quarter-wave plate and polarizer multiple times, this device cannot achieve real-time measurement of the fast axis orientation, and its measurement accuracy is affected by light intensity fluctuations, which requires high stability of the light source and requires precise rotation The mechanism makes the structure of the device complex.
发明内容Contents of the invention
本发明的目的在于克服上述现有技术的不足,提供一种四分之一波片快轴方位实时测量装置和方法,该装置和方法应能实时测量四分之一波片的快轴方位,测量结果不受光源光强波动的影响,该测量装置具有结构简单、性能稳定和操作方便的特点。The purpose of the present invention is to overcome the above-mentioned deficiencies in the prior art, to provide a kind of real-time measuring device and method for the fast axis orientation of a quarter wave plate, the device and method should be able to measure the fast axis orientation of a quarter wave plate in real time, The measurement result is not affected by the light intensity fluctuation of the light source, and the measurement device has the characteristics of simple structure, stable performance and convenient operation.
本发明的技术解决方案:Technical solution of the present invention:
一种四分之一波片快轴方位实时测量装置,其特点在于该装置由准直光源,起偏器、标准四分之一波片、衍射分束元件、聚焦透镜、检偏器阵列、光电探测器阵列、放大电路和信号处理系统组成,其位置关系是:沿所述的准直光源的光束前进方向上,依次是所述的起偏器、标准四分之一波片、衍射分束元件、聚焦透镜、检偏器阵列、光电探测器阵列,在所述的标准四分之一波片和所述的衍射分束元件之间设置待测四分之一波片的插口,所述的光电探测器阵列探测的信号经所述的放大电路放大后输入所述的信号处理系统进行数据处理。A quarter-wave plate fast-axis orientation real-time measuring device is characterized in that the device consists of a collimated light source, a polarizer, a standard quarter-wave plate, a diffractive beam splitting element, a focusing lens, an analyzer array, It consists of a photodetector array, an amplifying circuit and a signal processing system, and its positional relationship is: along the forward direction of the light beam of the collimated light source, the polarizer, the standard quarter-wave plate, the diffraction beam element, focusing lens, analyzer array, photodetector array, the socket of the quarter wave plate to be measured is set between the standard quarter wave plate and the diffraction beam splitting element, so The signal detected by the photodetector array is amplified by the amplifying circuit and then input to the signal processing system for data processing.
所述的起偏器为偏振片、偏振棱镜或者偏振相位掩模。The polarizer is a polarizer, a polarizing prism or a polarizing phase mask.
所述的标准四分之一波片为晶体材料型四分之一波片、多元复合型四分之一波片、反射棱体型四分之一波片或双折射薄膜型四分之一波片,其相位延迟量等于或者非常接近于90°,其快轴与所述的起偏器的透光轴所成的角度为45°或者135°。The standard quarter-wave plate is a crystal material type quarter-wave plate, a multi-component compound type quarter-wave plate, a reflective prism type quarter-wave plate or a birefringent film type quarter-wave plate The plate, whose phase retardation is equal to or very close to 90°, and the angle formed by its fast axis and the light transmission axis of the polarizer is 45° or 135°.
所述的衍射分束元件为正交振幅光栅、正交相位光栅或者达曼光栅,利用衍射效应将一束入射光形成多个出射子光束,且至少有三个以上子光束的强度相等。The diffractive beam-splitting element is an orthogonal amplitude grating, an orthogonal phase grating or a Damman grating, which utilizes the diffraction effect to form a beam of incident light into multiple outgoing sub-beams, and at least three sub-beams have equal intensities.
所述的检偏器阵列为多个检偏器在一个平面内形成的组合体,所述的检偏器为偏振片或者偏振相位掩模。The array of polarizers is a combination of multiple analyzers formed in one plane, and the analyzers are polarizers or polarization phase masks.
所述的检偏器阵列由四个结构相同的第一检偏器、第二检偏器、第三检偏器、第四检偏器在同一个平面内按四象限排列组合形成,所述的第一检偏器、第二检偏器、第三检偏器、第四检偏器的透光轴与所述的起偏器的透光轴所成的角度分别为0°、45°、90°和135°。The polarizer array is formed by four first polarizers, second polarizers, third polarizers and fourth polarizers with the same structure arranged in four quadrants in the same plane. The angles formed by the light transmission axis of the first polarizer, the second polarizer, the third polarizer, and the fourth polarizer and the light transmission axis of the polarizer are 0°, 45° respectively , 90° and 135°.
