CN101301250A - Control strategy for interactive rehabilitation training of five-degree-of-freedom exoskeleton upper limb rehabilitation robot - Google Patents
Control strategy for interactive rehabilitation training of five-degree-of-freedom exoskeleton upper limb rehabilitation robot Download PDFInfo
- Publication number
- CN101301250A CN101301250A CNA2008100648790A CN200810064879A CN101301250A CN 101301250 A CN101301250 A CN 101301250A CN A2008100648790 A CNA2008100648790 A CN A2008100648790A CN 200810064879 A CN200810064879 A CN 200810064879A CN 101301250 A CN101301250 A CN 101301250A
- Authority
- CN
- China
- Prior art keywords
- patient
- robot
- training
- recovery
- upper limb
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 210000001364 upper extremity Anatomy 0.000 title claims abstract description 31
- 230000002452 interceptive effect Effects 0.000 title claims abstract description 18
- 238000011217 control strategy Methods 0.000 title abstract description 15
- 238000011084 recovery Methods 0.000 claims abstract description 25
- 210000003205 muscle Anatomy 0.000 claims abstract description 13
- 210000003414 extremity Anatomy 0.000 claims abstract description 12
- 230000003183 myoelectrical effect Effects 0.000 claims abstract 2
- 238000000034 method Methods 0.000 claims description 12
- 230000009471 action Effects 0.000 claims description 9
- 230000008569 process Effects 0.000 claims description 9
- 230000006872 improvement Effects 0.000 claims description 4
- 239000000284 extract Substances 0.000 claims description 3
- 239000011159 matrix material Substances 0.000 claims description 3
- 238000005070 sampling Methods 0.000 claims description 3
- 208000005392 Spasm Diseases 0.000 claims 2
- 230000003447 ipsilateral effect Effects 0.000 claims 2
- 230000035876 healing Effects 0.000 claims 1
- 230000001771 impaired effect Effects 0.000 claims 1
- 230000007935 neutral effect Effects 0.000 claims 1
- 230000000153 supplemental effect Effects 0.000 claims 1
- 206010019468 Hemiplegia Diseases 0.000 abstract description 7
- 201000008482 osteoarthritis Diseases 0.000 abstract 1
- 238000010586 diagram Methods 0.000 description 7
- 238000002567 electromyography Methods 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 4
- 210000000707 wrist Anatomy 0.000 description 4
- 208000008238 Muscle Spasticity Diseases 0.000 description 2
- 238000013528 artificial neural network Methods 0.000 description 2
- 230000002146 bilateral effect Effects 0.000 description 2
- 210000000852 deltoid muscle Anatomy 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 239000011499 joint compound Substances 0.000 description 2
- 230000001737 promoting effect Effects 0.000 description 2
- 230000001148 spastic effect Effects 0.000 description 2
- 208000018198 spasticity Diseases 0.000 description 2
- 229910000737 Duralumin Inorganic materials 0.000 description 1
- 208000006011 Stroke Diseases 0.000 description 1
- 210000004556 brain Anatomy 0.000 description 1
- 230000003920 cognitive function Effects 0.000 description 1
- 230000006735 deficit Effects 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 210000004247 hand Anatomy 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 230000009916 joint effect Effects 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000036651 mood Effects 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 210000000323 shoulder joint Anatomy 0.000 description 1
- 230000004936 stimulating effect Effects 0.000 description 1
- 230000000638 stimulation Effects 0.000 description 1
- 230000003313 weakening effect Effects 0.000 description 1
- 210000003857 wrist joint Anatomy 0.000 description 1
Images
Landscapes
- Rehabilitation Tools (AREA)
- Prostheses (AREA)
Abstract
Description
(一)技术领域 (1) Technical field
本发明涉及一种康复机器人技术,具体涉及一种五自由度外骨骼式上肢康复机器人交互康复训练控制技术。The invention relates to a rehabilitation robot technology, in particular to a five-degree-of-freedom exoskeleton type upper limb rehabilitation robot interactive rehabilitation training control technology.
(二)背景技术 (2) Background technology
目前,传统的上肢临床康复方法多为图1所示的康复医师徒手或利用辅助器具一对一的引导患者完成连续性的被动运动,或施予适当的阻力或助力来引导患者运动。而脑中风发病率的增加使偏瘫患者越来越多,繁重、高强度的训练任务给治疗医师带来沉重的负担,医师们分身乏术,没有更多的时间与精力专注于临床数据的分析及治疗方案的改进。另一方面,治疗医师的主观意识、体力及心情等因素在训练过程中起到了主导作用,忽略了被治疗者的自身运动意图,加之患者病发后引起的语言及认知功能的损伤,削弱了医患间针对康复治疗过程的交互作用。At present, the traditional upper limb clinical rehabilitation methods are mostly as shown in Figure 1. Rehabilitation physicians guide patients to complete continuous passive movements one-on-one with bare hands or with assistive devices, or give appropriate resistance or assistance to guide patients to move. The increase in the incidence of stroke has led to more and more patients with hemiplegia. The heavy and high-intensity training tasks have brought a heavy burden to the treating physicians. Improvements in treatment options. On the other hand, factors such as the therapist's subjective consciousness, physical strength, and mood play a leading role in the training process, ignoring the patient's own movement intention, coupled with the impairment of the language and cognitive functions of the patient after the onset of the disease, weakening the Interaction between doctors and patients for rehabilitation treatment process.
因此,将机器人及其相关技术与临床康复医学相结合设计出康复机器人替代医师完成对偏瘫患者的康复训练。现有的上肢康复机器人虽然实现了减轻医师负担,提高效率,为患者不同时期康复方案的制定和优化提供客观、有效的数据依据的功能,却仍然存在如下问题:为患者患肢提供的训练动作多为简单地的直线或曲线轨迹,动作范围较小,种类单一;多应用预定程序或施加预定阻力/助力实现对上肢的被动运动或辅助运动,同样忽略了患者肢体的运动意图,不利于刺激患者的主动运动,提高患者的运动兴趣,建立患者的运动信心。Therefore, combining robots and related technologies with clinical rehabilitation medicine, a rehabilitation robot is designed to replace physicians to complete rehabilitation training for hemiplegic patients. Although the existing upper limb rehabilitation robots can reduce the burden on doctors, improve efficiency, and provide objective and effective data basis for the formulation and optimization of rehabilitation programs for patients in different periods, there are still the following problems: the training actions provided for patients with affected limbs Most of them are simple straight or curved trajectories, with a small range of motion and a single type; they often apply predetermined programs or apply predetermined resistance/assist to achieve passive movement or auxiliary movement of the upper limbs, which also ignores the movement intention of the patient's limbs, which is not conducive to stimulation The patient's active exercise improves the patient's interest in exercise and builds the patient's exercise confidence.
