CN101302535A - A method for constructing a plasmid expressing xylulokinase gene - Google Patents
A method for constructing a plasmid expressing xylulokinase gene Download PDFInfo
- Publication number
- CN101302535A CN101302535A CNA200810064831XA CN200810064831A CN101302535A CN 101302535 A CN101302535 A CN 101302535A CN A200810064831X A CNA200810064831X A CN A200810064831XA CN 200810064831 A CN200810064831 A CN 200810064831A CN 101302535 A CN101302535 A CN 101302535A
- Authority
- CN
- China
- Prior art keywords
- plasmid
- concentration
- constructing
- gene
- saccharomyces cerevisiae
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000013612 plasmid Substances 0.000 title claims abstract description 92
- 108091022915 xylulokinase Proteins 0.000 title claims abstract description 43
- 238000000034 method Methods 0.000 title claims abstract description 27
- 240000004808 Saccharomyces cerevisiae Species 0.000 claims abstract description 45
- 235000014680 Saccharomyces cerevisiae Nutrition 0.000 claims abstract description 45
- 239000012634 fragment Substances 0.000 claims abstract description 26
- 108090000623 proteins and genes Proteins 0.000 claims abstract description 21
- 101150100773 XKS1 gene Proteins 0.000 claims abstract description 15
- FQVLRGLGWNWPSS-BXBUPLCLSA-N (4r,7s,10s,13s,16r)-16-acetamido-13-(1h-imidazol-5-ylmethyl)-10-methyl-6,9,12,15-tetraoxo-7-propan-2-yl-1,2-dithia-5,8,11,14-tetrazacycloheptadecane-4-carboxamide Chemical compound N1C(=O)[C@@H](NC(C)=O)CSSC[C@@H](C(N)=O)NC(=O)[C@H](C(C)C)NC(=O)[C@H](C)NC(=O)[C@@H]1CC1=CN=CN1 FQVLRGLGWNWPSS-BXBUPLCLSA-N 0.000 claims abstract description 9
- 102100034035 Alcohol dehydrogenase 1A Human genes 0.000 claims abstract description 9
- 101000892220 Geobacillus thermodenitrificans (strain NG80-2) Long-chain-alcohol dehydrogenase 1 Proteins 0.000 claims abstract description 9
- 101000780443 Homo sapiens Alcohol dehydrogenase 1A Proteins 0.000 claims abstract description 9
- 101100103120 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) XKS1 gene Proteins 0.000 claims abstract description 8
- 239000013598 vector Substances 0.000 claims abstract description 8
- 102000004190 Enzymes Human genes 0.000 claims description 33
- 108090000790 Enzymes Proteins 0.000 claims description 33
- 238000006243 chemical reaction Methods 0.000 claims description 32
- 238000011144 upstream manufacturing Methods 0.000 claims description 32
- 239000000872 buffer Substances 0.000 claims description 17
- 102000012410 DNA Ligases Human genes 0.000 claims description 13
- 108010061982 DNA Ligases Proteins 0.000 claims description 13
- 238000000137 annealing Methods 0.000 claims description 12
- 238000004925 denaturation Methods 0.000 claims description 12
- 230000036425 denaturation Effects 0.000 claims description 12
- 238000012257 pre-denaturation Methods 0.000 claims description 12
- 108091008146 restriction endonucleases Proteins 0.000 claims description 12
- 239000012154 double-distilled water Substances 0.000 claims description 10
- 230000003321 amplification Effects 0.000 claims description 9
- 239000000203 mixture Substances 0.000 claims description 9
- 238000003199 nucleic acid amplification method Methods 0.000 claims description 9
- BRZYSWJRSDMWLG-CAXSIQPQSA-N geneticin Natural products O1C[C@@](O)(C)[C@H](NC)[C@@H](O)[C@H]1O[C@@H]1[C@@H](O)[C@H](O[C@@H]2[C@@H]([C@@H](O)[C@H](O)[C@@H](C(C)O)O2)N)[C@@H](N)C[C@H]1N BRZYSWJRSDMWLG-CAXSIQPQSA-N 0.000 claims description 8
- 238000010367 cloning Methods 0.000 claims description 7
- 230000029087 digestion Effects 0.000 claims description 6
- 239000003550 marker Substances 0.000 claims description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical group O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 6
- 239000012153 distilled water Substances 0.000 claims description 4
- 230000010354 integration Effects 0.000 claims description 3
- SRBFZHDQGSBBOR-IOVATXLUSA-N D-xylopyranose Chemical compound O[C@@H]1COC(O)[C@H](O)[C@H]1O SRBFZHDQGSBBOR-IOVATXLUSA-N 0.000 abstract description 26
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 abstract description 18
- PYMYPHUHKUWMLA-UHFFFAOYSA-N arabinose Natural products OCC(O)C(O)C(O)C=O PYMYPHUHKUWMLA-UHFFFAOYSA-N 0.000 abstract description 13
- SRBFZHDQGSBBOR-UHFFFAOYSA-N beta-D-Pyranose-Lyxose Natural products OC1COC(O)C(O)C1O SRBFZHDQGSBBOR-UHFFFAOYSA-N 0.000 abstract description 13
- 229960002675 xylitol Drugs 0.000 abstract description 7
- 239000000811 xylitol Substances 0.000 abstract description 7
- TVXBFESIOXBWNM-UHFFFAOYSA-N Xylitol Natural products OCCC(O)C(O)C(O)CCO TVXBFESIOXBWNM-UHFFFAOYSA-N 0.000 abstract description 6
- 239000006227 byproduct Substances 0.000 abstract description 6
- 238000004519 manufacturing process Methods 0.000 abstract description 6
- HEBKCHPVOIAQTA-UHFFFAOYSA-N meso ribitol Natural products OCC(O)C(O)C(O)CO HEBKCHPVOIAQTA-UHFFFAOYSA-N 0.000 abstract description 6
- 238000012269 metabolic engineering Methods 0.000 abstract description 6
- HEBKCHPVOIAQTA-SCDXWVJYSA-N xylitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)CO HEBKCHPVOIAQTA-SCDXWVJYSA-N 0.000 abstract description 6
- 235000010447 xylitol Nutrition 0.000 abstract description 6
- 238000000855 fermentation Methods 0.000 abstract description 5
- 230000004151 fermentation Effects 0.000 abstract description 5
- 238000010276 construction Methods 0.000 abstract description 4
- 230000002503 metabolic effect Effects 0.000 abstract description 3
- 239000013600 plasmid vector Substances 0.000 abstract description 3
- 230000002759 chromosomal effect Effects 0.000 abstract 1
- 230000000694 effects Effects 0.000 description 15
- 102100029089 Xylulose kinase Human genes 0.000 description 14
- 239000000243 solution Substances 0.000 description 10
- 238000012408 PCR amplification Methods 0.000 description 6
- 210000004027 cell Anatomy 0.000 description 5
- 239000006228 supernatant Substances 0.000 description 5
- 229930027945 nicotinamide-adenine dinucleotide Natural products 0.000 description 4
- BOPGDPNILDQYTO-NNYOXOHSSA-N nicotinamide-adenine dinucleotide Chemical compound C1=CCC(C(=O)N)=CN1[C@H]1[C@H](O)[C@H](O)[C@@H](COP(O)(=O)OP(O)(=O)OC[C@@H]2[C@H]([C@@H](O)[C@@H](O2)N2C3=NC=NC(N)=C3N=C2)O)O1 BOPGDPNILDQYTO-NNYOXOHSSA-N 0.000 description 4
- 239000002773 nucleotide Substances 0.000 description 4
- 125000003729 nucleotide group Chemical group 0.000 description 4
- ZAQJHHRNXZUBTE-WUJLRWPWSA-N D-xylulose Chemical compound OC[C@@H](O)[C@H](O)C(=O)CO ZAQJHHRNXZUBTE-WUJLRWPWSA-N 0.000 description 3
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 3
- 230000001580 bacterial effect Effects 0.000 description 3
- 230000004127 xylose metabolism Effects 0.000 description 3
- 241000894006 Bacteria Species 0.000 description 2
- 229910009891 LiAc Inorganic materials 0.000 description 2
- 108700040099 Xylose isomerases Proteins 0.000 description 2
- 210000000349 chromosome Anatomy 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 230000031700 light absorption Effects 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 230000002018 overexpression Effects 0.000 description 2
- 230000004108 pentose phosphate pathway Effects 0.000 description 2
- YBYRMVIVWMBXKQ-UHFFFAOYSA-N phenylmethanesulfonyl fluoride Chemical compound FS(=O)(=O)CC1=CC=CC=C1 YBYRMVIVWMBXKQ-UHFFFAOYSA-N 0.000 description 2
