CN101303452A - Bundled fiber optic pulse delay superposition shaper - Google Patents
Bundled fiber optic pulse delay superposition shaper Download PDFInfo
- Publication number
- CN101303452A CN101303452A CNA200810053630XA CN200810053630A CN101303452A CN 101303452 A CN101303452 A CN 101303452A CN A200810053630X A CNA200810053630X A CN A200810053630XA CN 200810053630 A CN200810053630 A CN 200810053630A CN 101303452 A CN101303452 A CN 101303452A
- Authority
- CN
- China
- Prior art keywords
- fiber
- mode
- pulse
- bundled
- optical fiber
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000835 fiber Substances 0.000 title claims abstract description 66
- 239000013307 optical fiber Substances 0.000 claims abstract description 24
- 238000001208 nuclear magnetic resonance pulse sequence Methods 0.000 claims abstract description 7
- 241001270131 Agaricus moelleri Species 0.000 claims abstract 2
- 239000004038 photonic crystal Substances 0.000 claims description 20
- 239000006185 dispersion Substances 0.000 claims description 16
- 230000003321 amplification Effects 0.000 claims description 11
- 238000005253 cladding Methods 0.000 claims description 11
- 238000003199 nucleic acid amplification method Methods 0.000 claims description 11
- 230000010355 oscillation Effects 0.000 claims description 11
- 230000010287 polarization Effects 0.000 claims description 8
- 239000004065 semiconductor Substances 0.000 claims description 6
- 150000002500 ions Chemical class 0.000 claims description 4
- 230000005540 biological transmission Effects 0.000 claims description 2
- 238000007493 shaping process Methods 0.000 claims description 2
- 238000010521 absorption reaction Methods 0.000 claims 1
- 239000013078 crystal Substances 0.000 claims 1
- 238000005516 engineering process Methods 0.000 abstract description 4
- 238000000034 method Methods 0.000 description 10
- 238000010586 diagram Methods 0.000 description 3
- 238000005086 pumping Methods 0.000 description 3
- 230000006835 compression Effects 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- 239000006096 absorbing agent Substances 0.000 description 1
- 230000002238 attenuated effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
Images
Landscapes
- Lasers (AREA)
Abstract
本发明公开了一种集束光纤脉冲延迟叠加整形器,属于激光技术领域。该装置包括单台高功率脉冲激光器,非球面准直扩束器或微透镜列阵,集束型单模光纤延迟器,非球面聚焦透镜或微透镜列阵和多头单模光纤构成,激光器输出的平顶型的大模场激光束经准直扩束整形后耦合进入集束型单模光纤延迟器,分束脉冲形成具有固定时间延迟、脉冲能量相同的脉冲序列,脉冲序列经过会聚透镜非球面聚焦透镜耦合到一根单模光纤中,叠加整形成纳秒量级的矩形脉冲输出。本发明的优点在于:该脉冲叠加整形器具有体积小、造价低、稳定性高、分束多、脉冲能量均匀等优点。
The invention discloses a bundled optical fiber pulse delay superposition shaper, which belongs to the field of laser technology. The device consists of a single high-power pulsed laser, an aspheric collimating beam expander or microlens array, a clustered single-mode fiber retarder, an aspheric focusing lens or a microlens array and multiple single-mode fibers. The flat-top type large-mode field laser beam is coupled into the cluster type single-mode fiber delayer after being collimated and beam-expanded. The beam splitting pulse forms a pulse sequence with a fixed time delay and the same pulse energy. The pulse sequence is focused by the aspheric surface of the converging lens The lens is coupled to a single-mode fiber, superimposed and shaped into a rectangular pulse output on the order of nanoseconds. The invention has the advantages that: the pulse superposition shaper has the advantages of small volume, low cost, high stability, multiple beam splitting, uniform pulse energy and the like.
Description
技术领域 technical field
本发明涉及一种集束光纤脉冲延迟叠加整形器,属于激光技术领域。The invention relates to a bundled optical fiber pulse delay superposition shaper, which belongs to the technical field of lasers.