所述光电探测器阵列为多个光电探测器形成的组合体,或者多元光电探测器,所述的光电探测器为光电二极管、光电三极管、光电倍增管或光电池。The photodetector array is a combination of multiple photodetectors, or multiple photodetectors, and the photodetectors are photodiodes, phototransistors, photomultiplier tubes or photocells.
所述的光电探测器阵列与所述的检偏器阵列的结构相对应,是由结构相同的在同一个平面内按四象限排列的第一光电探测器、第二光电探测器、第三光电探测器和第四光电探测器组成。The photodetector array corresponds to the structure of the analyzer array, and is composed of a first photodetector, a second photodetector, and a third photodetector arranged in four quadrants in the same plane with the same structure. detector and a fourth photodetector.
所述的信号处理系统为具有A/D转换功能的多通道高速数据采集卡与具有相应数据处理、分析软件的计算机所构成,或是由具有相应处理功能的信号处理电路与微处理器所构成。The signal processing system is composed of a multi-channel high-speed data acquisition card with A/D conversion function and a computer with corresponding data processing and analysis software, or is composed of a signal processing circuit and a microprocessor with corresponding processing functions .
利用上述的四分之一波片快轴方位实时测量装置测量四分之一波片快轴方位的方法,其特征在于包括下列步骤:The method for measuring the fast-axis orientation of the quarter-wave plate by using the above-mentioned real-time measuring device for the fast-axis orientation of the quarter-wave plate is characterized in that it comprises the following steps:
①建立所述的四分之一波片快轴方位实时测量装置;① Establish the quarter-wave plate fast-axis orientation real-time measurement device;
②将待测的四分之一波片插入所述的标准四分之一波片和所述的衍射分束元件之间并调整光路;② Insert the quarter-wave plate to be measured between the standard quarter-wave plate and the diffraction beam splitting element and adjust the optical path;
③利用所述的光电探测器阵列的第一光电探测器、第二光电探测器、第三光电探测器和第四光电探测器分别记录所述的检偏器阵列的第一检偏器、第二检偏器、第三检偏器、第四检偏器的干涉光强I1、I2、I3、I4并转变为电信号,该电信号经过所述的放大电路同时等倍放大后输入所述的信号处理系统;③ Utilize the first photodetector, the second photodetector, the third photodetector and the fourth photodetector of the photodetector array to record the first polarizer, the first polarizer and the fourth photodetector of the polarizer array respectively. The interference light intensities I 1 , I 2 , I 3 , and I 4 of the second polarizer, the third polarizer, and the fourth polarizer are converted into electrical signals, and the electrical signals are amplified at the same time through the amplifying circuit. After inputting the described signal processing system;
④所述的信号处理系统进行下列运算:④ The signal processing system carries out the following operations:
计算出θ在0~180°范围内的值,即获得了待测四分之一波片的快轴方位。Calculate the value of θ in the range of 0° to 180°, that is, obtain the fast axis orientation of the quarter wave plate to be measured.
与在先技术相比,本发明的技术效果如下:Compared with prior art, technical effect of the present invention is as follows:
1、可以实时测量四分之一波片快轴方位。利用衍射分束元件进行分光可以获得多个强度相等的子光束,这些子光束同时被聚焦在检偏器阵列上产生偏振干涉,光电探测器阵列同时接收依次具有一定移相量的干涉光强并转换为电信号,电信号被放大电路同时进行放大后由信号处理系统进行高速处理,因此可以实时测量四分之一波片的快轴方位。1. It can measure the fast axis orientation of the quarter wave plate in real time. Multiple sub-beams with equal intensity can be obtained by using diffractive beam-splitting elements. These sub-beams are focused on the analyzer array at the same time to generate polarization interference. The photodetector array simultaneously receives the interference light intensity with a certain phase shift and Converted to an electrical signal, the electrical signal is simultaneously amplified by the amplifier circuit and then processed at high speed by the signal processing system, so the fast axis orientation of the quarter-wave plate can be measured in real time.