- 239000008363 phosphate buffer Substances 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 102000004169 proteins and genes Human genes 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 230000009466 transformation Effects 0.000 description 2
- 241000251468 Actinopterygii Species 0.000 description 1
- 241000972773 Aulopiformes Species 0.000 description 1
- FNZLKVNUWIIPSJ-RFZPGFLSSA-N D-xylulose 5-phosphate Chemical compound OCC(=O)[C@@H](O)[C@H](O)COP(O)(O)=O FNZLKVNUWIIPSJ-RFZPGFLSSA-N 0.000 description 1
- 238000007400 DNA extraction Methods 0.000 description 1
- 101710088194 Dehydrogenase Proteins 0.000 description 1
- 241000588724 Escherichia coli Species 0.000 description 1
- 101150063416 add gene Proteins 0.000 description 1
- 230000003698 anagen phase Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 230000008033 biological extinction Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 238000003028 enzyme activity measurement method Methods 0.000 description 1
- 238000001952 enzyme assay Methods 0.000 description 1
- 238000001976 enzyme digestion Methods 0.000 description 1
- 239000013604 expression vector Substances 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 235000019688 fish Nutrition 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 230000002538 fungal effect Effects 0.000 description 1
- 230000002068 genetic effect Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 230000006801 homologous recombination Effects 0.000 description 1
- 238000002744 homologous recombination Methods 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 239000012139 lysis buffer Substances 0.000 description 1
- 230000037353 metabolic pathway Effects 0.000 description 1
- 230000004060 metabolic process Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 238000011022 operating instruction Methods 0.000 description 1
- 230000037361 pathway Effects 0.000 description 1
- 230000026731 phosphorylation Effects 0.000 description 1
- 238000006366 phosphorylation reaction Methods 0.000 description 1
- 238000004321 preservation Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000009790 rate-determining step (RDS) Methods 0.000 description 1
- 235000019515 salmon Nutrition 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 230000010473 stable expression Effects 0.000 description 1
- 239000011550 stock solution Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
- -1 vortexed and mixed Substances 0.000 description 1
- 150000003741 xylose derivatives Chemical class 0.000 description 1
Landscapes
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Abstract
一种表达木酮糖激酶基因的质粒的构建方法,它涉及一种质粒载体的构建方法。它解决了目前经代谢工程改造后的酿酒酵母木糖利用率仍然很低,且发酵副产物木糖醇产生量高的问题。构建方法:先克隆KanR基因、XKS1基因、ADH1终止子片段、酿酒酵母中2.2kb rDNA片段;然后回收、纯化基因片段与pGEMT Easy载体连接;再依次构建质粒pR、质粒pRK和质粒pRKT;最后将2.2kb rDNA片段加入质粒pRKT。本发明方法所构建的载体可以将XKS1基因高拷贝整合到酿酒酵母的染色体基因组上,实现XKS1的超量稳定表达,疏通了酿酒酵母利用木糖产乙醇的木糖代谢流,提高了木糖的利用率,降低了副产物木糖醇的产量。A method for constructing a plasmid expressing xylulokinase gene, which relates to a method for constructing a plasmid vector. The method solves the problems that the xylose utilization rate of Saccharomyces cerevisiae modified by metabolic engineering is still low and the production of xylitol, a by-product of fermentation, is high. Construction method: first clone the KanR gene, XKS1 gene, ADH1 terminator fragment, and 2.2kb rDNA fragment in Saccharomyces cerevisiae; then recover and purify the gene fragments and connect them to the pGEMT Easy vector; A 2.2kb rDNA fragment was added to plasmid pRKT. The vector constructed by the method of the present invention can integrate a high copy of the XKS1 gene into the chromosomal genome of Saccharomyces cerevisiae, realize the over-stable expression of XKS1, dredge the xylose metabolic flow of Saccharomyces cerevisiae using xylose to produce ethanol, and improve the production of xylose Utilization rate reduces the yield of by-product xylitol.
Description
技术领域 technical field
本发明涉及一种质粒载体的构建方法。The invention relates to a method for constructing a plasmid vector.
背景技术 Background technique
酿酒酵母(Saccharomyces cerevisiae)不具备木糖代谢能力,因此无法发酵植物纤维水解液生产乙醇。目前采用代谢工程手段在酿酒酵母中人为建立木糖代谢途径——木糖还原酶-木糖醇脱氢酶(XR-XDH)途径或木糖异构酶(XI)途径。但是经代谢工程改造后的酿酒酵母的木糖利用率仍然很低,而且发酵副产物木糖醇产生量高,导致乙醇得率难以提高。Saccharomyces cerevisiae does not have the ability to metabolize xylose, so it cannot ferment plant fiber hydrolyzate to produce ethanol. At present, xylose metabolism pathways—xylose reductase-xylitol dehydrogenase (XR-XDH) pathway or xylose isomerase (XI) pathway—are artificially established in Saccharomyces cerevisiae by means of metabolic engineering. However, the utilization rate of xylose in Saccharomyces cerevisiae after metabolic engineering is still very low, and the production of xylitol, a by-product of fermentation, is high, which makes it difficult to increase the yield of ethanol.
发明内容 Contents of the invention
本发明的目的是为了解决目前经代谢工程改造后的酿酒酵母木糖利用率仍然很低,且发酵副产物木糖醇产生量高的问题,而提供的一种表达木酮糖激酶基因的质粒的构建方法。The purpose of the present invention is to provide a plasmid expressing xylulokinase gene in order to solve the problem that the xylose utilization rate of Saccharomyces cerevisiae after metabolic engineering is still very low and the fermentation by-product xylitol production is high The construction method.
表达木酮糖激酶基因的质粒的构建方法按以下步骤进行:一、克隆质粒pKT0150中KanR基因;二、克隆酿酒酵母XKS1基因;三、克隆质粒pKT0150中ADH1终止子片段;四、克隆酿酒酵母中2.2kb rDNA片段;五、回收、纯化步骤一至四制备的基因片段,然后再分别与pGEMT Easy载体在16℃的条件下连接10~12h,得到pGMT-KanR、pGMT-XKS1、pGMT-ADH1T和pGMT-rDNA;六、构建质粒pR,以酿酒酵母整合载体p406ADH1为骨架引入有抗性标记的基因KanR;七、构建质粒pRK,将XKS1基因加入质粒pR;八、构建质粒pRKT,将ADH1终止子片段加入质粒pRK;九、将2.2kb rDNA片段加入质粒pRKT,即得到表达木酮糖激酶基因的质粒;其中步骤一中扩增上游引物序列为5’-TTCCATATGTCTGTTTAGCTTGCCTC-3’,下游引物序列为5’-CTTGACGTCTATCATCGATGAATTCGA-3’;步骤二中扩增上游引物序列为5’-CGGACTAGTCTCAATCTTCAGCAAGCGAC-3’,下游引物序列为5’-CGCGTCGACAACGGGGAACAAAATGATG-3’;步骤三中扩增上游引物序列为5’-CGCGTCGACATTTGTTACTGCTGCTGGTATT-3’,下游引物序列为5’-CTCGGCCGCCCTGTTATCCCTAGCGG-3’;步骤四中扩增上游引物序列为5’-TTCCATATGGGAACCTCTAATCATTCGCT-3’,下游引物序列为5’-TCTCGGCCGAACGAACGAGACCTTAACCT-3’。The construction method of the plasmid expressing the xylulokinase gene is carried out according to the following steps: 1. clone the KanR gene in the plasmid pKT0150; 2. clone the XKS1 gene of Saccharomyces cerevisiae; 3. clone the ADH1 terminator fragment in the plasmid pKT0150; 2.2kb rDNA fragment; 5. Recover and purify the gene fragments prepared in steps 1 to 4, and then ligate them with pGEMT Easy vector at 16°C for 10-12 hours to obtain pGMT-KanR, pGMT-XKS1, pGMT-ADH1T and pGMT -rDNA; 6. Construct plasmid pR, and use Saccharomyces cerevisiae integration carrier p406ADH1 as the backbone to introduce the gene KanR with resistance marker; 7. Construct plasmid pRK, add XKS1 gene to plasmid pR; 8. Construct plasmid pRKT, insert ADH1 terminator fragment Add the plasmid pRK; 9. Add the 2.2kb rDNA fragment to the plasmid pRKT to obtain a plasmid expressing the xylulokinase gene; wherein the sequence of the upstream primer amplified in step 1 is 5'-TTCCATATGTCTGTTTAGCTTGCCTC-3', and the sequence of the downstream primer is 5' -CTTGACGTCTATCATCGATGAATTCGA-3'; the sequence of the upstream primer for amplification in step 2 is 5'-CGGACTAGTCTCAATCTTCAGCAAGCGAC-3', and the sequence of the downstream primer is 5'-CGCGTCGACAACGGGGAACAAAATGATG-3'; the sequence of the upstream primer for amplification in step 3 is 5'-CGCGTCGACATTTGTTACTGCTGCTGGTATT-3 ', the sequence of the downstream primer is 5'-CTCGGCCGCCCTGTTATTCCCTAGCGG-3'; the sequence of the upstream primer for amplification in step 4 is 5'-TTCCATATGGGAACCTCTAATCATTCGCT-3', and the sequence of the downstream primer is 5'-TCTCGGCCGAACGAACGAGACCTTAACCT-3'.