(三)发明内容 (3) Contents of the invention
本发明的目的在于提供一种能够为临床偏瘫患者提供全方位的康复训练运动,从而提高了患者康复训练的主动性,使其增强了恢复信心,同时也增强了恢复过程的吸引力并促进了康复功效的五自由度外骨骼式上肢康复机器人交互康复训练控制策略。The purpose of the present invention is to provide a kind of rehabilitation training movement that can provide a full range of clinical hemiplegia patients, thereby improving the initiative of the patient's rehabilitation training, making it strengthen the recovery confidence, and also enhancing the attractiveness of the recovery process and promoting A five-degree-of-freedom exoskeleton upper limb rehabilitation robot interactive rehabilitation training control strategy for rehabilitation efficacy.
本发明的目的是这样实现的:对应患者不同恢复期的两种训练模式:被动式和主动-辅助式的交互式康复训练控制策略,在被动运动中,提取患者健侧上肢相关肌肉的表面肌电信号作为患者运动意图,控制机器人带动患侧实现运动的被动训练;在主动运动中,通过实时获取运动过程中患肢作用于机器人所产生的关节力矩来判断人体上肢的运动意图,并利用比例控制器将施加力转化为机械臂末端的速度量,进而驱动机器人跟随意图对患肢进行康复的主动--辅助训练。The purpose of the present invention is achieved in this way: two training modes corresponding to different recovery periods of the patient: passive and active-assisted interactive rehabilitation training control strategies, in the passive movement, extract the surface myoelectricity of the relevant muscles of the healthy side of the patient's upper limbs The signal serves as the patient's movement intention, and the robot is controlled to drive the affected side to achieve passive training of movement; in the active movement, the movement intention of the upper limb of the human body is judged by obtaining the joint torque generated by the affected limb acting on the robot in real time during the movement, and the proportional control is used The device converts the applied force into the velocity of the end of the mechanical arm, and then drives the robot to follow the intention to perform active-assisted training for the rehabilitation of the affected limb.
本发明还有这样一些技术特征:The present invention also has some technical characteristics:
1、所述的在患者恢复的早、中期,包含软瘫期与痉挛期,应用被动运动训练,根据偏瘫患者上肢受损的特点,提取偏瘫患者的健侧上肢四块肌肉表面肌电信号(sEMG)作为康复机器人的控制信号,包括各表面肌电电极依次对应的三角肌中、三角肌前、肱二头肌和肱桡肌,利用AR参数模型和BP神经网络来理解患者的运动意图,驱动机械臂辅助患侧上肢实现待定的康复训练动作;1. In the early and middle stages of the recovery of the patient, including the flaccid phase and the spastic phase, passive exercise training is applied, and according to the characteristics of the upper limb damage of the hemiplegic patient, the surface electromyography signals of the four muscles of the uninjured upper limb of the hemiplegic patient are extracted ( sEMG) is used as the control signal of the rehabilitation robot, including the middle deltoid, anterior deltoid, biceps brachii and brachioradialis corresponding to each surface electromyographic electrode in turn, using the AR parameter model and BP neural network to understand the patient's movement intention, Drive the mechanical arm to assist the upper limb of the affected side to realize the undetermined rehabilitation training action;
2、所述的在患者恢复的中、后期,包含痉挛期与改善期,应用主动运动训练,其为一个典型的双环控制系统结构,外环为机械臂末端力控制环,内环为关节速度控制环,在采样时刻t,利用关节力矩传感器采集由偏瘫患者主动运动而施加在各关节上的力矩值,同时计算出作为当前时刻各关节角度函数的机器人空载力矩值;将二者送入机器人末端力合成器得到末端力,即偏瘫患者施加在机器人末端点处的力的估计值,从而获取患者的运动意图;利用比例控制器将其转化为机器人末端运动速度,并通过运动学雅可比逆矩阵映射为机器人各关节的角速度指令;将角速度指令输入到机器人关节内环控制器当中,控制各关节的伺服电机实现稳定的角速度输出,从而驱动机器人对患者主动运动意图进行跟随并实现康复训练的力辅助控制。2. In the middle and late stages of the patient’s recovery, including the spasticity period and the improvement period, the active movement training is applied, which is a typical double-loop control system structure, the outer loop is the force control loop at the end of the mechanical arm, and the inner loop is the joint speed The control loop, at the sampling time t, uses the joint torque sensor to collect the torque value exerted on each joint by the active movement of the hemiplegic patient, and at the same time calculates the robot no-load torque value as a function of the joint angle at the current moment; send the two into The robot end force synthesizer obtains the end force, that is, the estimated value of the force exerted by the hemiplegic patient on the end point of the robot, so as to obtain the patient's motion intention; use the proportional controller to convert it into the robot end motion speed, and pass the kinematics Jacobian The inverse matrix is mapped to the angular velocity command of each joint of the robot; the angular velocity command is input into the inner loop controller of the robot joint, and the servo motor of each joint is controlled to achieve a stable angular velocity output, thereby driving the robot to follow the patient's active movement intention and realize rehabilitation training force-assisted control.
本发明五自由度外骨骼式上肢康复机器人交互式康复训练控制策略,针对临床偏瘫患者不同的恢复情况,分别采用被动和主动--辅助的训练模式,通过获取患者运动过程中相关肌肉的表面肌电信号及运动过程中产生的力矩信息对患者运动意图进行预测,并以此驱动机器人辅助患者患肢实现各个单、多关节及日常生活动作的训练。该控制策略引入患者主动运动意图,对刺激患者主动运动,兴奋病变大脑从而促进康复治疗的功效起到了很好的效果。The interactive rehabilitation training control strategy of the five-degree-of-freedom exoskeleton type upper limb rehabilitation robot of the present invention adopts passive and active-assisted training modes for different recovery situations of clinical hemiplegia patients, and obtains the surface muscles of relevant muscles during the patient's exercise process. The electric signal and the torque information generated during the movement process can predict the patient's movement intention, and then drive the robot to assist the patient's affected limb to realize the training of various single, multi-joint and daily life actions. The control strategy introduces the patient's active movement intention, which has a good effect on stimulating the patient's active movement, exciting the diseased brain, and promoting the efficacy of rehabilitation treatment.