2、光源的光强波动不影响测量结果。利用多个依次具有一定移相量的干涉光强计算快轴方位角度时,计算公式中的分子与分母中具有相同初始光强因子,使测量结果与初始光强无关,因此被测四分之一波片快轴方位的测量结果不受光源的光强波动所影响。2. The light intensity fluctuation of the light source does not affect the measurement results. When using multiple interfering light intensities with a certain amount of phase shifting to calculate the fast axis azimuth angle, the numerator and denominator in the calculation formula have the same initial light intensity factor, so that the measurement result has nothing to do with the initial light intensity, so the measured 1/4 The measurement result of the fast axis orientation of a wave plate is not affected by the light intensity fluctuation of the light source.
3、结构简单、稳定。本发明所述的四分之一波片快轴方位实时测量装置中没有转动光学元件而无须旋转机构,故该测量装置具有简单的结构和高的稳定性。3. The structure is simple and stable. The quarter-wave plate fast axis orientation real-time measuring device of the present invention has no rotating optical element and no rotating mechanism, so the measuring device has a simple structure and high stability.
附图说明Description of drawings
图1为本发明所述四分之一波片快轴方位实时测量装置实施例的结构框图Fig. 1 is the structural block diagram of the embodiment of the real-time measurement device of quarter-wave plate fast axis azimuth of the present invention
图2为本发明实施例中检偏器阵列的结构图Fig. 2 is the structural diagram of analyzer array in the embodiment of the present invention
图3为本发明实施例中光电探测器阵列的结构图Fig. 3 is the structural diagram of photodetector array in the embodiment of the present invention
图4为本发明实施例中依次移相90°的干涉光强形成、接收光路图Fig. 4 is a diagram of the interference light intensity formation and receiving optical path with sequential phase shift of 90° in the embodiment of the present invention
具体实施方式Detailed ways
下面结合附图和实施例对本发明作进一步说明,但不应以此限制本发明的保护范围。The present invention will be further described below in conjunction with the accompanying drawings and embodiments, but the protection scope of the present invention should not be limited thereby.
先请参阅图1,图1是本发明所述四分之一波片快轴方位实时测量装置实施例的结构框图。由图可见,本发明四分之一波片快轴方位实时测量装置,该装置由准直光源1、起偏器2、标准四分之一波片3、衍射分束元件5、聚焦透镜6、检偏器阵列7、光电探测器阵列8、放大电路9和信号处理系统10组成,其位置关系是:沿所述的准直光源1的光束前进方向上,依次是所述的起偏器2、标准四分之一波片3、衍射分束元件5、聚焦透镜6、检偏器阵列7、光电探测器阵列8,所述的衍射分束元件5为正交相位光栅,其光栅刻线方向与所述的起偏器2的透光轴的方向成45°角,所述的光电探测器阵列8探测的信号经所述的放大电路9放大后输入所述的信号处理系统10进行数据处理。Please refer to FIG. 1 first. FIG. 1 is a structural block diagram of an embodiment of a quarter-wave plate fast-axis azimuth real-time measurement device according to the present invention. As can be seen from the figure, the quarter-wave plate fast axis orientation real-time measuring device of the present invention is composed of a collimated light source 1, a
本实施例中In this example
所述的衍射分束元件5为正交相位光栅,其光栅刻线方向与起偏器2的透光轴方向成45°角。入射光经过衍射分束元件5后产生衍射,其中零级、偶数级衍射光消失而只有奇数级衍射光,其中四个±1级衍射光的强度相等且是强度最高的衍射光。The diffraction
所述的检偏器阵列7的结构如图2所示,由四个结构相同的第一检偏器701、第二检偏器702、第三检偏器703、第四检偏器704在同一个平面内按四象限排列组合形成,所述的第一检偏器701、第二检偏器702、第三检偏器703、第四检偏器704的透光轴与所述的起偏器2的透光轴所成的角度分别为0°、45°、90°和135°。The structure of the described polarizer array 7 is as shown in Figure 2, by the
所述的光电探测器阵列8的结构如图3所示,与所述的检偏器阵列7的结构相对应,是由结构相同的在同一个平面内按四象限排列的第一光电探测器801、第二光电探测器802、第三光电探测器803和第四光电探测器804组成。The structure of described photodetector array 8 is as shown in Figure 3, corresponds to the structure of described polarizer array 7, is by the first photodetector arranged in four quadrants in the same plane by the