木酮糖激酶(xylulokinase,XK)能够催化木酮糖磷酸化形成5-磷酸木酮糖,是木糖代谢的限速步骤之一,处于木糖代谢物进入磷酸戊糖途径(PPP)的节点位置。虽然酿酒酵母自身具有木酮糖代谢的下游酶系,但由于其活性较低限制了木糖代谢流向磷酸戊糖途径(PPP),从而导致经代谢工程改造后的酿酒酵母的木糖利用率依然较低,发酵副产物木糖醇产生量高,乙醇得率仍较低。Xylulokinase (xylulokinase, XK) can catalyze the phosphorylation of xylulose to form xylulose 5-phosphate, which is one of the rate-limiting steps of xylose metabolism and is at the node of xylose metabolites entering the pentose phosphate pathway (PPP) Location. Although Saccharomyces cerevisiae has a downstream enzyme system of xylulose metabolism, its low activity limits the flow of xylose metabolism to the pentose phosphate pathway (PPP), resulting in the metabolic engineering of Saccharomyces cerevisiae. Low, the production of xylitol, a by-product of fermentation, is high, and the yield of ethanol is still low.
酿酒酵母内源性超表达木酮糖激酶基因XKS1可以加速木糖代谢流,提高酿酒酵母的木糖利用率和乙醇得率。本发明方法构建了一种携带有木酮糖激酶基因XKS1的、适合于酿酒酵母工业菌株的多拷贝整合表达载体,该载体可以将超表达木酮糖激酶基因XKS1高拷贝整合到酿酒酵母的染色体基因组上,从而实现了木酮糖激酶XKS1的超量稳定表达,疏通了酿酒酵母利用木糖产乙醇的木糖代谢流,提高了木糖的利用率,降低了副产物木糖醇的产量。将本发明方法构建的质粒转入酿酒酵母中,对比发酵试验证明转入本发明方法构建质粒的酿酒酵母的乙醇得率比经代谢工程改造后的酿酒酵母的乙醇得率高30%以上,说明本发明方法构建的质粒转入酿酒酵母后可以消除木糖转化乙醇代谢途径上的限制,提高了下游酶系的活性。The endogenous overexpression of xylulokinase gene XKS1 in Saccharomyces cerevisiae can accelerate the xylose metabolic flux and improve the xylose utilization rate and ethanol yield of Saccharomyces cerevisiae. The method of the present invention constructs a multi-copy integrated expression vector carrying xylulokinase gene XKS1 and is suitable for industrial strains of Saccharomyces cerevisiae, and the vector can integrate a high copy of overexpressed xylulokinase gene XKS1 into the chromosome of Saccharomyces cerevisiae On the genome, the stable overexpression of xylulokinase XKS1 has been realized, the xylose metabolic flow of Saccharomyces cerevisiae using xylose to produce ethanol has been dredged, the utilization rate of xylose has been improved, and the by-product xylitol production has been reduced. The plasmid constructed by the method of the present invention is transferred into Saccharomyces cerevisiae, and the comparative fermentation test proves that the ethanol yield of Saccharomyces cerevisiae transferred to the plasmid constructed by the method of the present invention is more than 30% higher than the ethanol yield of Saccharomyces cerevisiae after metabolic engineering transformation, indicating that After the plasmid constructed by the method of the invention is transferred into Saccharomyces cerevisiae, the restriction on the xylose conversion ethanol metabolic pathway can be eliminated, and the activity of the downstream enzyme system can be improved.
具体实施方式 Detailed ways
具体实施方式一:本实施方式表达木酮糖激酶基因的质粒的构建方法按以下步骤进行:一、克隆质粒pKT0150中KanR基因;二、克隆酿酒酵母XKS1基因;三、克隆质粒pKT0150中ADH1终止子片段;四、克隆酿酒酵母中2.2kbrDNA片段;五、回收、纯化步骤一至四制备的基因片段,然后再分别与pGEMTEasy载体在16℃的条件下连接10~12h,得到pGMT-KanR、pGMT-XKS1、pGMT-ADH1T和pGMT-rDNA;六、构建质粒pR,以酿酒酵母整合载体p406ADH1为骨架引入有抗性标记的基因KanR;七、构建质粒pRK,将XKS1基因加入质粒pR;八、构建质粒pRKT,将ADH1终止子片段加入质粒pRK;Specific embodiment 1: The construction method of the plasmid expressing the xylulokinase gene in this embodiment is carried out according to the following steps: 1. Cloning the KanR gene in the plasmid pKT0150; 2. Cloning the XKS1 gene of Saccharomyces cerevisiae; 3. Cloning the ADH1 terminator in the plasmid pKT0150 Fragment; 4. Clone the 2.2kbr DNA fragment in Saccharomyces cerevisiae; 5. Recover and purify the gene fragments prepared in steps 1 to 4, and then connect them to the pGEMTEasy vector at 16°C for 10-12 hours to obtain pGMT-KanR and pGMT-XKS1 , pGMT-ADH1T and pGMT-rDNA; 6. Construct plasmid pR, and introduce the gene KanR with resistance marker with Saccharomyces cerevisiae integration vector p406ADH1 as the backbone; 7. Construct plasmid pRK, add XKS1 gene to plasmid pR; 8. Construct plasmid pRKT , adding the ADH1 terminator fragment to the plasmid pRK;
九、将2.2kb rDNA片段加入质粒pRKT,即得到表达木酮糖激酶基因的质粒;9. Add the 2.2kb rDNA fragment to the plasmid pRKT to obtain a plasmid expressing the xylulokinase gene;
其中步骤一中扩增上游引物序列为5’-TTCCATATGTCTGTTTAGCTTGCCTC-3’,下游引物序列为5’-CTTGACGTCTATCATCGATGAATTCGA-3’;步骤二中扩增上游引物序列为5’-CGGACTAGTCTCAATCTTCAGCAAGCGAC-3’,下游引物序列为5’-CGCGTCGACAACGGGGAACAAAATGATG-3’;步骤三中扩增上游引物序列为5’-CGCGTCGACATTTGTTACTGCTGCTGGTATT-3’,下游引物序列为5’-TCTCGGCCGCCCTGTTATCCCTAGCGG-3’;步骤四中扩增上游引物序列为5’-TTCCATATGGGAACCTCTAATCATTCGCT-3’,下游引物序列为5’-TCTCGGCCGAACGAACGAGACCTTAACCT-3’。The upstream primer sequence amplified in step 1 is 5'-TTC CATATG TCTGTTTAGCTTGCCTC-3', the downstream primer sequence is 5'-CTT GACGTC TATCATCGATGAATTCGA-3'; the upstream primer sequence amplified in step 2 is 5'-CGG ACTAGT CTCAATCTTCAGCAAGCGAC- 3', the sequence of the downstream primer is 5'-CGC GTCGAC AACGGGGAACAAAATGATG-3'; the sequence of the upstream primer for amplification in step 3 is 5'-CGC GTCGAC ATTTGTTACTGCTGCTGGTATT-3', and the sequence of the downstream primer is 5'-TCT CGGCCG CCCTGTTATTCCCTAGCGG-3'; In Step 4, the sequence of the upstream primer for amplification is 5'-TTC CATATG GGAACCTCTAATCATTCGCT-3', and the sequence of the downstream primer is 5'-TCT CGGCCG AACGAACGAGACCTTAACCT-3'.