五自由度外骨骼式上肢康复机器人系统由机械臂本体、驱动电机、力矩传感器、表面肌电电极、控制柜、安装架、座椅组成,由控制柜内计算机对安装在各转动轴线上的驱动电机进行驱动,使机械臂本体带动患者患肢进行康复训练运动,各关节处力矩传感器测量运动过程中的力矩信息,表面肌电电极测量运动相关肌肉的表面机电信号。外骨骼式双边结构的结构形式,在保证刚度的前提下减轻了质量。同时为偏瘫患者提供单关节及多关节复合的康复训练运动。为偏瘫患者提供简单的日常生活功能性动作--进食、提裤的训练,本发明引入患者自身运动意图的人机交互式的偏瘫康复训练控制策略。该康复机器人为临床偏瘫患者提供全方位的康复训练运动,从训练动作来看,其囊括了对上肢所有关节的训练,包括从肩部大关节到腕部小关节的被动运动及主动--辅助运动,并辅以简单的日常生活动作——进食、提裤的训练,将各个单关节动作训练加以深化及应用。从训练的模式来看,康复机器人在提供的各个运动中分别采用对应患者不同恢复期的两种训练模式:被动式和主动-辅助式的交互式康复训练控制策略。即在被动式和主动-辅助式训练过程中,患者患肢运动意图分别通过上肢相关肌肉的表面肌电信号及产生的各关节力矩加以体现,并依据该意图控制机器人辅助患者患肢进行康复训练运动。从而提高了患者康复训练的主动性,使其增强了治疗信心,同时也增强了治疗过程的吸引力并促进了康复治疗的功效。The five-degree-of-freedom exoskeleton upper limb rehabilitation robot system consists of a robotic arm body, a drive motor, a torque sensor, a surface electromyography electrode, a control cabinet, a mounting frame, and a seat. The computer in the control cabinet drives the motors installed on each rotation axis. The motor is driven so that the main body of the robotic arm drives the patient's affected limb to perform rehabilitation training exercises. The torque sensors at each joint measure the torque information during the exercise process, and the surface electromyography electrodes measure the surface electromechanical signals of the muscles related to the exercise. The structural form of the exoskeleton bilateral structure reduces the mass while ensuring the rigidity. At the same time, it provides single-joint and multi-joint compound rehabilitation training exercises for hemiplegic patients. To provide hemiplegia patients with simple daily life functional actions - training of eating and trousers lifting, the invention introduces the man-machine interactive hemiplegia rehabilitation training control strategy of the patient's own movement intention. This rehabilitation robot provides a full range of rehabilitation training exercises for patients with clinical hemiplegia. From the perspective of training actions, it includes the training of all joints of the upper limbs, including passive movements from large shoulder joints to small wrist joints and active-assist Exercise, supplemented by simple daily life actions - training of eating and lifting pants, deepen and apply each single joint action training. From the point of view of the training mode, the rehabilitation robot adopts two training modes corresponding to different recovery periods of the patients in each exercise provided: passive and active-assisted interactive rehabilitation training control strategies. That is, in the process of passive and active-assisted training, the movement intention of the patient's affected limb is reflected by the surface electromyographic signals of the relevant muscles of the upper limb and the joint torques generated, and the robot is controlled to assist the patient's limb in rehabilitation training according to the intention. . Thereby, the initiative of the patient's rehabilitation training is improved, the confidence of treatment is enhanced, the attractiveness of the treatment process is also enhanced, and the efficacy of rehabilitation treatment is promoted.
(四)附图说明 (4) Description of drawings
图1为传统临床康复方法示意图;Fig. 1 is the schematic diagram of traditional clinical rehabilitation method;
图2为上肢康复机器人系统示意图;Fig. 2 is a schematic diagram of the upper limb rehabilitation robot system;
图3为康复机器人电控柜示意图;Fig. 3 is the schematic diagram of electric control cabinet of rehabilitation robot;
图4为上肢康复机械臂结构图;Fig. 4 is a structural diagram of the upper limb rehabilitation mechanical arm;
图5为表面肌电电极分布示意图;Fig. 5 is a schematic diagram of surface electromyography electrode distribution;
图6为被动、主动两阶段交互式康复训练控制策略;Fig. 6 is a passive and active two-stage interactive rehabilitation training control strategy;
图7为主动力辅助康复训练控制原理框图。Fig. 7 is a block diagram of the control principle of the main power assisted rehabilitation training.
(五)具体实施方式 (5) Specific implementation methods
下面结合附图和具体实施例对本发明作进一步的说明:The present invention will be further described below in conjunction with accompanying drawing and specific embodiment:
结合图2,本实施例系统康复训练装置由康复机械臂本体1、驱动电机、可调节升降安装架2、座椅3及控制柜(结合图3)构成。结合图4康复机械臂本体设计为硬铝材料的外骨骼式双边结构,具有肩部外展/内收I、肩部屈/伸II、肘部屈/伸III、腕部屈/伸IV及腕部旋内/旋外V这5个自由度,5个驱动电机分别安装在各转动自由度的轴线上用于驱动各自由度活动。该康复训练装置从临床康复角度出发为患者提供各关节的单关节运动与三维空间多关节复合运动,并提供简单、基本的日常生活动作训练:进食、提裤。分别安装在肩部、肘部及腕部与驱动电机级联的四个力矩传感器(其中肩部两个、肘部一个、腕部屈伸处一个)测量运动过程中人体施加给机器人的力矩信息,表面肌电电极4、5、6、7(结合图5)用于获取运动中直接反映肌肉运动的表面肌电信号,两种信号均用于监测机器人的运动,并应用在不同模式的交互式康复控制策略中。With reference to FIG. 2 , the system rehabilitation training device of this embodiment is composed of a rehabilitation
结合图6,在机器人提供的各个运动中,分别采用对应患者不同恢复期的两种训练模式:被动式和主动-辅助式的交互式康复训练控制策略。在患者恢复的早、中期(包含软瘫期与痉挛期),应用被动运动训练,根据偏瘫患者上肢受损的特点,提取偏瘫患者的健侧上肢四块肌肉(结合图5,各表面肌电电极依次对应的三角肌中、三角肌前、肱二头肌、肱桡肌)的表面肌电信号(sEMG)作为康复机器人的控制信号,利用AR参数模型和BP神经网络来理解患者的运动意图,驱动机械臂辅助患侧上肢实现待定的康复训练动作。在患者恢复的中、后期(包含痉挛期与改善期),应用主动运动训练,如主动力辅助康复训练控制原理框图(结合图7),这是一个典型的双环控制系统结构,外环为机械臂末端力控制环,内环为关节速度控制环。具体工作原理为:在采样时刻t,利用关节力矩传感器采集由偏瘫患者主动运动而施加在各关节上的力矩值,同时计算出作为当前时刻各关节角度函数的机器人空载力矩值;将二者送入机器人末端力合成器得到末端力,即偏瘫患者施加在机器人未端点处的力的估计值,从而获取患者的运动意图;利用比例控制器将其转化为机器人末端运动速度,并通过运动学雅可比逆矩阵映射为机器人各关节的角速度指令;将角速度指令输入到机器人关节内环控制器当中,控制各关节的伺服电机实现稳定的角速度输出,从而驱动机器人对患者主动运动意图进行跟随并实现康复训练的力辅助控制。