背景技术 Background technique
在光通信领域和激光惯性约束核聚变领域对种子激光脉冲的形状有特殊的要求,往往需要具有较长持续时间(ns量级)的矩形脉冲。采用的方法主要有:频域滤波法,时域延迟叠加法。In the field of optical communication and laser inertial confinement nuclear fusion, there are special requirements for the shape of the seed laser pulse, and a rectangular pulse with a long duration (ns order) is often required. The methods used mainly include: frequency domain filtering method, time domain delay superposition method.
目前时域延迟叠加法中比较成熟的技术有两种:一是将多台光纤激光器并行输出的皮秒量级脉冲分别经过不同的时间延迟线引入时间延迟,然后再叠加起来形成的纳秒量级的矩形脉冲;二是采用单台激光器输出进行串行多次分束后再叠加起来形成的纳秒量级的矩形脉冲。At present, there are two relatively mature technologies in the time-domain delay-and-addition method: one is to introduce a time delay from the picosecond-level pulses output by multiple fiber lasers in parallel through different time delay lines, and then superimpose them to form nanosecond-level pulses. The second is to use a single laser output to perform multiple beam splits in series and then superimpose them to form nanosecond-level rectangular pulses.
以上技术存在明显的缺点,即不可能分离出较多的脉冲(一般<10)。这是因为:方法1中采用多台光纤激光器并行输出技术每增加一个叠加脉冲就要增加一台激光器,因此导致整个系统的费用、功耗、复杂性、体积都快速增加;方法2中虽然激光器的数量不增加,但是串行分束后的脉冲能量是衰减的,即分束脉冲能量逐级减小,并对叠加合成过程带来困难。There is an obvious shortcoming in the above technique, that is, it is impossible to separate more pulses (generally<10). This is because: in
发明内容 Contents of the invention
本发明旨在提出一种集束光纤脉冲延迟叠加整形器,该脉冲叠加整形器具有体积小、造价低、稳定性高、分束多、脉冲能量均匀等优点,因此叠加合成整形后的脉冲具有更高的脉冲质量。The present invention aims to propose a bundled optical fiber pulse delay superposition shaper, which has the advantages of small size, low cost, high stability, multiple beam splitting, uniform pulse energy, etc. High pulse quality.
本发明是通过以下技术方案加以实现的,一种集束光纤脉冲延迟叠加整形器,其特征在于,该装置包括单台高功率大模场光子晶体光纤锁模激光器或单台高功率固体脉冲激光器或单台高功率半导体脉冲激光器1,非球面准直扩束器或微透镜列阵I2,集束型单模光纤延迟器3,非球面聚焦透镜或微透镜列阵II4和多头单模光纤5构成,装置中各部件的连接关系为,激光器输出的空间分布为平顶型的大模场激光束被非球面准直扩束整形系统准直扩束整形后耦合进入集束型单模光纤延迟器,经过集束型单模光纤延迟器后的分束脉冲形成具有固定时间延迟、脉冲能量相同的脉冲序列,然后将所有脉冲序列经过会聚透镜非球面聚焦透镜耦合到一根单模光纤中,叠加整形成纳秒量级的矩形脉冲输出。The present invention is realized through the following technical scheme, a bundled optical fiber pulse delay superposition shaper, characterized in that the device includes a single high-power large-mode-field photonic crystal fiber mode-locked laser or a single high-power solid-state pulse laser or A single high-power semiconductor pulsed
上述的高功率大模场光子晶体光纤锁模激光器由振荡级和放大级及振荡级和放大级之间的偏振法拉第隔离器构成,振荡级包括大模场的掺镱离子或掺铒离子的双包覆光子晶体增益光纤、半导体可饱和吸收镜和偏振旋转(NPE)混合锁模器、振荡级光栅对或大负色散光纤色散补偿器构成,其中,光子晶体增益光纤的芯径为10-50微米,数值孔径(NA)为0.02-0.06,外包层直径200-400微米,数值孔径(NA)为0.4-0.8,长度为1-10m,包层泵浦源为5-30W的高功率激光二极管;放大级包括大模场的掺镱离子或掺铒离子的双包覆光子晶体增益光纤、放大级光栅对或大负色散光纤色散补偿器构成,其中,光子晶体增益光纤的芯径为20-70微米,数值孔径(NA)为0.02-0.06,外包层直径200-400微米,数值孔径(NA)为0.4-0.8,长度为1-10m,包层泵浦源为20-100W高功率激光二极管。The above-mentioned high-power large-mode field photonic crystal fiber mode-locked laser is composed of an oscillation stage and an amplification stage and a polarization Faraday isolator between the oscillation stage and the amplification stage. Coated photonic crystal gain fiber, semiconductor saturable absorbing mirror and polarization rotation (NPE) hybrid mode locker, oscillation level grating pair or large negative dispersion fiber dispersion compensator, wherein the core diameter of photonic crystal gain fiber is 10-50 Micron, numerical aperture (NA) of 0.02-0.06, outer cladding diameter of 200-400 microns, numerical