CN101301989A - A microfluidic driving and mixing structure and its application method - Google Patents
A microfluidic driving and mixing structure and its application method Download PDFInfo
- Publication number
- CN101301989A CN101301989A CNA2008100173664A CN200810017366A CN101301989A CN 101301989 A CN101301989 A CN 101301989A CN A2008100173664 A CNA2008100173664 A CN A2008100173664A CN 200810017366 A CN200810017366 A CN 200810017366A CN 101301989 A CN101301989 A CN 101301989A
- Authority
- CN
- China
- Prior art keywords
- electrode
- electrodes
- cover sheet
- power supply
- broadband
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 16
- 239000011521 glass Substances 0.000 claims abstract description 10
- 239000004205 dimethyl polysiloxane Substances 0.000 claims abstract description 9
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 claims abstract description 9
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims abstract description 7
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 7
- 239000010703 silicon Substances 0.000 claims abstract description 7
- -1 polydimethylsiloxane Polymers 0.000 claims abstract description 6
- 239000011159 matrix material Substances 0.000 claims abstract description 5
- 239000012530 fluid Substances 0.000 claims description 16
- 239000000463 material Substances 0.000 claims description 14
- 239000000758 substrate Substances 0.000 claims description 3
- 238000004519 manufacturing process Methods 0.000 abstract description 4
- 235000012431 wafers Nutrition 0.000 abstract description 4
- 230000010354 integration Effects 0.000 abstract description 3
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 12
- 229910052697 platinum Inorganic materials 0.000 description 6
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 5
- 239000004810 polytetrafluoroethylene Substances 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000005684 electric field Effects 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000012742 biochemical analysis Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
Images
Landscapes
- Physical Or Chemical Processes And Apparatus (AREA)
Abstract
本发明公开了一种基于梳状电极的微流体驱动与混合结构及其使用方法,属于微流体驱动与混合技术领域。该结构包括微管道上盖片1和微管道下盖片4,微管道上盖片上相隔排列着若干宽带电极I 2和等个数的窄带电极I 3,所有宽带电极I和所有窄带电极I被分别连接在一起形成梳状结构并接到各自对应的电极端;微管道下盖片4上也具有相同的结构,但上盖片上的电极对排列与下盖片4上的电极对排列顺序相反。此外,还公开了该结构的使用方法。本发明可以控制微管道中微流体的混合过程,提高了微流体的混合效率;同时,微管道基体材料为聚二甲基硅氧烷(PDMS),使用玻璃或者硅片为上下盖片,容易实现微流体混合芯片的集成化和批量化制作。
The invention discloses a comb electrode-based microfluid driving and mixing structure and an application method thereof, belonging to the technical field of microfluid driving and mixing. The structure comprises a micropipe upper cover sheet 1 and a micropipe lower cover sheet 4, on the micropipe upper cover sheet, several broadband electrodes I2 and equal number of narrowband electrodes I3 are arranged, and all broadband electrodes I and all narrowband electrodes I are covered They are respectively connected together to form a comb-like structure and connected to their corresponding electrode terminals; the lower cover sheet 4 of the microchannel also has the same structure, but the arrangement of the electrode pairs on the upper cover sheet is opposite to that on the lower cover sheet 4 . In addition, a method of using the structure is also disclosed. The present invention can control the mixing process of the microfluid in the micropipe, and improves the mixing efficiency of the microfluid; meanwhile, the matrix material of the micropipe is polydimethylsiloxane (PDMS), and glass or silicon wafers are used as upper and lower covers, which is easy Realize the integration and mass production of microfluidic hybrid chips.
Description
技术领域: Technical field:
本发明涉及一种基于梳状电极的微流体驱动与混合结构及其使用方法,属于微机械电子系统(MEMS)中微流体驱动与混合技术领域。The invention relates to a microfluid driving and mixing structure based on a comb-like electrode and an application method thereof, and belongs to the technical field of microfluid driving and mixing in micromechanical electronic systems (MEMS).