本实施方式步骤五用上海华舜生物工程有限公司生产的DNA胶回收试剂盒(Gel Extraction Mini Kit)进行回收。步骤五中的四组连接体系均为10μL,均由1μL纯化的基因片段、1μL的pGMT-easy、1μL 10×T4DNA连接缓冲液、1μLT4DNA连接酶和余量重蒸馏水的组成。Step 5 of this embodiment uses the DNA Gel Extraction Kit (Gel Extraction Mini Kit) produced by Shanghai Huashun Biological Engineering Co., Ltd. to recover. The four sets of ligation systems in Step 5 are all 10 μL, and they all consist of 1 μL of purified gene fragments, 1 μL of pGMT-easy, 1 μL of 10×T4 DNA ligation buffer, 1 μL of LT4 DNA ligase and the rest of double-distilled water.
本实施方式步骤五得到的连接产物pGMT-KanR、pGMT-XKS1、pGMT-ADH1T和pGMT-rDNA可以转化E.coli DH5α进行保存扩增。The ligation products pGMT-KanR, pGMT-XKS1, pGMT-ADH1T and pGMT-rDNA obtained in Step 5 of this embodiment can be transformed into E.coli DH5α for preservation and amplification.
本实施方式步骤一上游引物中加入Nde I的识别位点(加下划线部分),步骤一下游引物中加入AatII的识别位点(加下划线部分);步骤二上游引物中加入Spe I的识别位点(加下划线部分),步骤二下游引物中加入Sal I的识别位点(加下划线部分);步骤三上游引物中加入Sal I的识别位点(加下划线部分),步骤三下游引物中加入Eag I的识别位点(加下划线部分);步骤四上游引物中加入Nde I的识别位点(加下划线部分),步骤四下游引物中加入EagI的识别位点(加下划线部分)。本实施方式步骤四克隆的2.2kb的rDNA片段用于构建质粒同源重组位点,其中含有质粒用于线性转化的HpaI单酶切位点。The recognition site of Nde I (underlined part) is added in the upstream primer of step 1 of the present embodiment, the recognition site of AatII (underlined part) is added in the downstream primer of step 1; the recognition site of Spe I is added in the upstream primer of step 2 (underlined part), the recognition site of Sal I (underlined part) is added in the downstream primer of step 2; the recognition site of Sal I (underlined part) is added in the upstream primer of step 3, and Eag I is added in the downstream primer of step 3 The recognition site of Nde I (underlined part) is added in the step 4 upstream primer, and the recognition site of EagI is added in the step 4 downstream primer (underlined part). The 2.2 kb rDNA fragment cloned in Step 4 of this embodiment is used to construct a plasmid homologous recombination site, which contains a HpaI single restriction site for linear transformation of the plasmid.
本实施方式质粒pKT0150购自于Addgene公司,酿酒酵母基因组DNA利用天净沙公司的真菌基因组DNA提取试剂盒得到。本实施方式中使用的药品、试剂、酶、感受态细胞和质粒等均容易购得,若无特殊要求则浓度为产品标注浓度。The plasmid pKT0150 of this embodiment was purchased from Addgene Company, and the genomic DNA of Saccharomyces cerevisiae was obtained by using the fungal genomic DNA extraction kit of Tianjingsha Company. The medicines, reagents, enzymes, competent cells and plasmids used in this embodiment are all readily available, and the concentration is the concentration marked on the product if there is no special requirement.
本实施方式步骤五至九参见试剂盒使用操作手册。For steps 5 to 9 of this embodiment, refer to the operation manual of the kit.
本实施方式步骤五至九各步骤得到的质粒经PCR验证后可转化入E.coliDH5α中保存和扩增。The plasmids obtained in steps 5 to 9 of this embodiment can be transformed into E.coliDH5α for storage and amplification after PCR verification.
具体实施方式二:本实施方式与具体实施方式一的不同点是:步骤六中的抗性标记为G418(遗传霉素)。其它步骤及参数与实施方式一相同。Embodiment 2: The difference between this embodiment and Embodiment 1 is that the resistance marker in step 6 is G418 (geneticin). Other steps and parameters are the same as those in Embodiment 1.
具体实施方式三:本实施方式与具体实施方式一的不同点是:步骤一中PCR反应体系为10μL,由1μL 10×PCR buffer、0.8μL浓度为2.5mmol/L的dNTP、1μL浓度为1pmol/μL的上游引物、1μL浓度为1pmol/μL的下游引物、0.8μL浓度为25mmol/L的MgCl2、2μL质粒pKT0150、0.2μL浓度为5U/mL的Taq酶和余量重蒸馏水的组成;PCR反应条件:预变性94℃2min,变性94℃1min,退火45℃1min,延伸72℃2min,共30个循环,延伸72℃7min。其它步骤及参数与实施方式一相同。Specific embodiment three: The difference between this embodiment and specific embodiment one is: in step one, the PCR reaction system is 10 μL, consisting of 1 μL 10×PCR buffer, 0.8 μL of dNTP with a concentration of 2.5 mmol/L, and 1 μL with a concentration of 1 pmol/L The composition of μL upstream primer, 1 μL downstream primer with a concentration of 1 pmol/μL, 0.8 μL MgCl 2 with a concentration of 25 mmol/L, 2 μL plasmid pKT0150, 0.2 μL Taq enzyme with a concentration of 5 U/mL and the rest of double distilled water; PCR reaction Conditions: Pre-denaturation at 94°C for 2min, denaturation at 94°C for 1min, annealing at 45°C for 1min, extension at 72°C for 2min, a total of 30 cycles, and extension at 72°C for 7min. Other steps and parameters are the same as those in Embodiment 1.
本实施方式中用到的10×PCR buffer中不含有Mg2+。The 10×PCR buffer used in this embodiment does not contain Mg 2+ .
具体实施方式四:本实施方式与具体实施方式一的不同点是:步骤二中PCR反应体系为10μL,由1μL10×PCR buffer、0.8μL浓度为2.5mmol/L的dNTP、1μL浓度为1pmol/μL的上游引物、1μL浓度为1pmol/μL的下游引物、0.8μL浓度为25mmol/L的MgCl2、2μL酿酒酵母基因组DNA、0.2μL浓度为5U/mL的Taq酶和余量重蒸馏水的组成;PCR反应条件:预变性94℃5min,变性94℃1min,退火55℃1min,延伸72℃2min,共30个循环,延伸72℃10min。其它步骤及参数与实施方式一相同。Embodiment 4: The difference between this embodiment and Embodiment 1 is that the PCR reaction system in step 2 is 10 μL, consisting of 1 μL of 10×PCR buffer, 0.8 μL of dNTP with a concentration of 2.5 mmol/L, and 1 μL of dNTP with a concentration of 1 pmol/μL The composition of the upstream primer, 1μL downstream primer with a concentration of 1pmol/μL, 0.8μL MgCl 2 with a concentration of 25mmol/L, 2μL Saccharomyces cerevisiae genomic DNA, 0.2μL Taq enzyme with a concentration of 5U/mL and the rest of double distilled water; PCR Reaction conditions: pre-denaturation at 94°C for 5min, denaturation at 94°C for 1min, annealing at 55°C for 1min, extension at 72°C for 2min, a total of 30 cycles, and extension at 72°C for 10min. Other steps and parameters are the same as those in Embodiment 1.
本实施方式中用到的10×PCR buffer中不含有Mg2+。The 10×PCR buffer used in this embodiment does not contain Mg 2+ .