aperture (NA) of 0.4-0.8, length of 1-10m, cladding pump source of 5-30W high-power laser diode ; The amplification stage comprises a double-coated photonic crystal gain fiber of ytterbium-doped ions or erbium-doped ions in a large mode field, an amplification stage grating pair or a large negative dispersion fiber dispersion compensator, wherein the core diameter of the photonic crystal gain fiber is 20- 70 microns, the numerical aperture (NA) is 0.02-0.06, the outer cladding diameter is 200-400 microns, the numerical aperture (NA) is 0.4-0.8, the length is 1-10m, and the cladding pump source is 20-100W high-power laser diode .
上述的非球面准直扩束器是伽利略望远镜系统,扩束比是相对于小芯径集束型光子晶体光纤有效模场直径的1∶2-10,或者焦距为毫米量级的为微透镜列阵。The above-mentioned aspherical collimating beam expander is a Galileo telescope system, and the beam expansion ratio is 1:2-10 relative to the effective mode field diameter of the small-core bundled photonic crystal fiber, or the focal length is a microlens array on the order of millimeters Array.
上述的集束型单模光纤延迟器为不同长度的普通单模光纤(SMF)或者其他类型的传输光纤的集束,集束光纤一端并齐后固定,集束光纤另一端长度根据需要的时间延迟选择长短,并按着光纤束的中心光纤至外侧光纤长度逐级递减排列构成。The above-mentioned bundled single-mode fiber delayer is a bundle of ordinary single-mode fibers (SMF) or other types of transmission fibers of different lengths. One end of the bundled fibers is aligned and then fixed, and the length of the other end of the bundled fibers is selected according to the required time delay. And according to the length from the central optical fiber to the outer optical fiber of the optical fiber bundle, it is arranged in descending order.
上述的非球面会聚透镜为焦距为5-20mm的显微物镜,或者焦距为毫米量级的微透镜列阵。The above-mentioned aspherical converging lens is a microscopic objective lens with a focal length of 5-20 mm, or a microlens array with a focal length of millimeter order.
本发明的优点在于:(1)采用单台高功率大模场光子晶体光纤锁激光器作为种子脉冲源,这比目前采用多台低功率的普通单模光纤激光器并行输出的方式不论在运行费用、功耗、复杂性和体积上都明显降低;(2)采用集束式的光纤脉冲延迟器,对入射脉冲进行并行延迟,比原有技术结构简单和脉冲衰变小;(3)采用将长光纤置于集束的中间部位,由内向外逐渐变短的方式构造集束光纤式的脉冲延迟线,可以方便地修正种子脉冲空间光强一般中间分布较强所引入的脉冲分束的能量不同;(4)可以重复采用集束光纤式脉冲延迟线,即将一级集束光纤式脉冲延迟线中每根光纤的输出脉冲再次耦合到二级集束光纤式脉冲延迟线中,形成并行级联的枝状结构,快速增加分束数量而没有增加复杂性。The present invention has the advantages of: (1) a single high-power large-mode-field photonic crystal fiber-locked laser is used as the seed pulse source, which is better than the current parallel output mode of multiple low-power common single-mode fiber lasers regardless of operating costs, The power consumption, complexity and volume are all significantly reduced; (2) The bundled fiber optic pulse delayer is used to delay the incident pulse in parallel, which is simpler in structure and smaller in pulse decay than the original technology; (3) The long optical fiber is placed in the In the middle part of the bundle, the bundled fiber-type pulse delay line is constructed in a way that gradually shortens from the inside to the outside, which can easily correct the energy of the pulse splitting introduced by the stronger distribution of the seed pulse space; (4) The bundled fiber-optic pulse delay line can be used repeatedly, that is, the output pulse of each fiber in the first-level bundled fiber-optic pulse delay line is coupled to the second-stage bundled fiber-type pulse delay line to form a parallel cascaded dendritic structure, which increases rapidly Split the number of beams without adding complexity.