Combined with Figure 6, in each movement provided by the robot, two training modes corresponding to different recovery periods of the patient are adopted: passive and active-assisted interactive rehabilitation training control strategies. In the early and middle stages of the patient's recovery (including the flaccid and spastic stages), passive exercise training was applied, and according to the characteristics of the upper limb damage of the hemiplegic patient, the four muscles of the healthy side of the hemiplegic patient's upper limb were extracted (combined with Figure 5, each surface EMG The surface electromyographic signal (sEMG) of the middle deltoid muscle, front deltoid muscle, biceps brachii, and brachioradialis corresponding to the electrodes in turn is used as the control signal of the rehabilitation robot, and the AR parameter model and BP neural network are used to understand the patient's movement intention , to drive the mechanical arm to assist the upper limb of the affected side to realize the undetermined rehabilitation training action. In the middle and later stages of the patient's recovery (including the spasticity period and the improvement period), active exercise training is applied, such as the control principle block diagram of active force-assisted rehabilitation training (combined with Figure 7). This is a typical double-loop control system structure, and the outer loop is mechanical. The force control ring at the end of the arm, and the inner ring is the joint speed control ring. The specific working principle is: at the sampling time t, use the joint torque sensor to collect the torque value exerted on each joint by the active movement of the hemiplegic patient, and at the same time calculate the robot no-load torque value as a function of the joint angle at the current moment; combine the two Send it to the end force synthesizer of the robot to obtain the end force, that is, the estimated value of the force exerted by the hemiplegic patient on the end point of the robot, so as to obtain the patient's movement intention; use the proportional controller to convert it into the end movement speed of the robot, and through kinematics The Jacobian inverse matrix is mapped to the angular velocity command of each joint of the robot; the angular velocity command is input into the inner loop controller of the robot joint, and the servo motor of each joint is controlled to achieve a stable angular velocity output, thereby driving the robot to follow and realize the patient's active motion intention Force-assisted control for rehabilitation training.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNA2008100648790A CN101301250A (en) | 2008-07-08 | 2008-07-08 | Control strategy for interactive rehabilitation training of five-degree-of-freedom exoskeleton upper limb rehabilitation robot |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNA2008100648790A CN101301250A (en) | 2008-07-08 | 2008-07-08 | Control strategy for interactive rehabilitation training of five-degree-of-freedom exoskeleton upper limb rehabilitation robot |
Publications (1)
Publication Number | Publication Date |
---|---|
CN101301250A true CN101301250A (en) | 2008-11-12 |
Family
ID=40111473
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNA2008100648790A Pending CN101301250A (en) | 2008-07-08 | 2008-07-08 | Control strategy for interactive rehabilitation training of five-degree-of-freedom exoskeleton upper limb rehabilitation robot |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101301250A (en) |
Cited By (70)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102499853A (en) * | 2011-11-17 | 2012-06-20 | 北京理工大学 | Upper limb rehabilitation training system with active-passive modes |
CN102573620A (en) * | 2009-07-30 | 2012-07-11 | 开普敦大学 | Non-invasive deep muscle electromyography |
CN102622605A (en) * | 2012-02-17 | 2012-08-01 | 国电科学技术研究院 | Surface electromyogram signal feature extraction and action pattern recognition method |
CN102727360A (en) * | 2012-06-06 | 2012-10-17 | 常州汉迪机器人科技有限公司 | Human upper limb rehabilitation robot |
CN103371901A (en) * | 2012-04-24 | 2013-10-30 | 上海市东方医院 | Paralyzed limb independence enabler |
CN103860355A (en) * | 2012-12-13 | 2014-06-18 | 李春光 | Double-limb mirror movement training equipment |
CN103948483A (en) * | 2014-04-21 | 2014-07-30 | 安阳工学院 | Upper limb rehabilitation trainer |
CN104116598A (en) * | 2014-08-12 | 2014-10-29 | 上海申磬产业有限公司 | Robot nursing bed, force sense rehabilitation system and master-slave control method of force sense rehabilitation system |
CN104492066A (en) * | 2014-12-18 | 2015-04-08 | 中国科学院自动化研究所 | Task-oriented active training control method and corresponding rehabilitation robot |
CN104688491A (en) * | 2013-12-04 | 2015-06-10 | 中国科学院宁波材料技术与工程研究所 | Training robot and control method |
CN104921902A (en) * | 2014-03-17 | 2015-09-23 | 香港理工大学 | A rehabilitation system combining sensory function and mechanical assistance |
CN104983549A (en) * | 2015-07-29 | 2015-10-21 | 张士勇 | An intelligent upper limb rehabilitation training device |
CN105005195A (en) * | 2014-04-18 | 2015-10-28 | 东北大学 | Upper limb rehabilitation robot rehabilitation training motion control method |
CN105137972A (en) * | 2015-08-14 | 2015-12-09 | 浙江大学 | Adaptive robustness cascading force controlling method for single-joint powered exoskeleton |
CN105411817A (en) * | 2015-12-23 | 2016-03-23 | 微迈森惯性技术开发(北京)有限公司 | Power driving method and system of external power machine |
CN105434144A (en) * | 2015-12-30 | 2016-03-30 | 哈尔滨工业大学 | Forearm turning and wrist bending rehabilitation device and turning and bending method thereof |
CN105597280A (en) * | 2016-03-21 | 2016-05-25 | 哈尔滨工业大学 | Active-passive upper limb rehabilitation training exoskeleton |
CN105615890A (en) * | 2015-12-24 | 2016-06-01 | 西安交通大学 | Angle and myoelectricity continuous decoding method for human body lower limb walking joint |
CN105640733A (en) * | 2014-11-11 | 2016-06-08 | 深圳宝葫芦机器人有限公司 | Upper limb rehabilitation robot and control method thereof |