所述的信号处理系统10为具有A/D转换功能的多通道高速数据采集卡与具有相应数据处理、分析软件的计算机所构成,Described
本发明的最佳实施例的结构如图1、图2、图3所示,其具体结构和参数如下:The structure of the preferred embodiment of the present invention is shown in Fig. 1, Fig. 2, Fig. 3, and its concrete structure and parameter are as follows:
准直光源1为He-Ne激光器,起偏器2为方解石晶体材料的格兰-泰勒棱镜,标准四分之一波片3为相位延迟量误差小于0.3°的石英波片,衍射分束元件5的光栅刻线宽度为10μm,聚焦透镜6为焦距等于100mm的双胶合透镜,所述的检偏器阵列7中的第一检偏器701、第二检偏器702、第三检偏器703、第四检偏器704为消光比优于10-2的偏振片,所述的光电探测器阵列8为四象限光电二极管,放大电路9为四通道信号放大电路,所述的信号处理系统10由100M四路同步数据采集卡与计算机组成。The collimated light source 1 is a He-Ne laser, the
利用所述的四分之一波片快轴方位实时测量装置测量四分之一波片快轴方位的方法,其特征在于包括下列步骤:The method for measuring the fast axis orientation of the quarter wave plate by using the real-time measuring device for the fast axis orientation of the quarter wave plate is characterized in that it comprises the following steps:
①建立所述的四分之一波片快轴方位实时测量装置;① Establish the quarter-wave plate fast-axis orientation real-time measurement device;
②将待测的四分之一波片4插入所述的标准四分之一波片3和所述的衍射分束元件5之间并调整光路;② Insert the quarter wave plate 4 to be measured between the standard quarter wave plate 3 and the diffraction
③利用所述的光电探测器阵列8的第一光电探测器801、第二光电探测器802、第三光电探测器803和第四光电探测器804分别记录所述的检偏器阵列7的第一检偏器701、第二检偏器702、第三检偏器703、第四检偏器704的干涉光强I1、I2、I3、I4并转变为电信号,电信号经过所述的放大电路9同时放大后输入所述的信号处理系统10;③ Utilize the
④所述的信号处理系统10进行下列运算:4. the
计算出θ在0~180°范围内的值,即获得了待测四分之一波片4的快轴方位。Calculate the value of θ within the range of 0° to 180°, that is, obtain the fast axis orientation of the quarter wave plate 4 to be measured.
准直光源1出射的平行光束依次经过起偏器2、标准四分之一波片3形成圆偏振光,该圆偏振光经过被测四分之一波片4后由衍射分束元件5进行衍射分光,其中只有四个强度相等的±1级衍射光束是被有效利用的子光束。四个子光束形成依次移相90°的干涉光强并被接收的具体光路请参阅图4,四个子光束互成一定夹角并由聚焦透镜6进行聚焦,四个子光束分别经过所述的检偏器阵列7中的第一检偏器701、第二检偏器702、第三检偏器703与第四检偏器704后进行偏振干涉,干涉光强对应地由光电探测器阵列8中的第一光电探测器801、第二光电探测器802、第三光电探测器803与第四光电探测器804接收。The parallel light beam emitted by the collimated light source 1 passes through the
从标准四分之一波片3出射的圆偏振光的光矢量E可以用琼斯矢量表达为:The light vector E of the circularly polarized light emitted from the standard quarter-wave plate 3 can be expressed by Jones vector as:
其中:E0是起偏器2的出射光束的振幅。待测四分之一波片4的琼斯矩阵G可以表达为:Where: E 0 is the amplitude of the outgoing beam of the
其中:δ和θ分别为待测四分之一波片4的相位延迟量和快轴方位角度,δ接近90°,θ的变化范围为0~180°。所述的检偏器阵列7中的第一检偏器701、第二检偏器702、第三检偏器703、第四检偏器704可以用琼斯矩阵A共同表达为Where: δ and θ are the phase retardation and fast axis azimuth angle of the quarter-wave plate 4 to be tested respectively, δ is close to 90°, and θ varies from 0° to 180°. The
其中:α为第一检偏器701、第二检偏器702、第三检偏器703、第四检偏器704的透光轴与起偏器2的透光轴所夹的角度,即分别为0°、45°、90°和135°。从第一检偏器701、第二检偏器702、第三检偏器703、第四检偏器704出射的偏振干涉光束可以用琼斯矢量S共同表达为Wherein: α is the angle between the light transmission axis of the
S=AGE。 (4)S=AGE. (4)
所述的光电探测器阵列8中第一光电探测器801、第二光电探测器802、第三光电探测器803与第四光电探测器804所接收的干涉光强可以共同表达为The interference light intensity received by the
其中*表示厄米运算。在公式(5)中α分别取0°、45°、90°和135°,即光电探测器801、802、803、804所接收的干涉光强I1、I2、I3与I4分别为where * means Hermitian operation. In formula (5), α takes 0°, 45°, 90° and 135° respectively, that is, the interference light intensities I 1 , I 2 , I 3 and I 4 received by the
可见干涉光强I1、I2、I3与I4之间的移相量依次为90°。It can be seen that the phase shifts among the interference light intensities I 1 , I 2 , I 3 and I 4 are 90° in sequence.