附图说明 Description of drawings
图1为本发明的集束光纤脉冲延迟叠加整形器的结构框图。Fig. 1 is a structural block diagram of the bundled optical fiber pulse delay superposition shaper of the present invention.
图中:1为高功率脉冲激光器;2为非球面准直扩束器或微透镜列阵I;3为集束型单模光纤延迟器;4非球面聚焦透镜或微透镜列阵II;5多头单模光纤。In the figure: 1 is a high-power pulsed laser; 2 is an aspheric collimating beam expander or microlens array I; 3 is a clustered single-mode fiber retarder; 4 is an aspheric focusing lens or microlens array II; 5 is multi-head single-mode fiber.
图2为图1中集束型单模光纤延迟器3的结构示意图。FIG. 2 is a schematic structural diagram of the bundled single-
图3为图1中高功率脉冲激光器采用的高功率大模场光子晶体光纤锁模激光器结构示意图。FIG. 3 is a schematic structural diagram of a high-power large-mode-field photonic crystal fiber mode-locked laser used in the high-power pulsed laser in FIG. 1 .
图中:1-1为振荡级泵浦源;1-2为振荡级大模场光子晶体增益光纤;1-3为半导体可饱和吸收镜和偏振旋转(NPE)混合锁模器;1-4为振荡级光栅对或大负色散光纤色散补偿器;1-5为偏振法拉第隔离器;1-6为放大级大模场光子晶体增益光纤;1-7为放大级光栅对或大负色散光纤色散补偿器;1-8为放大级的泵浦源。In the figure: 1-1 is an oscillation-level pump source; 1-2 is an oscillation-level large-mode-field photonic crystal gain fiber; 1-3 is a semiconductor saturable absorber mirror and a polarization rotation (NPE) hybrid mode-locker; 1-4 1-5 are polarization Faraday isolators; 1-6 are amplification-level large-mode-field photonic crystal gain fibers; 1-7 are amplification-level grating pairs or large negative dispersion fibers Dispersion compensator; 1-8 are the pumping sources of the amplification stage.
具体实施方式 Detailed ways
本发明的集成光纤脉冲延迟叠加整形器如附图1所示,具体实施例如下:The integrated optical fiber pulse delay superposition shaper of the present invention is as shown in accompanying
高功率脉冲激光器采用图3所示的高功率大模场光子晶体光纤锁模激光器,其中的振荡级的增益介质采用掺Yb的大模场双包覆保偏光子晶体光纤1-2,芯径25微米,NA为0.03,外包层直径250微米,NA为0.5,长度为3.5m,两端经过塌陷和打磨出斜角直接进行包层泵浦,或焊接上适当长度的SMF,由WDM方式泵浦;振荡级采用10W的LD1-1进行单面或双面包层泵浦形式,谐振腔的一端采取半导体可饱和吸收镜和偏振旋转混合器锁模1-3以及作为输出端口,在谐振腔的另一端采用光栅对或大负色散光纤色散补偿器1-4进行色散补偿和脉冲压缩;放大级的增益介质采用掺Yb的大模场双包覆保偏光子晶体光纤1-6,芯径40微米,NA为0.03,外包层直径270微米,NA为0.6,长度为1.5m,两端经过塌陷和打磨出斜角直接进行包层泵浦,或焊接上适当长度的SMF,由WDM方式泵浦;采用高功率30W的LD1-8进行单面或双面包层泵浦形式,在该谐振腔的输入端放置偏振法拉第隔离器1-5以防止激光返回振荡级,在谐振腔的输出端采用光栅对或大负色散光纤色散补偿器1-7进行色散补偿和脉冲压缩;高功率脉冲激光器1也可以是任何其他高功率脉冲激光器。非球面准直扩束器或微透镜列阵I2中选用非球面透镜构成扩束比为1∶5的伽利略望远镜系统;或者采用微透镜列阵将1的输出直接聚焦进集束型单模光纤延迟器的每个纤芯中。集束型单模光纤延迟器3如图2所示,19根SMF集成一束,最短单根SMF取20mm,其余SMF每根依次增加11mm,单端并行集束,将入射的1550nm波段的超短脉冲分成19个时间延迟间隔约为56ps的脉冲序列;并采用将长光纤置于集束的中间部位,由内向外逐渐变短的方式构造成集束式光纤脉冲延迟器。非球面聚焦透镜II4为焦距为10-20mm的非球面透镜构成的显微物镜,或者采用与集束型单模光纤延迟器的纤芯对应的焦距为毫米量级的微透镜列阵。多头单模光纤5采用多分头(与3输出端对应)的普通单模光纤进行并束,光纤长度0.2m,输出脉冲为19个超短脉冲合成的ns量级的矩形脉冲。如果对经过集束型单模光纤延迟器3后的每根光纤的输出脉冲再重复集束型单模光纤延迟器3过程,则可以快速枝权型增加脉冲分束的数量。The high-power pulsed laser adopts the high-power large-mode-field photonic crystal fiber mode-locked laser shown in Figure 3, and the gain medium of the oscillation stage adopts Yb-doped large-mode-field double-clad polarization-maintaining photonic crystal fiber 1-2, the core diameter 25 microns, NA is 0.03, the outer cladding diameter is 250 microns, NA is 0.5, and the length is 3.5m. Both ends are collapsed and polished to beveled angles to directly pump the cladding, or weld SMF of appropriate length, and pump by WDM pump; the oscillation stage uses 10W LD1-1 for single-sided or double-clad pumping, and