CN105849788A (en) * | 2013-10-09 | 2016-08-10 | Mc10股份有限公司 | Utility gear including conformal sensors |
CN106176134A (en) * | 2016-07-12 | 2016-12-07 | 王春宝 | A kind of method and system of autonomous training |
CN106389068A (en) * | 2016-10-26 | 2017-02-15 | 华南理工大学 | Device for autonomous rehabilitation training of upper limb unilateral hemiplegia patient and control method |
CN106795868A (en) * | 2014-09-19 | 2017-05-31 | 哈佛大学校长及研究员协会 | For the soft overcoat of human motion auxiliary |
CN107169302A (en) * | 2017-06-12 | 2017-09-15 | 北京工业大学 | A kind of stroke patient information gathering and management system |
CN107693305A (en) * | 2017-11-01 | 2018-02-16 | 河南理工大学 | A kind of leg training rehabilitation multi-function robot |
CN107753241A (en) * | 2017-11-20 | 2018-03-06 | 中航创世机器人(东莞)有限公司 | A kind of control method of lower limb rehabilitation treatment intelligent exoskeleton robot |
CN107929939A (en) * | 2017-03-17 | 2018-04-20 | 重庆理工大学 | The upper-limbs rehabilitation training robot and its application method of a kind of nerve electric stimulation |
EA030027B1 (en) * | 2015-12-23 | 2018-06-29 | Общество С Ограниченной Ответственностью "Кинидекс" | System and method for restoring human motor activity |
CN108261197A (en) * | 2018-03-19 | 2018-07-10 | 上海理工大学 | Upper limb healing evaluation system and method based on surface myoelectric and motion module |
CN108309689A (en) * | 2018-02-02 | 2018-07-24 | 哈尔滨工业大学 | A kind of gradual recovery training method based on exoskeleton robot |
CN108392795A (en) * | 2018-02-05 | 2018-08-14 | 哈尔滨工程大学 | A kind of healing robot Multimode Controlling Method based on Multi-information acquisition |
CN108498256A (en) * | 2018-06-08 | 2018-09-07 | 陈怡帆 | A kind of sick bed facilitating reconditioning |
CN108814597A (en) * | 2018-04-16 | 2018-11-16 | 龚映清 | A kind of rehabilitation training evaluating method interacted based on motion information with myoelectricity and system |
CN108970014A (en) * | 2018-09-10 | 2018-12-11 | 武汉理工大学 | A kind of advanced formula healing robot and its recovery training method suitable for multiple joints |
CN109330819A (en) * | 2018-09-18 | 2019-02-15 | 山东建筑大学 | Master-slave upper limb exoskeleton rehabilitation robot control system and control method |
CN109350446A (en) * | 2018-10-18 | 2019-02-19 | 航天科工智能机器人有限责任公司 | Master based on electromyography signal passively combines upper-limbs rehabilitation training robot system |
CN109381184A (en) * | 2018-10-15 | 2019-02-26 | 刘丹 | A kind of wearable smart machine control method that auxiliary is carried |
CN109529274A (en) * | 2018-11-13 | 2019-03-29 | 南京邮电大学 | Based on redundant mechanical arm upper limb joint initiative rehabilitation system and its training method |
CN109549817A (en) * | 2017-09-24 | 2019-04-02 | 湖北职业技术学院 | A kind of entertainment body-building public bus reserved for the disabled upper limb is passive and initiative rehabilitation training device |
CN109760025A (en) * | 2019-03-14 | 2019-05-17 | 布法罗机器人科技(成都)有限公司 | The exoskeleton robot of direct force checking device, control system and side-jet control |
WO2019119724A1 (en) * | 2017-12-21 | 2019-06-27 | 东南大学 | Force sense information and posture information based limb motion intention understanding and upper limb rehabilitation training robot control method |
CN110038270A (en) * | 2019-05-14 | 2019-07-23 | 上海大学 | A kind of upper limb single armed recovery exercising robot man-machine interactive system and method |
CN110302497A (en) * | 2018-03-27 | 2019-10-08 | 乔山健康科技(上海)有限公司 | The dynamical type sports equipment of convertible leg exercise mode |
CN110507322A (en) * | 2019-07-30 | 2019-11-29 | 西安交通大学 | A system and method for quantitative state assessment based on virtual induced myoelectricity |
CN110652423A (en) * | 2019-10-12 | 2020-01-07 | 东南大学 | Wearable upper limb rehabilitation training robot with precise force control |
CN110680677A (en) * | 2019-10-22 | 2020-01-14 | 浙江树人学院(浙江树人大学) | Physical Rehabilitation Trainer |
CN110801239A (en) * | 2019-11-20 | 2020-02-18 | 上海交通大学 | Upper limb multi-joint constant speed training testing device |
CN111067760A (en) * | 2019-12-31 | 2020-04-28 | 上海机器人产业技术研究院有限公司 | Upper limb rehabilitation training robot based on omnidirectional mobile platform |
CN111150608A (en) * | 2020-01-17 | 2020-05-15 | 湖北英特搏智能机器有限公司 | Control method of rehabilitation robot for recognizing movement intention based on pressure sensor |
CN111616848A (en) * | 2020-06-02 | 2020-09-04 | 中国科学技术大学先进技术研究院 | Five-DOF upper arm prosthetic control system based on FSM |
CN111805517A (en) * | 2020-07-27 | 2020-10-23 | 南京理工大学 | An upper limb exoskeleton robot with collinear shoulder rotation centerlines |
CN111870475A (en) * | 2020-09-04 | 2020-11-03 | 北京石油化工学院 | Taiji rehabilitation training instrument |
CN112472516A (en) * | 2020-10-26 | 2021-03-12 | 深圳市康乐福科技有限公司 | AR-based lower limb rehabilitation training system |
CN110051501B (en) * | 2019-03-01 | 2021-07-09 | 南京航空航天大学 | A desktop type upper limb rehabilitation robot and using method thereof |
CN113197754A (en) * | 2021-06-04 | 2021-08-03 | 山东建筑大学 | Upper limb exoskeleton rehabilitation robot system and method |
CN113331826A (en) * | 2021-05-31 | 2021-09-03 | 汤志华 | Limb joint function evaluation rehabilitation training system and using method thereof |
CN113397918A (en) * | 2021-07-21 | 2021-09-17 | 上海理工大学 | Wearable elbow joint exoskeleton rehabilitation control system |
CN113397779A (en) * | 2015-06-15 | 2021-09-17 | 我自己的动作有限公司 | Powered orthotic device |
CN113633521A (en) * | 2021-09-15 | 2021-11-12 | 山东建筑大学 | An upper limb exoskeleton rehabilitation robot control system and control method |