具体实施方式五:本实施方式与具体实施方式一的不同点是:步骤三中PCR反应体系为10μL,由1μL 10×PCR buffer、0.8μL浓度为2.5mmol/L的dNTP、1μL浓度为1pmol/μL的上游引物、1μL浓度为1pmol/μL的下游引物、0.8μL浓度为25mmol/L的MgCl2、2μL质粒pKT0150、0.2μL浓度为5U/mL的Taq酶和余量重蒸馏水的组成;PCR反应条件:预变性94℃2min,变性94℃1min,退火50℃1min,延伸72℃2min,共30个循环,延伸72℃7min。其它步骤及参数与实施方式一相同。Embodiment 5: The difference between this embodiment and Embodiment 1 is that the PCR reaction system in step 3 is 10 μL, consisting of 1 μL 10×PCR buffer, 0.8 μL of dNTP with a concentration of 2.5 mmol/L, and 1 μL with a concentration of 1 pmol/L. The composition of μL upstream primer, 1 μL downstream primer with a concentration of 1 pmol/μL, 0.8 μL MgCl 2 with a concentration of 25 mmol/L, 2 μL plasmid pKT0150, 0.2 μL Taq enzyme with a concentration of 5 U/mL and the rest of double distilled water; PCR reaction Conditions: pre-denaturation at 94°C for 2min, denaturation at 94°C for 1min, annealing at 50°C for 1min, extension at 72°C for 2min, a total of 30 cycles, and extension at 72°C for 7min. Other steps and parameters are the same as those in Embodiment 1.
本实施方式中用到的10×PCR buffer中不含有Mg2+。The 10×PCR buffer used in this embodiment does not contain Mg 2+ .
具体实施方式六:本实施方式与具体实施方式一的不同点是:步骤四中PCR反应体系为10μL,由1μL 10×PCR buffer、0.8μL浓度为2.5mmol/L的dNTP、1μL浓度为1pmol/μL的上游引物、1μL浓度为1pmol/μL的下游引物、0.8μL浓度为25mmol/L的MgCl2、2μL酿酒酵母基因组DNA、0.2μL浓度为5U/mL的Taq酶和余量重蒸馏水的组成;PCR反应条件:预变性94℃2min,变性94℃1min,退火53℃1min,延伸72℃2.5min,共30个循环,延伸72℃7min。其它步骤及参数与实施方式一相同。Embodiment 6: The difference between this embodiment and Embodiment 1 is that the PCR reaction system in step 4 is 10 μL, consisting of 1 μL 10×PCR buffer, 0.8 μL of dNTP with a concentration of 2.5 mmol/L, and 1 μL with a concentration of 1 pmol/L. μL of upstream primers, 1 μL of downstream primers with a concentration of 1 pmol/μL, 0.8 μL of MgCl 2 with a concentration of 25 mmol/L, 2 μL of Saccharomyces cerevisiae genomic DNA, 0.2 μL of Taq enzyme with a concentration of 5 U/mL and the rest of double distilled water; PCR reaction conditions: pre-denaturation at 94°C for 2min, denaturation at 94°C for 1min, annealing at 53°C for 1min, extension at 72°C for 2.5min, a total of 30 cycles, and extension at 72°C for 7min. Other steps and parameters are the same as those in Embodiment 1.
本实施方式中用到的10×PCR buffer中不含有Mg2+。The 10×PCR buffer used in this embodiment does not contain Mg 2+ .
具体实施方式七:本实施方式与具体实施方式一的不同点是:步骤六中用限制性内切酶Nde I和Aat II对p406ADH1和pGMT-KanR分别进行双酶切,然后用T4DNA连接酶进行连接,得到质粒pR。其它步骤及参数与实施方式一相同。Embodiment 7: The difference between this embodiment and Embodiment 1 is: in step 6, p406ADH1 and pGMT-KanR are double-digested with restriction endonucleases Nde I and Aat II, and then T4DNA ligase is used to carry out double digestion. Ligated to obtain plasmid pR. Other steps and parameters are the same as those in Embodiment 1.
本实施方式步骤六参见试剂盒使用操作手册进行操作。Step 6 of this embodiment is performed by referring to the operation manual of the kit.
具体实施方式八:本实施方式与具体实施方式一的不同点是:步骤七中用限制性内切酶Spe I和Sal I对质粒pR和pGMT-XKS1分别进行双酶切,然后用T4DNA连接酶进行连接,得到质粒pRK。其它步骤及参数与实施方式一相同。Embodiment 8: The difference between this embodiment and Embodiment 1 is: in step 7, use restriction endonuclease Spe I and Sal I to carry out double digestion of plasmid pR and pGMT-XKS1 respectively, and then use T4DNA ligase Ligation was performed to obtain plasmid pRK. Other steps and parameters are the same as those in Embodiment 1.
本实施方式步骤七参见试剂盒使用操作手册进行操作。Step 7 of this embodiment is performed by referring to the operation manual of the kit.
具体实施方式九:本实施方式与具体实施方式一的不同点是:步骤八中用限制性内切酶Sal I和Eag I对质粒pRK和pGMT-ADH1T分别进行双酶切,然后用T4DNA连接酶进行连接,得到质粒pRKT。其它步骤及参数与实施方式一相同。Specific embodiment nine: the difference between this embodiment and specific embodiment one is: in step eight, plasmid pRK and pGMT-ADH1T are double-enzymatically digested with restriction endonuclease Sal I and Eag I, and then T4DNA ligase is used Ligation was performed to obtain plasmid pRKT. Other steps and parameters are the same as those in Embodiment 1.
本实施方式步骤八参见试剂盒使用操作手册进行操作。In Step 8 of this embodiment, refer to the operation manual of the kit for operation.
具体实施方式十:本实施方式与具体实施方式一的不同点是:步骤九中用限制性内切酶Nde I、Eag I对质粒pRKT和pGMT-rDNA分别进行双酶切,然后用T4DNA连接酶进行连接,即得到表达木酮糖激酶基因的质粒。其它步骤及参数与实施方式一相同。Embodiment 10: The difference between this embodiment and Embodiment 1 is that in step 9, plasmids pRKT and pGMT-rDNA are double-digested with restriction endonucleases Nde I and Eag I, and then T4DNA ligase is used Ligation is performed to obtain a plasmid expressing the xylulokinase gene. Other steps and parameters are the same as those in Embodiment 1.
本实施方式步骤九参见试剂盒使用操作手册进行操作。Step 9 of this embodiment is performed by referring to the operation manual of the kit.