待测四分之一波片4的相位延迟量接近90°,公式(6)~(9)中sinδ的值总是为正值,由公式(6)~(9)可以得到The phase delay of the quarter-wave plate 4 to be tested is close to 90°, and the value of sinδ in the formulas (6)~(9) is always a positive value, which can be obtained from the formulas (6)~(9)
利用公式(10)、(11)可以计算出θ在0~180°范围内的值,即获得了被测四分之一波片4的快轴方位。The value of θ in the range of 0° to 180° can be calculated by using formulas (10) and (11), that is, the fast axis orientation of the quarter wave plate 4 to be measured is obtained.
光电探测器801、802、803、804在相同时间分别将干涉光强I1、I2、I3、I4转变为电信号,电信号经过放大电路9同时进行放大后由信号处理系统10进行高速处理,因此被测四分之一波片的快轴方位被实时测量。计算被测四分之一波片的快轴方位角时,E0 2因子项同时存在于公式(10)、(11)的分子与分母中而被抵消,即被测四分之一波片快轴方位的测量结果与初始光强无关,因此快轴方位的测量结果不受准直光源1的光强波动所影响。同时,图1所示的四分之一波片快轴方位实时测量装置没有转动光学元件而无须旋转机构,故本发明具有简单的结构和高的稳定性。The
利用最佳实施例对相位延迟量为88°的被测四分之一波片3进行测量,实验结果表明被测四分之一波片快轴方位的测量精度高于0.1°,测量时间小于1μs。Utilize the preferred embodiment to measure the measured quarter-wave plate 3 whose phase delay is 88°, the experimental results show that the measurement accuracy of the measured quarter-wave plate fast axis orientation is higher than 0.1°, and the measurement time is less than 1μs.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2008100406147A CN101319958B (en) | 2008-07-16 | 2008-07-16 | Quarter-wave plate fast axis orientation real-time measurement device and method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2008100406147A CN101319958B (en) | 2008-07-16 | 2008-07-16 | Quarter-wave plate fast axis orientation real-time measurement device and method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101319958A CN101319958A (en) | 2008-12-10 |
CN101319958B true CN101319958B (en) | 2010-08-25 |
Family
ID=40180132
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2008100406147A Expired - Fee Related CN101319958B (en) | 2008-07-16 | 2008-07-16 | Quarter-wave plate fast axis orientation real-time measurement device and method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101319958B (en) |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101806959B (en) * | 2009-11-12 | 2012-08-08 | 北京理工大学 | Real-time small polarization imaging device |
CN102175430B (en) * | 2011-01-25 | 2013-04-10 | 中国科学院上海光学精密机械研究所 | Device and method for measuring phase retardation and fast axis azimuth of one-eighth wave plate |
CN102393555B (en) * | 2011-11-08 | 2013-02-13 | 华中科技大学 | Alignment method for optical axis of compound wave plate and device for same |
CN102507158B (en) * | 2011-11-21 | 2014-02-12 | 中国科学院上海光学精密机械研究所 | Quarter-wave plate phase retardation distribution real-time measurement device and measurement method |
CN102636333B (en) * | 2012-03-20 | 2015-03-25 | 中国科学院上海光学精密机械研究所 | Device and method for measuring phase retardation and fast axis azimuth angle of wave plate in real time |
CN102706539B (en) * | 2012-06-15 | 2015-05-13 | 中国科学院上海光学精密机械研究所 | Device and method for measuring phase retardation distribution and fast axis azimuth angle distribution in real time |
CN103364927B (en) * | 2013-07-15 | 2015-07-29 | 中国科学院上海光学精密机械研究所 | Lithography machine illumination system polarimetry optical system |
CN103424839B (en) * | 2013-07-26 | 2015-05-06 | 华中科技大学 | Optical axis alignment method of compound wave plates |
CN105277341A (en) * | 2015-11-23 | 2016-01-27 | 深圳市华星光电技术有限公司 | Measurement device of wave plate optical axis and measurement method of wave plate optical axis |
CN106918845B (en) * | 2017-05-04 | 2018-10-30 | 哈尔滨工业大学 | Long-distance laser semi-active azimuth measuring device based on polarization detection |