CN113730190A (en) * | 2021-09-18 | 2021-12-03 | 上海交通大学 | Upper limb rehabilitation robot system with three-dimensional space motion |
WO2021259045A1 (en) * | 2020-06-24 | 2021-12-30 | 上海神泰医疗科技有限公司 | Operation method of rehabilitation robot system, rehabilitation robot system, and readable medium |
CN114298115A (en) * | 2022-03-07 | 2022-04-08 | 南开大学 | A method and system for acquiring sensor interaction motion intent |
CN114344077A (en) * | 2021-12-07 | 2022-04-15 | 华南理工大学 | Flexible upper limb rehabilitation robot system based on SEMG movement intention recognition |
CN114601451A (en) * | 2021-04-09 | 2022-06-10 | 长春工业大学 | Surface electromyogram signal-based upper limb exoskeleton robot control method |
CN114733160A (en) * | 2022-04-14 | 2022-07-12 | 福州大学 | Myoelectric signal-based muscle strength training equipment control method |
CN114948609A (en) * | 2022-04-12 | 2022-08-30 | 北京航空航天大学 | Walking aid auxiliary device and method for paralytic |
CN115484915A (en) * | 2021-06-10 | 2022-12-16 | 南京浙溧智能制造研究院有限公司 | Weak-connection upper limb rehabilitation training system based on double-arm robot and training method thereof |
CN115708758A (en) * | 2022-11-19 | 2023-02-24 | 哈尔滨理工大学 | Upper limb rehabilitation mode and training method based on flexible mechanical arm and human body myoelectric signal |
WO2023240748A1 (en) * | 2022-06-14 | 2023-12-21 | 东南大学 | Adaptive control method and system for upper limb rehabilitation robot and based on game theory and semg |
CN118650631A (en) * | 2024-08-16 | 2024-09-17 | 首都医科大学宣武医院 | A control method for exoskeleton motor system based on electromyographic signal |
-
2008
- 2008-07-08 CN CNA2008100648790A patent/CN101301250A/en active Pending
Cited By (102)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102573620B (en) * | 2009-07-30 | 2014-10-22 | 开普敦大学 | Non-invasive deep muscle electromyography |
CN102573620A (en) * | 2009-07-30 | 2012-07-11 | 开普敦大学 | Non-invasive deep muscle electromyography |
CN102499853B (en) * | 2011-11-17 | 2013-09-11 | 北京理工大学 | Upper limb rehabilitation training system with active-passive modes |
CN102499853A (en) * | 2011-11-17 | 2012-06-20 | 北京理工大学 | Upper limb rehabilitation training system with active-passive modes |
CN102622605A (en) * | 2012-02-17 | 2012-08-01 | 国电科学技术研究院 | Surface electromyogram signal feature extraction and action pattern recognition method |
CN102622605B (en) * | 2012-02-17 | 2015-06-03 | 国电科学技术研究院 | Surface electromyogram signal feature extraction and action pattern recognition method |
CN103371901A (en) * | 2012-04-24 | 2013-10-30 | 上海市东方医院 | Paralyzed limb independence enabler |
CN103371901B (en) * | 2012-04-24 | 2016-06-01 | 上海市东方医院 | Paralyzed limbs is independently energized device |
CN102727360A (en) * | 2012-06-06 | 2012-10-17 | 常州汉迪机器人科技有限公司 | Human upper limb rehabilitation robot |
CN102727360B (en) * | 2012-06-06 | 2014-06-18 | 常州汉迪机器人科技有限公司 | Human upper limb rehabilitation robot |
CN103860355A (en) * | 2012-12-13 | 2014-06-18 | 李春光 | Double-limb mirror movement training equipment |
CN105849788A (en) * | 2013-10-09 | 2016-08-10 | Mc10股份有限公司 | Utility gear including conformal sensors |
CN104688491A (en) * | 2013-12-04 | 2015-06-10 | 中国科学院宁波材料技术与工程研究所 | Training robot and control method |
CN104921902A (en) * | 2014-03-17 | 2015-09-23 | 香港理工大学 | A rehabilitation system combining sensory function and mechanical assistance |
CN105005195B (en) * | 2014-04-18 | 2019-03-29 | 东北大学 | A kind of upper limb rehabilitation robot rehabilitation training motion control method |
CN105005195A (en) * | 2014-04-18 | 2015-10-28 | 东北大学 | Upper limb rehabilitation robot rehabilitation training motion control method |
CN103948483B (en) * | 2014-04-21 | 2015-12-09 | 安阳工学院 | A kind of upper limb rehabilitation trainer |
CN103948483A (en) * | 2014-04-21 | 2014-07-30 | 安阳工学院 | Upper limb rehabilitation trainer |
CN104116598B (en) * | 2014-08-12 | 2017-02-15 | 宋扬 | Robot nursing bed, force sense rehabilitation system and master-slave control method of force sense rehabilitation system |
CN104116598A (en) * | 2014-08-12 | 2014-10-29 | 上海申磬产业有限公司 | Robot nursing bed, force sense rehabilitation system and master-slave control method of force sense rehabilitation system |
CN106795868A (en) * | 2014-09-19 | 2017-05-31 | 哈佛大学校长及研究员协会 | For the soft overcoat of human motion auxiliary |
CN105640733B (en) * | 2014-11-11 | 2018-09-18 | 深圳宝葫芦机器人有限公司 | A kind of upper limb rehabilitation robot and its control method |
CN105640733A (en) * | 2014-11-11 | 2016-06-08 | 深圳宝葫芦机器人有限公司 | Upper limb rehabilitation robot and control method thereof |
CN104492066A (en) * | 2014-12-18 | 2015-04-08 | 中国科学院自动化研究所 | Task-oriented active training control method and corresponding rehabilitation robot |
CN113397779A (en) * | 2015-06-15 | 2021-09-17 | 我自己的动作有限公司 | Powered orthotic device |
CN113397779B (en) * | 2015-06-15 | 2024-02-27 | 我自己的动作有限公司 | Powered orthotic device |
CN104983549A (en) * | 2015-07-29 | 2015-10-21 | 张士勇 | An intelligent upper limb rehabilitation training device |
CN105137972A (en) * | 2015-08-14 | 2015-12-09 | 浙江大学 | Adaptive robustness cascading force controlling method for single-joint powered exoskeleton |
CN105411817A (en) * | 2015-12-23 | 2016-03-23 | 微迈森惯性技术开发(北京)有限公司 | Power driving method and system of external power machine |
EA030027B1 (en) * | 2015-12-23 | 2018-06-29 | Общество С Ограниченной Ответственностью "Кинидекс" | System and method for restoring human motor activity |
CN105615890A (en) * | 2015-12-24 | 2016-06-01 | 西安交通大学 | Angle and myoelectricity continuous decoding method for human body lower limb walking joint |