具体实施方式十一:本实施方式与具体实施方式一的不同点是:步骤五中抗性标记为G418;步骤一中PCR反应体系为10μL,由1μL10×PCR buffer、0.8μL浓度为2.5mmol/L的dNTP、1μL浓度为1pmol/μL的上游引物、1μL浓度为1pmol/μL的下游引物、0.8μL浓度为25mmol/L的MgCl2、2μL质粒pKT0150、0.2μL浓度为5U/mL的Taq酶和余量重蒸馏水的组成;PCR反应条件:预变性94℃2min,变性94℃1min,退火45℃1min,延伸72℃2min,共30个循环,延伸72℃7min;步骤二中PCR反应体系为10μL,由1μL10×PCRbuffer、0.8μL浓度为2.5mmol/L的dNTP、1μL浓度为1pmol/μL的上游引物、1μL浓度为1pmol/μL的下游引物、0.8μL浓度为25mmol/L的MgCl2、2μL酿酒酵母基因组DNA、0.2μL浓度为5U/mL的Taq酶和余量重蒸馏水的组成;PCR反应条件:预变性94℃5min,变性94℃1min,退火55℃1min,延伸72℃2min,共30个循环,延伸72℃10min;步骤三中PCR反应体系为10μL,由1μL 10×PCR buffer、0.8μL浓度为2.5mmol/L的dNTP、1μL浓度为1pmol/μL的上游引物、1μL浓度为1pmol/μL的下游引物、0.8μL浓度为25mmol/L的MgCl2、2μL质粒pKT0150、0.2μL浓度为5U/mL的Taq酶和余量重蒸馏水的组成;PCR反应条件:预变性94℃2min,变性94℃1min,退火50℃1min,延伸72℃2min,共30个循环,延伸72℃7min;步骤四中PCR反应体系为10μL,由1μL 10×PCR buffer、0.8μL浓度为2.5mmol/L的dNTP、1μL浓度为1pmol/μL的上游引物、1μL浓度为1pmol/μL的下游引物、0.8μL浓度为25mmol/L的MgCl2、2μL酿酒酵母基因组DNA、0.2μL浓度为5U/mL的Taq酶和余量重蒸馏水的组成;PCR反应条件:预变性94℃2min,变性94℃1min,退火53℃1min,延伸72℃2.5min,共30个循环,延伸72℃7min;步骤六中用限制性内切酶Nde I和Aat II对p406ADH1和pGMT-KanR分别进行双酶切,然后用T4DNA连接酶进行连接,得到质粒pR;步骤七中用限制性内切酶Spe I和SalEmbodiment 11: The difference between this embodiment and embodiment 1 is that the resistance marker in step 5 is G418; L of dNTP, 1 μL of upstream primer with a concentration of 1 pmol/μL, 1 μL of a downstream primer with a concentration of 1 pmol/μL, 0.8 μL of MgCl 2 with a concentration of 25 mmol/L, 2 μL of plasmid pKT0150, 0.2 μL of Taq enzyme with a concentration of 5 U/mL, and Composition of the remaining double distilled water; PCR reaction conditions: pre-denaturation at 94°C for 2 minutes, denaturation at 94°C for 1 minute, annealing at 45°C for 1 minute, extension at 72°C for 2 minutes, a total of 30 cycles, and extension at 72°C for 7 minutes; the PCR reaction system in step 2 is 10 μL , consisting of 1 μL of 10×PCR buffer, 0.8 μL of dNTP at a concentration of 2.5 mmol/L, 1 μL of an upstream primer at a concentration of 1 pmol/μL, 1 μL of a downstream primer at a concentration of 1 pmol/L, 0.8 μL of MgCl 2 at a concentration of 25 mmol/L, and 2 μL of brewing Composition of yeast genomic DNA, 0.2 μL Taq enzyme with a concentration of 5 U/mL, and double-distilled water; PCR reaction conditions: pre-denaturation at 94°C for 5 minutes, denaturation at 94°C for 1 minute, annealing at 55°C for 1 minute, extension at 72°C for 2 minutes, a total of 30 Cycle and extend at 72°C for 10 min; the PCR reaction system in step 3 is 10 μL, consisting of 1 μL 10×PCR buffer, 0.8 μL dNTP with a concentration of 2.5 mmol/L, 1 μL upstream primer with a concentration of 1 pmol/μL, and 1 μL with a concentration of 1 pmol/μL downstream primers, 0.8 μL of MgCl 2 with a concentration of 25 mmol/L, 2 μL of plasmid pKT0150, 0.2 μL of Taq enzyme with a concentration of 5 U/mL, and the rest of double-distilled water; PCR reaction conditions: pre-denaturation at 94°C for 2 minutes, denaturation at 94°C 1 min, annealing at 50°C for 1 min, extension at 72°C for 2 min, a total of 30 cycles, and extension at 72°C for 7 min; the PCR reaction system in step 4 is 10 μL, consisting of 1 μL 10×PCR buffer, 0.8 μL dNTP with a concentration of 2.5 mmol/L, 1 μL 1 pmol/μL upstream primer, 1 μL 1 pmol/μL downstream primer, 0.8 μL 25 mmol/L MgCl 2 , 2 μL Saccharomyces cerevisiae genomic DNA, 0.2 μL 5 U/mL Taq enzyme and the balance weight Composition of distilled water; PCR reaction conditions: pre-denaturation at 94°C for 2min, denaturation at 94°C for 1min, annealing at 53°C for 1min, extension at 72°C for 2.5min, a total of 30 cycles, and extension at 72°C for 7min; in step 6, use restriction enzyme Nde I and Aat II double digested p406ADH1 and pGMT-KanR respectively, and then ligated them with T4 DNA ligase to obtain plasmid pR; in step 7, use restriction enzymes Spe I and Sal
I对质粒pR和pGMT-XKS 1分别进行双酶切,然后用T4DNA连接酶进行连接,得到质粒pRK;步骤八中用限制性内切酶Sal I和Eag I对质粒pRK和pGMT-ADH1T分别进行双酶切,然后用T4DNA连接酶进行连接,得到质粒pRKT;步骤九中用限制性内切酶Nde I、Eag I对质粒pRKT和pGMT-rDNA分别进行双酶切,然后用T4DNA连接酶进行连接,即得到表达木酮糖激酶基因的质粒。其它步骤及参数与实施方式一相同。1 carries out double digestion respectively to plasmid pR and pGMT-XKS 1, connects with T4DNA ligase then, obtains plasmid pRK; In step eight, carry out respectively to plasmid pRK and pGMT-ADH1T with restriction endonuclease Sal I and Eag I Double enzyme digestion, and then use T4DNA ligase to connect to obtain plasmid pRKT; in step 9, use restriction endonucleases Nde I and Eag I to double enzyme digest plasmid pRKT and pGMT-rDNA, and then use T4DNA ligase to connect , to obtain a plasmid expressing the xylulokinase gene. Other steps and parameters are the same as those in Embodiment 1.
本实施方式中用到的10×PCR buffer中不含有Mg2+。The 10×PCR buffer used in this embodiment does not contain Mg 2+ .
将酿酒酵母菌划线接种于不同G418浓度的YPD平板上,在30℃条件下培养72h,筛选出高拷贝的转化子。然后将活化的酿酒酵母W5挑取单菌落接种于YPD液体培养基中,在30℃、200r/min条件下培养48h,再取100mL培养菌液在3500r/min条件下离心5min,弃去上清液后加入40mL 1×TE清洗菌体,然后再在3500r/min条件下离心5min,弃上清液并加入2mL1×LiAc/0.5×TE,室温放置10min,制成酵母菌感受态细胞。Saccharomyces cerevisiae was streak-inoculated on YPD plates with different G418 concentrations, cultured at 30°C for 72 hours, and high-copy transformants were screened out. Then pick a single colony of activated Saccharomyces cerevisiae W5 and inoculate it in YPD liquid medium, culture it at 30°C and 200r/min for 48h, then take 100mL of the culture solution and centrifuge it at 3500r/min for 5min, discard the supernatant Then add 40mL 1×TE to wash the cells, then centrifuge at 3500r/min for 5min, discard the supernatant and add 2mL 1×LiAc/0.5×TE, leave at room temperature for 10min to make yeast competent cells.
将已用Hpa I线性化的本实施方式构建的表达木酮糖激酶基因的质粒、10.7μL鱼鲑精DNA、100μL酵母菌HDY-01感受态细胞和700μL1×LiAc/40PEG-4000/1×TE混合,在30℃条件下反应30min,之后加入88μL DMSO原液均匀混合,置于40℃水浴中热激7min,然后13000r/min离心10s,弃上清液再加入1mL1×TE清洗2次,13000r/min离心10s,弃上清液后再加入50~100μL 1×TE,涂布于含G418的YPD平板培养基上,在30℃条件下培养48h,得到高拷贝转化子W-XK。The plasmid expressing the xylulokinase gene constructed in this embodiment that has been linearized with Hpa I, 10.7 μL fish and salmon sperm DNA, 100 μL yeast HDY-01 competent cells and 700 μL 1×LiAc/40PEG-4000/1×TE Mix and react at 30°C for 30min, then add 88μL DMSO stock solution and mix evenly, place in a water bath at 40°C for heat shock for 7min, then centrifuge at 13000r/min for 10s, discard the supernatant and add 1mL 1×TE to wash twice, 13000r/min Centrifuge for 10 seconds, discard the supernatant, add 50-100 μL 1×TE, spread on the YPD plate medium containing G418, and culture at 30°C for 48 hours to obtain the high-copy transformant W-XK.