one end of the resonant cavity adopts semiconductor saturable absorbing mirror and polarization rotation mixer mode-locking 1-3 as the output port, in the resonant cavity The other end adopts grating pair or large negative dispersion fiber dispersion compensator 1-4 to perform dispersion compensation and pulse compression; the gain medium of the amplification stage adopts Yb-doped large mode field double-clad polarization-maintaining photonic crystal fiber 1-6, the core diameter 40 microns, NA is 0.03, outer cladding diameter is 270 microns, NA is 0.6, and the length is 1.5m. Both ends are collapsed and polished to beveled angles to directly pump the cladding, or welded with SMF of appropriate length, pumped by WDM Pump; use high-power 30W LD1-8 for single-sided or double-clad pumping, place a polarization Faraday isolator 1-5 at the input of the resonator to prevent the laser from returning to the oscillation stage, and place it at the output of the resonator A grating pair or a large negative dispersion fiber dispersion compensator 1-7 is used to perform dispersion compensation and pulse compression; the high-
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN200810053630XA CN101303452B (en) | 2008-06-25 | 2008-06-25 | Bundling optical fiber pulse delay overlapped shaper |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN200810053630XA CN101303452B (en) | 2008-06-25 | 2008-06-25 | Bundling optical fiber pulse delay overlapped shaper |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101303452A true CN101303452A (en) | 2008-11-12 |
CN101303452B CN101303452B (en) | 2010-06-23 |
Family
ID=40113437
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN200810053630XA Expired - Fee Related CN101303452B (en) | 2008-06-25 | 2008-06-25 | Bundling optical fiber pulse delay overlapped shaper |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101303452B (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102023389B (en) * | 2009-09-16 | 2012-07-25 | 中国科学院微电子研究所 | Array partial ring zone photon sieve dodging device |
CN106610529A (en) * | 2017-02-14 | 2017-05-03 | 山西大学 | Fiber type beam distributed phase retarder and speckle removing method thereof |
CN107771299A (en) * | 2015-06-23 | 2018-03-06 | 特拉迪欧德公司 | Optical element for changing the Beam parameter product in laser delivery systems is arranged |
CN117277044A (en) * | 2023-11-16 | 2023-12-22 | 武汉光谷航天三江激光产业技术研究院有限公司 | Rectangular ultrashort pulse generation system and method based on DMD |
EP3538948B1 (en) * | 2016-11-09 | 2024-07-31 | The University of Hong Kong | Spatio-temporally incremental fiber swept source |
-
2008
- 2008-06-25 CN CN200810053630XA patent/CN101303452B/en not_active Expired - Fee Related
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102023389B (en) * | 2009-09-16 | 2012-07-25 | 中国科学院微电子研究所 | Array partial ring zone photon sieve dodging device |
CN107771299A (en) * | 2015-06-23 | 2018-03-06 | 特拉迪欧德公司 | Optical element for changing the Beam parameter product in laser delivery systems is arranged |
CN107771299B (en) * | 2015-06-23 | 2021-11-19 | 特拉迪欧德公司 | Optical element arrangement for changing beam parameter product in laser delivery system |