CN105615890B (en) * | 2015-12-24 | 2018-08-10 | 西安交通大学 | Human body lower limbs walking joint angles myoelectricity continuous decoding method |
CN105434144A (en) * | 2015-12-30 | 2016-03-30 | 哈尔滨工业大学 | Forearm turning and wrist bending rehabilitation device and turning and bending method thereof |
CN105597280B (en) * | 2016-03-21 | 2018-03-13 | 哈尔滨工业大学 | The main passive mixing rehabilitation training of upper limbs ectoskeleton of one kind |
CN105597280A (en) * | 2016-03-21 | 2016-05-25 | 哈尔滨工业大学 | Active-passive upper limb rehabilitation training exoskeleton |
CN106176134A (en) * | 2016-07-12 | 2016-12-07 | 王春宝 | A kind of method and system of autonomous training |
CN106389068A (en) * | 2016-10-26 | 2017-02-15 | 华南理工大学 | Device for autonomous rehabilitation training of upper limb unilateral hemiplegia patient and control method |
CN107929939A (en) * | 2017-03-17 | 2018-04-20 | 重庆理工大学 | The upper-limbs rehabilitation training robot and its application method of a kind of nerve electric stimulation |
CN107929939B (en) * | 2017-03-17 | 2023-10-20 | 重庆理工大学 | Nerve electrical stimulation upper limb rehabilitation training robot and application method thereof |
CN107169302A (en) * | 2017-06-12 | 2017-09-15 | 北京工业大学 | A kind of stroke patient information gathering and management system |
CN109549817B (en) * | 2017-09-24 | 2024-04-09 | 湖北职业技术学院 | An entertainment fitness rehabilitation vehicle upper limb passive and active rehabilitation training device |
CN109549817A (en) * | 2017-09-24 | 2019-04-02 | 湖北职业技术学院 | A kind of entertainment body-building public bus reserved for the disabled upper limb is passive and initiative rehabilitation training device |
CN107693305A (en) * | 2017-11-01 | 2018-02-16 | 河南理工大学 | A kind of leg training rehabilitation multi-function robot |
CN107753241B (en) * | 2017-11-20 | 2022-06-03 | 中航创世机器人(西安)有限公司 | Control method of intelligent exoskeleton robot for lower limb rehabilitation therapy |
CN107753241A (en) * | 2017-11-20 | 2018-03-06 | 中航创世机器人(东莞)有限公司 | A kind of control method of lower limb rehabilitation treatment intelligent exoskeleton robot |
WO2019119724A1 (en) * | 2017-12-21 | 2019-06-27 | 东南大学 | Force sense information and posture information based limb motion intention understanding and upper limb rehabilitation training robot control method |
US10994416B2 (en) | 2017-12-21 | 2021-05-04 | Southeast University | Method for controlling a limb motion intention understanding and upper limb rehabilitation training robot based on force sense information and posture information |
CN108309689A (en) * | 2018-02-02 | 2018-07-24 | 哈尔滨工业大学 | A kind of gradual recovery training method based on exoskeleton robot |
CN108392795B (en) * | 2018-02-05 | 2019-11-01 | 哈尔滨工程大学 | A kind of healing robot Multimode Controlling Method based on multi-information fusion |
CN108392795A (en) * | 2018-02-05 | 2018-08-14 | 哈尔滨工程大学 | A kind of healing robot Multimode Controlling Method based on Multi-information acquisition |
CN108261197A (en) * | 2018-03-19 | 2018-07-10 | 上海理工大学 | Upper limb healing evaluation system and method based on surface myoelectric and motion module |
CN110302497A (en) * | 2018-03-27 | 2019-10-08 | 乔山健康科技(上海)有限公司 | The dynamical type sports equipment of convertible leg exercise mode |
CN110302497B (en) * | 2018-03-27 | 2021-03-30 | 乔山健康科技(上海)有限公司 | Power type sports equipment capable of changing leg sports mode |
CN108814597A (en) * | 2018-04-16 | 2018-11-16 | 龚映清 | A kind of rehabilitation training evaluating method interacted based on motion information with myoelectricity and system |
CN108498256B (en) * | 2018-06-08 | 2023-08-01 | 陈怡帆 | Sickbed convenient for rehabilitation exercise |
CN108498256A (en) * | 2018-06-08 | 2018-09-07 | 陈怡帆 | A kind of sick bed facilitating reconditioning |
CN108970014A (en) * | 2018-09-10 | 2018-12-11 | 武汉理工大学 | A kind of advanced formula healing robot and its recovery training method suitable for multiple joints |
CN108970014B (en) * | 2018-09-10 | 2023-08-22 | 武汉理工大学 | An advanced rehabilitation robot suitable for multiple joints and its rehabilitation training method |
CN109330819A (en) * | 2018-09-18 | 2019-02-15 | 山东建筑大学 | Master-slave upper limb exoskeleton rehabilitation robot control system and control method |
CN109381184A (en) * | 2018-10-15 | 2019-02-26 | 刘丹 | A kind of wearable smart machine control method that auxiliary is carried |
CN109350446A (en) * | 2018-10-18 | 2019-02-19 | 航天科工智能机器人有限责任公司 | Master based on electromyography signal passively combines upper-limbs rehabilitation training robot system |
CN109529274A (en) * | 2018-11-13 | 2019-03-29 | 南京邮电大学 | Based on redundant mechanical arm upper limb joint initiative rehabilitation system and its training method |
CN109529274B (en) * | 2018-11-13 | 2021-01-26 | 南京邮电大学 | Active Rehabilitation System and Training Method for Upper Limb Joints Based on Redundant Manipulator |
CN110051501B (en) * | 2019-03-01 | 2021-07-09 | 南京航空航天大学 | A desktop type upper limb rehabilitation robot and using method thereof |
CN109760025A (en) * | 2019-03-14 | 2019-05-17 | 布法罗机器人科技(成都)有限公司 | The exoskeleton robot of direct force checking device, control system and side-jet control |
CN110038270A (en) * | 2019-05-14 | 2019-07-23 | 上海大学 | A kind of upper limb single armed recovery exercising robot man-machine interactive system and method |
CN110507322A (en) * | 2019-07-30 | 2019-11-29 | 西安交通大学 | A system and method for quantitative state assessment based on virtual induced myoelectricity |