将高拷贝转化子W-XK接种40mL梯度稀释的YEPD液体培养基(非选择性压力下)中摇瓶培养60世代(每24h为10世代),每隔10世代,平板计数菌落数进行稳定性测定按公式计算,结果显示60世代后的稳定性为99%,表明在非选择性压力下,整合于酿酒酵母染色体上的外源基因片段具有良好的遗传稳定性,能适合用于工业生产的粗放环境。[质粒稳定性计算公式:稳定性(%)=(带有整合质粒的菌落数÷总菌数)×100%]Inoculate the high-copy transformant W-XK into 40 mL of gradiently diluted YEPD liquid medium (under non-selective pressure) and culture it in shake flasks for 60 generations (10 generations every 24 h), and count the number of colonies on the plate for stability every 10 generations The determination is calculated according to the formula, and the results show that the stability after 60 generations is 99%, indicating that under non-selective pressure, the foreign gene fragment integrated on the chromosome of Saccharomyces cerevisiae has good genetic stability and can be suitable for industrial production. Extensive environment. [Calculation formula of plasmid stability: Stability (%)=(number of colonies with integrated plasmid ÷ total number of bacteria)×100%]
将转化子W-XK在选择压力培养基(含G418的YEPD培养基)中培养至对数生长期,离心收集菌体并用100mmol/L磷酸缓冲液洗涤2次,然后溶于新配制的裂解缓冲液(100mmol/L磷酸缓冲液,0.5mmol/LEDTA,0.5mmol/L DTT,1mmol/L PMSF,pH7.0)中,菌悬液加入玻璃珠(直径为0.5mm),在细胞破碎仪最大速度下处理30~50s,在冰浴5min,破碎重复3~5次,再在10000g条件下离心10min,收集上清,即为粗酶液用于酶活性测定分析。(酶粗液蛋白质含量的测定按照蛋白质含量测定试剂盒操作说明进行。)The transformant W-XK was cultured in the selective pressure medium (YEPD medium containing G418) to the logarithmic growth phase, the bacteria were collected by centrifugation and washed twice with 100mmol/L phosphate buffer, and then dissolved in the newly prepared lysis buffer solution (100mmol/L phosphate buffer, 0.5mmol/LEDTA, 0.5mmol/L DTT, 1mmol/L PMSF, pH 7.0), the bacterial suspension was added with glass beads (0.5mm in diameter), and the maximum speed of the cell disruptor was Treat at low temperature for 30-50s, place in ice bath for 5min, crush and repeat 3-5 times, then centrifuge at 10000g for 10min, collect the supernatant, which is the crude enzyme solution for enzyme activity determination and analysis. (The determination of the protein content of the crude enzyme solution is carried out according to the operating instructions of the protein content determination kit.)
本实施方式采用连续监测法测定木酮糖激酶酶活,选择线性反应期来计算酶活力,测定原理如下:In this embodiment, the continuous monitoring method is used to measure the enzyme activity of xylulokinase, and the linear reaction period is selected to calculate the enzyme activity. The determination principle is as follows:
以上偶联反应达到平衡后,木酮糖激酶(XK)转化底物D-木酮糖的速度与反应体系中NADH的减少速度相等,通过测定NADH的减少速度可计算木酮糖激酶(XK)的活性。After the above coupling reactions reach equilibrium, the rate of conversion of the substrate D-xylulose by xylulokinase (XK) is equal to the rate of reduction of NADH in the reaction system. By measuring the rate of reduction of NADH, the rate of xylulokinase (XK) can be calculated. activity.
木酮糖激酶酶活单位定义:在给定实验条件下,每分钟催化转化1μmolNADH的酶量为一个酶活单位(即1U)。Definition of xylulokinase enzyme activity unit: under given experimental conditions, the amount of enzyme that catalyzes the conversion of 1 μmol NADH per minute is an enzyme activity unit (ie 1U).
公式中:formula:
6.22×103:NADH的摩尔消光系数(1·mol-1·cm-1);6.22×10 3 : Molar extinction coefficient of NADH (1·mol -1 ·cm -1 );
OD340 1:t1时刻待测样品在340nm波长的光吸收;OD 340 1 : the light absorption of the sample to be tested at a wavelength of 340nm at time t 1 ;
OD340 2:t2时刻待测样品在340nm波长的光吸收;OD 340 2 : the light absorption of the sample to be tested at a wavelength of 340nm at time t 2 ;
60:1min相当的秒数(s);60: the number of seconds equivalent to 1min (s);
t1,t2:酶活测定过程中所取的时间点(s);t 1 , t 2 : the time point (s) taken during the enzyme activity determination process;
Cprotain:粗酶液的蛋白浓度(mg/-mL);C protein : protein concentration of crude enzyme solution (mg/-mL);
0.1:反应体系中加入的粗酶液的体积(mL);0.1: the volume (mL) of the crude enzyme solution added in the reaction system;
10:粗酶液稀释的倍数。10: The multiple of dilution of the crude enzyme solution.
按表1中数据配制粗酶液中木酮糖激酶酶活测定反应体系,体积为0.9mL。According to the data in Table 1, the reaction system for the determination of xylulokinase activity in the crude enzyme solution was prepared, with a volume of 0.9 mL.
表1Table 1
木酮糖激酶酶活测定反应体系在室温条件下平衡15min,加入稀释10倍的粗酶液0.1mL,漩涡振荡器振荡混匀,以蒸馏水为空白对照,测量OD340,并使用自动记录式分光光度计记录样品OD340随时间的变化。选取线性反应期,计算粗酶液中木酮糖激酶活性。酶活测定结果显示,本实施方式方法构建的表达木酮糖激酶基因的质粒所转化的酿酒酵母重组菌W-XK的木酮糖激酶活力较出发菌株W5大幅提高,出发菌株W5的酶活力为0.31U/mg,重组菌株W-XK的酶活力为2.8U/mg,酶活力提高了9倍,表明本实施方式方法构建的质粒载体转化酿酒酵母后实现了木酮糖激酶基因的高效稳定表达。The xylulokinase enzyme activity assay reaction system was equilibrated at room temperature for 15 minutes, added 0.1 mL of 10-fold diluted crude enzyme solution, vortexed and mixed, and distilled water was used as a blank control to measure OD 340 , and use an automatic recording spectrometer A photometer records the change in OD340 of the sample over time. Select the linear reaction period to calculate the xylulokinase activity in the crude enzyme solution. Enzyme activity measurement results show that the xylulokinase activity of the Saccharomyces cerevisiae recombinant strain W-XK transformed by the plasmid expressing the xylulokinase gene constructed by the method of this embodiment is greatly improved compared with the starting bacterial strain W5, and the enzyme activity of the starting bacterial strain W5 is 0.31U/mg, the enzyme activity of the recombinant strain W-XK is 2.8U/mg, and the enzyme activity has increased by 9 times, indicating that the plasmid vector constructed by the method of this embodiment is transformed into Saccharomyces cerevisiae, and the efficient and stable expression of the xylulokinase gene is realized .
序列表sequence listing
<110>黑龙江大学<110> Heilongjiang University
<120>一种表达木酮糖激酶基因的质粒的构建方法<120> A method for constructing a plasmid expressing xylulokinase gene
<160>8<160>8
<210>1<210>1
<211>26<211>26
<212>DNA<212>DNA
<213>人工序列<213> Artificial sequence
<220><220>
<223>根据质粒pKT0150的核苷酸序列及KanR基因在质粒中的相对位置设计的PCR扩增上游引物。<223> PCR amplification upstream primers designed according to the nucleotide sequence of plasmid pKT0150 and the relative position of KanR gene in the plasmid.
<400>1<400>1
ttccatatgt ctgtttagct tgcctc 26ttccatatgt ctgtttagct tgcctc 26
<210>2<210>2
<211>27<211>27
<212>DNA<212>DNA
<213>人工序列<213> Artificial sequence
<220><220>
<223>根据质粒pKT0150的核苷酸序列及KanR基因在质粒中的相对位置设计的PCR扩增下游引物。<223> PCR amplification downstream primers designed according to the nucleotide sequence of plasmid pKT0150 and the relative position of KanR gene in the plasmid.
<400>2<400>2
cttgacgtct atcatcgatg aattcga 27cttgacgtct atcatcgatg aattcga 27
<210>3<210>3
<211>29<211>29
<212>DNA<212>DNA
<213>人工序列<213> Artificial sequence
<220><220>
<223>根据酿酒酵母XKS1的基因序列设计的PCR扩增上游引物。<223> PCR amplification upstream primers designed according to the gene sequence of Saccharomyces cerevisiae XKS1.
<400>3<400>3
cggactagtc tcaatcttca gcaagcgac 29cggactagtc tcaatcttca gcaagcgac 29
<210>4<210>4
<211>28<211>28
<212>DNA<212>DNA
<213>人工序列<213> Artificial sequence
<220><220>
<223>根据酿酒酵母XKS1的基因序列设计的PCR扩增下游引物。<223> PCR amplification downstream primers designed according to the gene sequence of Saccharomyces cerevisiae XKS1.