背景技术: Background technique:
由于微管道中的流体运动为显著的层流运动,使得微管道中的流体混和技术成为微型生物化学分析仪器的关键技术。现有的微流体混和方法可以分为两类:采用复杂通道结构产生无序混流的被动式混和方法;改变压力、电场等外部条件提高流体混和效率的主动式混和方法。Because the fluid movement in the microchannel is a significant laminar flow movement, the fluid mixing technology in the microchannel becomes the key technology of the miniature biochemical analysis instrument. Existing microfluidic mixing methods can be divided into two categories: passive mixing methods that use complex channel structures to generate disordered mixed flow; active mixing methods that improve fluid mixing efficiency by changing external conditions such as pressure and electric field.
主动式混合方法是采用外部机械或电磁力干扰流体的层流状态,以提高微流体的混和效果。M.Mpholoa和A.B.D.Brownb等人设计了不对称电极结构,使用聚四氟乙烯(PTFE)作为微管道基体材料,用机械的方法将PTFE夹在两片玻璃盖片中间形成微管道;在微管道底部设计出宽带电极和窄带电极间隔排列,采用交流静电力驱动,实现微管道中的流体驱动。这种方式在实现微流体驱动的同时,可以部分实现微管道中的流体混合。存在的问题是,(1)该结构无法对微流体的混合效果进行主动控制,混合效率低;(2)受到聚四氟乙烯(PTFE)材料的限制,无法实现微流体管道的微型化和批量化制作。The active mixing method uses external mechanical or electromagnetic force to disturb the laminar flow state of the fluid to improve the mixing effect of microfluidics. M.Mpholoa and A.B.D.Brownb et al. designed an asymmetric electrode structure, using polytetrafluoroethylene (PTFE) as a micro-channel matrix material, and mechanically sandwiched PTFE between two glass coverslips to form a micro-channel; in the micro-channel The bottom is designed with wide-band electrodes and narrow-band electrodes arranged at intervals, and is driven by AC electrostatic force to realize the fluid drive in the micropipe. This method can partially realize fluid mixing in microchannels while realizing microfluidic drive. The existing problems are: (1) The structure cannot actively control the mixing effect of the microfluid, and the mixing efficiency is low; (2) Due to the limitation of the polytetrafluoroethylene (PTFE) material, the microfluidic pipeline cannot be miniaturized and batched. production.
发明内容: Invention content:
本发明的目的是解决上述主动式微流体混合技术中存在的如下问题:(1)微流体混合效率低,无法实现混合效率的主动控制;(2)机械夹持的方法无法满足微流体器件的微型化制作、制作工艺复杂、微流控芯片的集成度低。The purpose of the present invention is to solve the following problems in the above-mentioned active microfluidic mixing technology: (1) the microfluidic mixing efficiency is low, and the active control of the mixing efficiency cannot be realized; The manufacturing process is complicated, and the integration degree of the microfluidic chip is low.