EP3538948B1 (en) * | 2016-11-09 | 2024-07-31 | The University of Hong Kong | Spatio-temporally incremental fiber swept source |
CN106610529A (en) * | 2017-02-14 | 2017-05-03 | 山西大学 | Fiber type beam distributed phase retarder and speckle removing method thereof |
CN117277044A (en) * | 2023-11-16 | 2023-12-22 | 武汉光谷航天三江激光产业技术研究院有限公司 | Rectangular ultrashort pulse generation system and method based on DMD |
CN117277044B (en) * | 2023-11-16 | 2024-02-13 | 武汉光谷航天三江激光产业技术研究院有限公司 | Rectangular ultrashort pulse generation system and method based on DMD |
Also Published As
Publication number | Publication date |
---|---|
CN101303452B (en) | 2010-06-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9397467B2 (en) | Optical pumping device | |
US9664849B2 (en) | Single mode propagation in fibers and rods with large leakage channels | |
CN102368584A (en) | Passive mode-locking ultrashort pulse all-fiber laser with waveband of 2.0 microns | |
CN103944048B (en) | A kind of femto-second laser and preparation method based on single covering neodymium optical fiber and annular chamber | |
CN100371745C (en) | Generation of Hollow Beam and Tuning Method Using Optical Fiber Intermode Interference | |
CN101303452B (en) | Bundling optical fiber pulse delay overlapped shaper | |
CN102208739A (en) | High impulse energy cladding pumped ultrafast fiber laser | |
CN101552425A (en) | Lasers that output radially polarized beams | |
CN100428585C (en) | Dual Wavelength Pulsed Fiber Laser System | |
CN105720461A (en) | 2-micron wave band tunable thulium-holmium codoped mode-locking all-fiber laser | |
CN101329490B (en) | High power frequency changer of small core radial bundling type high non-linear photon crystal optical fiber | |
Du et al. | Mid-IR pulse amplification to∼ millijoule energies in a single transverse mode using large core Er: ZBLAN fibers operating at 2.8 µm | |
CA2779573C (en) | Optical source implementing a doped fiber, fiber for such an optical source and method for manufacturing such a fiber | |
CN203039222U (en) | A self-starting mode-locked fiber laser with polarization-stabilized control | |
CN102122790B (en) | Single-end optical fiber coupled linear polarization acousto-optic Q-switched optical fiber laser | |
CN103746282A (en) | Laser | |
CN216648850U (en) | Laser device | |
CN113708204B (en) | Multi-cavity composite pulse laser and multi-cavity composite pulse laser amplifier | |
CN102201640B (en) | Watt-level 1050nm photonic crystal fiber pulse laser and its amplification system | |
CN104009379A (en) | All-fiber laser frequency mixer and frequency mixer fiber laser thereof | |
CN2899204Y (en) | Dual-wavelength pulse fiber laser system | |
CN203774603U (en) | Coupler-based mode-locked laser | |
CN207559263U (en) | A kind of high efficiency all -fiber column vector beam laser | |
WO2020155573A1 (en) | High peak power low frequency passive mode-locked ultrafast laser | |
CN203690695U (en) | Laser |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C17 | Cessation of patent right | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20100623 Termination date: 20110625 |