<400>4<400>4
cgcgtcgaca acggggaaca aaatgatg 28cgcgtcgaca acggggaaca aaatgatg 28
<210>5<210>5
<211>31<211>31
<212>DNA<212>DNA
<213>人工序列<213> Artificial sequence
<220><220>
<223>根据质粒pKT0150的核苷酸序列及ADH1终止子片段在质粒中的相对位置设计的PCR扩增上游引物。<223> PCR amplification upstream primers designed according to the nucleotide sequence of plasmid pKT0150 and the relative position of the ADH1 terminator fragment in the plasmid.
<400>5<400>5
cgcgtcgaca tttgttactg ctgctggtat t 31cgcgtcgaca tttgttactg ctgctggtat t 31
<210>6<210>6
<211>26<211>26
<212>DNA<212>DNA
<213>人工序列<213> Artificial sequence
<220><220>
<223>根据质粒pKT0150的核苷酸序列及ADH1终止子片段在质粒中的相对位置设计的PCR扩增下游引物。<223> PCR amplification downstream primers designed according to the nucleotide sequence of plasmid pKT0150 and the relative position of ADH1 terminator fragment in the plasmid.
<400>6<400>6
ctcggccgcc ctgttatccc tagcgg 26ctcggccgcc ctgttatccc tagcgg 26
<210>7<210>7
<211>29<211>29
<212>DNA<212>DNA
<213>人工序列<213> Artificial sequence
<220><220>
<223>根据酿酒酵母rDNA的基因序列设计的扩增2.2kb的rDNA片段的上游引物。<223>The upstream primer for amplifying the 2.2kb rDNA fragment was designed according to the gene sequence of Saccharomyces cerevisiae rDNA.
<400>7<400>7
ttccatatgg gaacctctaa tcattcgct 29ttccatatgg gaacctctaa tcattcgct 29
<210>8<210>8
<211>29<211>29
<212>DNA<212> DNA
<213>人工序列<213> Artificial sequence
<220><220>
<223>根据酿酒酵母rDNA的基因序列设计的扩增2.2kb的rDNA片段的下游引物。<223> Downstream primers for amplifying a 2.2kb rDNA fragment designed according to the gene sequence of Saccharomyces cerevisiae rDNA.
<400>8<400>8
tctcggccga acgaacgaga ccttaacct 29tctcggccga acgaacgaga ccttaacct 29
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN200810064831XA CN101302535B (en) | 2008-06-30 | 2008-06-30 | Construction method of plasmid expressing xylulokinase gene |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN200810064831XA CN101302535B (en) | 2008-06-30 | 2008-06-30 | Construction method of plasmid expressing xylulokinase gene |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101302535A true CN101302535A (en) | 2008-11-12 |
CN101302535B CN101302535B (en) | 2010-10-20 |
Family
ID=40112637
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN200810064831XA Expired - Fee Related CN101302535B (en) | 2008-06-30 | 2008-06-30 | Construction method of plasmid expressing xylulokinase gene |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101302535B (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102732437A (en) * | 2012-06-04 | 2012-10-17 | 中国科学院微生物研究所 | Saccharomyces cerevisiae engineering bacterium and its application in production of ethanol |
CN109312296A (en) * | 2016-06-14 | 2019-02-05 | 帝斯曼知识产权资产管理有限公司 | recombinant yeast cells |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1141057A (en) * | 1993-11-08 | 1997-01-22 | 普渡研究基金会 | Recombinant yeast capable of efficiently fermenting glucose and xylose |
CN1225125A (en) * | 1996-05-06 | 1999-08-04 | 普渡研究基金会 | Stable recombinant yeasts for fermenting xylose to ethanol |
-
2008
- 2008-06-30 CN CN200810064831XA patent/CN101302535B/en not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1141057A (en) * | 1993-11-08 | 1997-01-22 | 普渡研究基金会 | Recombinant yeast capable of efficiently fermenting glucose and xylose |
CN1225125A (en) * | 1996-05-06 | 1999-08-04 | 普渡研究基金会 | Stable recombinant yeasts for fermenting xylose to ethanol |
Non-Patent Citations (1)
Title |
---|
刘继开等: "代谢木糖和葡萄糖的重组酿酒酵母的构建", 可再生能源 * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102732437A (en) * | 2012-06-04 | 2012-10-17 | 中国科学院微生物研究所 | Saccharomyces cerevisiae engineering bacterium and its application in production of ethanol |
CN109312296A (en) * | 2016-06-14 | 2019-02-05 | 帝斯曼知识产权资产管理有限公司 | recombinant yeast cells |
CN109312296B (en) * | 2016-06-14 | 2023-05-05 | 帝斯曼知识产权资产管理有限公司 | recombinant yeast cells |
Also Published As
Publication number | Publication date |
---|---|
CN101302535B (en) | 2010-10-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2588606B1 (en) | Improved xylose utilization in recombinant zymomonas having increased ribose-5-phosphate activity | |
CN110878261B (en) | Construction method and strain of recombinant Yarrowia lipolytica for synthesizing xylitol | |
AU2022279419A1 (en) | Compositions and methods of making (R)-Reticuline and precursors thereof | |
BRPI0913547A2 (en) | recombinant lactic acid bacterial cell, method for the production of 2-butanol and method for the production of 2-butanone | |
Klein et al. | Investigation of the impact of MIG1 and MIG2 on the physiology of Saccharomyces cerevisiae | |
CN106929521B (en) | Aldehyde ketone reductase gene recombination co-expression vector, engineering bacterium and application thereof | |
Strazdina et al. | Aerobic catabolism and respiratory lactate bypass in Ndh-negative Zymomonas mobilis | |
BR112013026193A2 (en) | compositions and methods for increased ethanol production from biomass | |
JP5496356B2 (en) | Xylitol producing strain introduced with arabinose metabolic pathway and xylitol producing method using the same | |
CN110628738A (en) | Method for improving glucose oxidase activity, mutant and application thereof | |
CN101497866B (en) | Saccharomyces cerevisiae for producing low-alcohol beer | |
CN101302535B (en) | Construction method of plasmid expressing xylulokinase gene | |
CN106635943A (en) | Method for improving content of intracellular oxidation type coenzymes I | |
BR112015007234B1 (en) | PROCESSED YEAST AND METHOD FOR ETHANOL PRODUCTION | |
Ye Jeong et al. | Mutational study of the role of tyrosine‐49 in the Saccharomyces cerevisiae xylose reductase | |
CN1578831A (en) | Fungal micro-organism having an increased ability to carry out biotechnological process(es) | |
EP2255004B1 (en) | Genetically transformed microorganism for biomass fermentation | |
JP6616311B2 (en) | Yeast producing ethanol from xylose | |
CN101302533B (en) | A method for constructing a plasmid expressing xylose reductase gene | |
WO2010001906A1 (en) | Yeast capable of producing ethanol from xylose | |
CN101693899B (en) | Cellulose orthogenesis method of ampullaria crossean | |
JP2013090578A (en) | Method for producing isobutanol and recombinant microorganism capable of producing isobutanol | |
Murugan et al. | RNAi-based gene silencing in sugarcane for production of biofuel | |
WO2020032233A1 (en) | Recombinant yeast, and method for producing ethanol using same | |
CN118620969B (en) | A two-stage biological method for producing xylitol using hemicellulose hydrolysate |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
ASS | Succession or assignment of patent right |
Owner name: HAIMEN TECHNOLOGY DEVELOPMENT CORP. Free format text: FORMER OWNER: HEILONGJIANG UNIVERSITY Effective date: 20140321 |
|
C41 | Transfer of patent application or patent right or utility model | ||
COR | Change of bibliographic data |
Free format text: CORRECT: ADDRESS; FROM: 150080 HARBIN, HEILONGJIANG PROVINCE TO: 226100 NANTONG, JIANGSU PROVINCE |
|
TR01 | Transfer of patent right |
Effective date of registration: 20140321 Address after: 226100 Haimen East Town, Haimen, Jiangsu, No. 634 Patentee after: Haimen science and Technology Development General Corporation Address before: 150080 Harbin, Heilongjiang, Nangang District Road, No. 74 Patentee before: Heilongjiang University |
|
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20101020 Termination date: 20160630 |
|
CF01 | Termination of patent right due to non-payment of annual fee |