参阅图1至图3,本发明提出一种微流体驱动与混合结构,为一种依次包括上盖片1、上盖片1上的梳状结构电极对、微管道基体9、下盖片4上的梳状结构电极对和下盖片4的夹层结构;上盖片1上相隔排列着若干宽带电极I 2和等个数的窄带电极I 3,所有宽带电极I2连接在一起形成梳状结构并接到电极端I 7,所有窄带电极I 3连接在一起形成梳状结构并接到电极端II 8,每一对相邻的宽带电极I 2和窄带电极I 3组成一组电极对,电极对顺序排列形成上盖片1上的梳状结构电极对;Referring to Fig. 1 to Fig. 3, the present invention proposes a microfluidic driving and mixing structure, which is a structure comprising an
下盖片4上相隔排列着若干宽带电极II 5和等个数的窄带电极II 6,所有宽带电极II 5连接在一起形成梳状结构并接到电极端III 9,所有窄带电极II 6连接在一起形成梳状结构并接到电极端IV 10,每一对相邻的宽带电极II 5和窄带电极II 6组成一组电极对,电极对顺序排列形成下盖片4上的梳状结构电极对。On the
上盖片1上的电极对排列与下盖片4上的电极对排列顺序相反,即上盖片电极对排列顺序为窄带电极-宽带电极,则下盖片电极对排列顺序为宽带电极-窄带电极。或者,上盖片电极对排列顺序为宽带电极-窄带电极,则下盖片电极对排列顺序为窄带电极-宽带电极。The arrangement of the electrode pairs on the
上盖片1材料为硅或者玻璃,下盖片4为玻璃或者硅片,两种材料其中至少有一种材料为透明介质,微管道基体9材料为聚二甲基硅氧烷(PDMS),PDMS与上盖片1和下盖片4键合在一起,上盖片1和下盖片4上的电极由铂金等导电性能好的金属材料制成。The material of the
本发明提出的微流体驱动与混合结构使用方法如下:The method of using the microfluid drive and mixing structure proposed by the present invention is as follows:
1.将电极端I 7和电极端II 8分别接到第一个交流电源的两极上,给其施加频率和幅值可调节的交流电源I;将电极端III 9和电极端IV 10分别接到第二个交流电源的两极上,给其施加频率和幅值可调节的交流电源II;1. Connect electrode terminal I 7 and electrode terminal II 8 to the two poles of the first AC power supply respectively, and apply AC power I with adjustable frequency and amplitude; connect electrode terminal III 9 and electrode terminal IV 10 respectively To the two poles of the second AC power supply, apply AC power II with adjustable frequency and amplitude;
2.开启交流电源I,使微管道中的流体从微管道一端向微管道另一端运动,开启交流电源II,使微管道中的流体运动与开启交流电源I时方向相反。根据需要开启交流电源I或者交流电源II,将需要混合的微流体驱动到电极对所在的微管道区域。2. Turn on the AC power source I to make the fluid in the micro-channel move from one end of the micro-channel to the other end of the micro-channel, and turn on the AC power source II to make the fluid in the micro-channel move in the opposite direction to that when the AC power source I is turned on. Turn on AC power supply I or AC power supply II as needed, and drive the microfluids to be mixed to the microchannel area where the electrode pair is located.
3.同时开启交流电源I和交流电源II,施加相同的电源频率和电压,使微流体在电极对所在的微管道区域内被混合。3. Turn on the AC power supply I and the AC power supply II at the same time, apply the same power supply frequency and voltage, so that the microfluid is mixed in the microchannel area where the electrode pair is located.
4.根据微流体混合程度的要求以及微管道内微流体的性质不同,控制步骤3中的持续时间、电源频率和电压幅值,使得管道中的微流体被充分混合。4. According to the requirements of the mixing degree of the microfluid and the properties of the microfluid in the micropipe, control the duration, power frequency and voltage amplitude in
5.根据微流体的运动方向要求,关闭交流电源I或者交流电源II,利用交流电源II或者交流电源I将经过混合的微流体驱动出电极对所在的微管道区域。5. According to the requirements of the movement direction of the microfluid, turn off the AC power supply I or the AC power supply II, and use the AC power supply II or the AC power supply I to drive the mixed microfluid out of the microchannel area where the electrode pair is located.
本发明的有益效果是:通过在微管道内制作两组电极对排列方向相反的梳状电极结构,在外加交变电场作用下,可以控制微管道中微流体的混合过程,提高了微流体的混合效率;另外,微管道基体材料采用聚二甲基硅氧烷(PDMS),使用玻璃或者硅片为上下盖片,容易实现微流体混合芯片的集成化和批量化制作。The beneficial effects of the present invention are: by fabricating two sets of comb-like electrode structures in which the electrode pairs are arranged in opposite directions in the micro-pipe, under the action of an external alternating electric field, the mixing process of the micro-fluid in the micro-pipe can be controlled, and the efficiency of the micro-fluid is improved. Mixing efficiency; in addition, polydimethylsiloxane (PDMS) is used as the matrix material of the micropipe, and glass or silicon wafers are used as the upper and lower covers, which is easy to realize the integration and mass production of microfluidic hybrid chips.