CN111856770B (en) * | 2019-04-26 | 2022-07-19 | 曹毓 | Polarization imaging device |
CN112747899B (en) * | 2019-10-29 | 2022-03-15 | 上海微电子装备(集团)股份有限公司 | Measuring method and measuring device for polarizing element |
CN112326201B (en) * | 2020-10-13 | 2023-02-14 | 中国科学院上海光学精密机械研究所 | Apparatus and method for measuring quarter-wave plate fast axis azimuth angle and phase retardation distribution |
CN115031928A (en) * | 2022-06-10 | 2022-09-09 | 业成科技(成都)有限公司 | Optical detection system and method of operation thereof |
-
2008
- 2008-07-16 CN CN2008100406147A patent/CN101319958B/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
CN101319958A (en) | 2008-12-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101319958B (en) | Quarter-wave plate fast axis orientation real-time measurement device and method | |
CN102175430B (en) | Device and method for measuring phase retardation and fast axis azimuth of one-eighth wave plate | |
CN101021447A (en) | Method and device for measuring phase delay and fast axis direction of 1/4 wave plate | |
EP2863200A1 (en) | Device and method for measuring phase delay distribution and fast axis azimuth distribution in real time | |
CN103033478A (en) | Double refraction realtime measuring device and method | |
CN201212852Y (en) | Quarter-wave plate fast axis orientation real-time measuring device | |
CN103776537B (en) | A kind of measurement mechanism of polarised light stokes parameter and optimization method thereof | |
CN100529715C (en) | Method for measuring birefraction optical devices phase-delay quantity and fast axis direction and device | |
CN102706809B (en) | Linear birefringence measuring device and measuring method thereof | |
CN202033175U (en) | Measuring device for phase retardation and fast axis azimuth of one-eighth wave plate | |
CN102692274A (en) | Light beam stokes parameter measuring device and measuring method | |
CN113567351B (en) | Complex magneto-optical angle measuring system and method based on quantum weak measurement | |
CN105403382A (en) | Wave plate phase retardation and fast axis azimuth measurement device and method | |
CN104777376B (en) | A kind of laser amplifier phase noise measurement system | |
CN102636333B (en) | Device and method for measuring phase retardation and fast axis azimuth angle of wave plate in real time | |
CN102507158B (en) | Quarter-wave plate phase retardation distribution real-time measurement device and measurement method | |
CN107064595A (en) | The crystal current sensor being vortexed based on complex light | |
CN201273815Y (en) | Non-contact laser measurement apparatus for guidance rail rolling angle | |
CN103308175B (en) | Linear double refraction measuring device and measuring method | |
CN103335821B (en) | The measurement mechanism of quarter-wave plate phase retardation and measuring method | |
CN107121195B (en) | A kind of small smooth swing angle balanced differential detection device and method based on photoelastic modulation | |
CN110631805A (en) | A device and method for measuring performance of wide-band wave plate using AOTF monochromatic light | |
CN114018830A (en) | Linear polarization direction detection method based on liquid crystal polarization grating | |
CN102519712B (en) | One-eighth wave plate phase retardation measurer and measuring method | |
CN107478604A (en) | The measurement apparatus and measuring method of refractive index of transparent materials |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20100825 Termination date: 20200716 |