附图说明: Description of drawings:
图1基于梳状电极的微流体驱动与混合结构Figure 1 Microfluidic driving and mixing structure based on comb electrodes
图2图1的A-A视图Figure 2 A-A view of Figure 1
图3梳状电极结构示意图Figure 3 Schematic diagram of comb electrode structure
图中,1-上盖片,2-宽带电极I,3-窄带电极I,4-下盖片,5-宽带电极II,6-窄带电极II,7-电极端I,8-电极端II,9-微管道基体。In the figure, 1-upper cover sheet, 2-broadband electrode I, 3-narrowband electrode I, 4-lower cover sheet, 5-broadband electrode II, 6-narrowband electrode II, 7-electrode terminal I, 8-electrode terminal II , 9-microchannel matrix.
具体实施方式: Detailed ways:
具体实施例1:Specific embodiment 1:
参阅图1、图2,本实施例提出的一种微流体驱动与混合结构,上盖片1材料为玻璃,位于上盖片1的宽带电极I 2和窄带电极I 3材料为铂金,下盖片4为玻璃,位于下盖片4上的宽带电极II 5和窄带电极II 6材料为铂金,铂金电极的厚度为100纳米。Referring to Fig. 1, Fig. 2, a kind of microfluidic driving and mixing structure that the present embodiment proposes, the
位于上盖片1上的宽带电极I 2和位于下盖片4上的宽带电极II 5的宽度为15微米,位于上盖片1上的窄带电极I 3和位于下盖片4上的窄带电极II 6的宽度为5微米。The
位于上盖片1上的电极对排列顺序是从左向右窄带电极-宽带电极,共20对电极,组成梳状电极阵列;位于下盖片4上的电极对排列顺序是从左向右宽带电极-窄带电极,共20对电极,组成梳状电极阵列。The arrangement order of the electrode pairs on the
宽带电极和窄带电极之间的间距为5微米,电极对之间的间距为25微米。The spacing between broadband electrodes and narrowband electrodes is 5 μm, and the spacing between electrode pairs is 25 μm.
本发明提出的这种微流体驱动与混合结构工作过程如下:The working process of this microfluid drive and mixing structure proposed by the present invention is as follows:
1.将电极端I 7和电极端II 8分别接到第一个交流电源的两极上;将电极端III 9和电极端IV 10分别接到第二个交流电源的两极上;1. Connect electrode terminal I 7 and electrode terminal II 8 to the two poles of the first AC power supply respectively; connect electrode terminal III 9 and electrode terminal IV 10 to the two poles of the second AC power supply respectively;
2.开启交流电源I,给其施加频率为2000Hz,幅值为5V的交流电源I,则流体在微管道中运动,将需要混合的微流体介质驱动到梳状电极区域。2. Turn on the AC power supply I and apply the AC power supply I with a frequency of 2000 Hz and an amplitude of 5 V, then the fluid will move in the micro-pipe, and the micro-fluid medium to be mixed will be driven to the comb-shaped electrode area.
3.同时开启交流电源I和交流电源II,给两个交流电源同时施加频率为2000Hz,幅值为5V的交流电源,则微流体在电极对所在的微管道区域内被混合。3. Turn on the AC power supply I and the AC power supply II at the same time, and apply an AC power supply with a frequency of 2000 Hz and an amplitude of 5 V to the two AC power supplies at the same time, then the microfluids will be mixed in the microchannel area where the electrode pair is located.
4.持续第3步时间30秒,微管道中的微流体被充分混合。4. Continue
5.关闭交流电源II,使得交流电源I驱动经过混合的微流体在微管道中运动,微流体被驱动出电极对所在的微管道区域。5. Turn off the AC power supply II, so that the AC power supply I drives the mixed microfluid to move in the micropipe, and the microfluid is driven out of the micropipe area where the electrode pair is located.
具体实施例2:Specific embodiment 2:
本实施例提出的另一种微流体驱动与混合结构,上盖片1材料为玻璃,位于上盖片1的宽带电极I 2和窄带电极I 3材料为铂金,铂金电极厚度为80纳米,下盖片4为硅片,位于下盖片4上的宽带电极II 5和窄带电极II 6材料为金属铝,铝电极厚度为80纳米。Another microfluid drive and mixing structure proposed in this embodiment, the material of the
位于上盖片1上的电极对排列顺序是从左向右宽带电极-窄带电极,共50对电极,组成梳状电极阵列;位于下盖片4上的电极对排列顺序是从左向右窄带电极-宽带电极,共50对电极,组成梳状电极阵列。The arrangement order of the electrode pairs on the
位于上盖片1上的宽带电极I 2和位于下盖片4上的宽带电极II 5的宽度为15微米,位于上盖片1上的窄带电极I 3和位于下盖片4上的窄带电极II 6的宽度为3微米。The
宽带电极和窄带电极之间的间距为5微米,电极对之间的间距为20微米。The spacing between broadband electrodes and narrowband electrodes is 5 μm, and the spacing between electrode pairs is 20 μm.
本发明提出的这种微流体驱动与混合结构工作过程如下:The working process of this microfluid drive and mixing structure proposed by the present invention is as follows:
1.将电极端I 7和电极端II 8分别接到第一个交流电源的两极上;将电极端III 9和电极端IV 10分别接到第二个交流电源的两极上;1. Connect electrode terminal I 7 and electrode terminal II 8 to the two poles of the first AC power supply respectively; connect electrode terminal III 9 and electrode terminal IV 10 to the two poles of the second AC power supply respectively;
2.开启交流电源I,给其施加频率为1500Hz,幅值为3V的交流电源I,则流体在微管道中运动,将需要混合的微流体介质驱动到梳状电极区域。2. Turn on the AC power supply I and apply the AC power supply I with a frequency of 1500 Hz and an amplitude of 3 V, then the fluid will move in the micro-pipe, and the micro-fluid medium to be mixed will be driven to the comb-shaped electrode area.
3.同时开启交流电源I和交流电源II,给两个交流电源同时施加频率为1500Hz,幅值为3V的交流电源,则微流体在电极对所在的微管道区域内被混合。3. Turn on the AC power supply I and the AC power supply II at the same time, and apply an AC power supply with a frequency of 1500 Hz and an amplitude of 3 V to the two AC power supplies at the same time, then the microfluids will be mixed in the microchannel area where the electrode pair is located.
4.持续第三步的电压时间3分钟,微管道中的微流体被充分混合。4. Continue the voltage time of the third step for 3 minutes, and the microfluid in the microchannel is fully mixed.
5.关闭交流电源I,使得交流电源II驱动经过混合的微流体在微管道中运动,微流体被驱动出电极对所在的微管道区域。5. Turn off the AC power supply I, so that the AC power supply II drives the mixed microfluid to move in the micropipe, and the microfluid is driven out of the micropipe area where the electrode pair is located.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNA2008100173664A CN101301989A (en) | 2008-01-22 | 2008-01-22 | A microfluidic driving and mixing structure and its application method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNA2008100173664A CN101301989A (en) | 2008-01-22 | 2008-01-22 | A microfluidic driving and mixing structure and its application method |
Publications (1)
Publication Number | Publication Date |
---|---|
CN101301989A true CN101301989A (en) | 2008-11-12 |
Family
ID=40112127
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNA2008100173664A Pending CN101301989A (en) | 2008-01-22 | 2008-01-22 | A microfluidic driving and mixing structure and its application method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101301989A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101497006B (en) * | 2009-01-15 | 2011-04-20 | 宁波大学 | Digital microfluid micro-mixer and mixing method |
CN101559914B (en) * | 2009-05-15 | 2011-09-21 | 中国科学院上海微系统与信息技术研究所 | Digital droplet actuator with deep submicron pore structure and fabrication method |
CN102725060A (en) * | 2009-12-02 | 2012-10-10 | 独立行政法人科学技术振兴机构 | Flow path device and sample processing device including same |
CN104767354A (en) * | 2015-03-19 | 2015-07-08 | 华南理工大学 | An Electrohydrodynamic Micropump Based on Bipolar Plate Composite Electric Field |
CN109647273A (en) * | 2019-01-31 | 2019-04-19 | 山东省农业机械科学研究院 | Liquid device for controlling uniformity in a kind of pipeline |
WO2022061713A1 (en) * | 2020-09-25 | 2022-03-31 | 京东方科技集团股份有限公司 | Microfluidic chip and microfluidic system |
-
2008
- 2008-01-22 CN CNA2008100173664A patent/CN101301989A/en active Pending
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101497006B (en) * | 2009-01-15 | 2011-04-20 | 宁波大学 | Digital microfluid micro-mixer and mixing method |
CN101559914B (en) * | 2009-05-15 | 2011-09-21 | 中国科学院上海微系统与信息技术研究所 | Digital droplet actuator with deep submicron pore structure and fabrication method |
CN102725060A (en) * | 2009-12-02 | 2012-10-10 | 独立行政法人科学技术振兴机构 | Flow path device and sample processing device including same |
CN102725060B (en) * | 2009-12-02 | 2015-09-02 | 国立研究开发法人科学技术振兴机构 | Flow circuit device and comprise the sample processing device of flow circuit device |
CN104767354A (en) * | 2015-03-19 | 2015-07-08 | 华南理工大学 | An Electrohydrodynamic Micropump Based on Bipolar Plate Composite Electric Field |
CN109647273A (en) * | 2019-01-31 | 2019-04-19 | 山东省农业机械科学研究院 | Liquid device for controlling uniformity in a kind of pipeline |
WO2022061713A1 (en) * | 2020-09-25 | 2022-03-31 | 京东方科技集团股份有限公司 | Microfluidic chip and microfluidic system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Wu et al. | Modular microfluidics for life sciences | |
CN1668527B (en) | Actuator in a microfluidic system for inducing electroosmotic liquid movement in a micro channel | |
Fowler et al. | Enhancement of mixing by droplet-based microfluidics | |
CN101294971A (en) | Digital microfluidic device and its control method based on electrowetting effect on medium | |
CN101301989A (en) | A microfluidic driving and mixing structure and its application method | |
CN101301990A (en) | Surface acoustic wave microfluidic actuator for lab-on-a-chip and method of manufacturing the same | |
Min et al. | Beyond high voltage in the digital microfluidic devices for an integrated portable sensing system | |
EP3498373B1 (en) | Microfluidic device and manufacturing method therefor | |
Meis et al. | Ionic electroactive polymer actuators as active microfluidic mixers | |
CN101059526B (en) | Method for driving fluid movement in micropassage using electric heat flow | |
CN204768769U (en) | Micro -fluidic chip with self -power function | |
TWI399488B (en) | A microfluidic driving system | |
US20030196900A1 (en) | Hydrogel-driven micropump | |
CN106345543A (en) | Micro-mixed chip based on fixed-potential induced charge electro-osmosis | |
Johnston et al. | Microfluidic solid phase suspension transport with an elastomer-based, single piezo-actuator, micro throttle pump | |
JP5448888B2 (en) | Liquid mixing device | |
KR100826584B1 (en) | Fluid Channeling Actuators for Biochip Analysis | |
Gallah et al. | Design and modelling of droplet based microfluidic system enabled by electroosmotic micropump | |
Islam et al. | MEMS microfluidics for Lab-on-a-Chip Applications | |
US11213821B2 (en) | Microfluidic device and manufacturing method therefor | |
Yi et al. | EWOD actuation with electrode-free cover plate | |
CN111036317B (en) | Microfluidic chip and driving method thereof | |
Zheng et al. | A Multichannel Electroosmotic Flow Pump Using Liquid Metal Electrodes | |
Salari et al. | A novel AC electrothermal micropump consisting of two opposing parallel coplanar asymmetric microelectrode arrays | |
CN1727029A (en) | An active microfluidic mixer and mixing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
WD01 | Invention patent application deemed withdrawn after publication |
Open date: 20081112 |