CN110652423A (en) * | 2019-10-12 | 2020-01-07 | 东南大学 | Wearable upper limb rehabilitation training robot with precise force control |
CN110652423B (en) * | 2019-10-12 | 2021-11-12 | 东南大学 | Wearable upper limb rehabilitation training robot with accurate force control |
CN110680677A (en) * | 2019-10-22 | 2020-01-14 | 浙江树人学院(浙江树人大学) | Physical Rehabilitation Trainer |
CN110801239A (en) * | 2019-11-20 | 2020-02-18 | 上海交通大学 | Upper limb multi-joint constant speed training testing device |
CN110801239B (en) * | 2019-11-20 | 2022-06-17 | 上海交通大学 | Upper limb multi-joint constant speed training testing device |
CN111067760A (en) * | 2019-12-31 | 2020-04-28 | 上海机器人产业技术研究院有限公司 | Upper limb rehabilitation training robot based on omnidirectional mobile platform |
CN111150608A (en) * | 2020-01-17 | 2020-05-15 | 湖北英特搏智能机器有限公司 | Control method of rehabilitation robot for recognizing movement intention based on pressure sensor |
CN111616848A (en) * | 2020-06-02 | 2020-09-04 | 中国科学技术大学先进技术研究院 | Five-DOF upper arm prosthetic control system based on FSM |
CN111616848B (en) * | 2020-06-02 | 2021-06-08 | 中国科学技术大学先进技术研究院 | Five-degree-of-freedom upper arm prosthesis control system based on FSM |
WO2021259045A1 (en) * | 2020-06-24 | 2021-12-30 | 上海神泰医疗科技有限公司 | Operation method of rehabilitation robot system, rehabilitation robot system, and readable medium |
CN111805517A (en) * | 2020-07-27 | 2020-10-23 | 南京理工大学 | An upper limb exoskeleton robot with collinear shoulder rotation centerlines |
CN111870475A (en) * | 2020-09-04 | 2020-11-03 | 北京石油化工学院 | Taiji rehabilitation training instrument |
CN112472516B (en) * | 2020-10-26 | 2022-06-21 | 深圳市康乐福科技有限公司 | AR-based lower limb rehabilitation training system |
CN112472516A (en) * | 2020-10-26 | 2021-03-12 | 深圳市康乐福科技有限公司 | AR-based lower limb rehabilitation training system |
CN114601451A (en) * | 2021-04-09 | 2022-06-10 | 长春工业大学 | Surface electromyogram signal-based upper limb exoskeleton robot control method |
CN113331826B (en) * | 2021-05-31 | 2024-03-15 | 汤志华 | Limb joint function assessment rehabilitation training system and application method thereof |
CN113331826A (en) * | 2021-05-31 | 2021-09-03 | 汤志华 | Limb joint function evaluation rehabilitation training system and using method thereof |
CN113197754B (en) * | 2021-06-04 | 2023-04-28 | 山东建筑大学 | Upper limb exoskeleton rehabilitation robot system and method |
CN113197754A (en) * | 2021-06-04 | 2021-08-03 | 山东建筑大学 | Upper limb exoskeleton rehabilitation robot system and method |
CN115484915B (en) * | 2021-06-10 | 2024-07-02 | 南京浙溧智能制造研究院有限公司 | Weak connection upper limb rehabilitation training system based on double-arm robot and training method thereof |
CN115484915A (en) * | 2021-06-10 | 2022-12-16 | 南京浙溧智能制造研究院有限公司 | Weak-connection upper limb rehabilitation training system based on double-arm robot and training method thereof |
CN113397918A (en) * | 2021-07-21 | 2021-09-17 | 上海理工大学 | Wearable elbow joint exoskeleton rehabilitation control system |
CN113397918B (en) * | 2021-07-21 | 2023-02-07 | 上海理工大学 | A wearable elbow exoskeleton rehabilitation control system |
CN113633521A (en) * | 2021-09-15 | 2021-11-12 | 山东建筑大学 | An upper limb exoskeleton rehabilitation robot control system and control method |
CN113633521B (en) * | 2021-09-15 | 2024-05-03 | 山东建筑大学 | Upper limb exoskeleton rehabilitation robot control system and control method |
CN113730190A (en) * | 2021-09-18 | 2021-12-03 | 上海交通大学 | Upper limb rehabilitation robot system with three-dimensional space motion |
CN114344077A (en) * | 2021-12-07 | 2022-04-15 | 华南理工大学 | Flexible upper limb rehabilitation robot system based on SEMG movement intention recognition |
CN114298115A (en) * | 2022-03-07 | 2022-04-08 | 南开大学 | A method and system for acquiring sensor interaction motion intent |
CN114948609A (en) * | 2022-04-12 | 2022-08-30 | 北京航空航天大学 | Walking aid auxiliary device and method for paralytic |
CN114733160B (en) * | 2022-04-14 | 2022-10-18 | 福州大学 | A kind of muscle strength training equipment control method based on EMG signal |
CN114733160A (en) * | 2022-04-14 | 2022-07-12 | 福州大学 | Myoelectric signal-based muscle strength training equipment control method |
WO2023240748A1 (en) * | 2022-06-14 | 2023-12-21 | 东南大学 | Adaptive control method and system for upper limb rehabilitation robot and based on game theory and semg |
US12057224B2 (en) | 2022-06-14 | 2024-08-06 | Southeast University | Adaptive control method and system for upper limb rehabilitation robot based on game theory and surface electromyography (sEMG) |
CN115708758A (en) * | 2022-11-19 | 2023-02-24 | 哈尔滨理工大学 | Upper limb rehabilitation mode and training method based on flexible mechanical arm and human body myoelectric signal |
CN118650631A (en) * | 2024-08-16 | 2024-09-17 | 首都医科大学宣武医院 | A control method for exoskeleton motor system based on electromyographic signal |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101301250A (en) | Control strategy for interactive rehabilitation training of five-degree-of-freedom exoskeleton upper limb rehabilitation robot | |
CN102727361B (en) | Sitting and lying type lower limb rehabilitation robot | |
CN107296718B (en) | Pneumatic muscle-driven exoskeleton device with functions of upper limb assistance and rehabilitation training | |
CN101433491B (en) | Multiple-freedom degree wearing type rehabilitation training robot for function of hand and control system thereof | |
CN102716000B (en) | Seated horizontal type lower limb rehabilitation robot | |
CN103431976A (en) | Lower limb rehabilitation robot system based on myoelectric signal feedback, and control method thereof | |
CN103750975B (en) | Based on exoskeleton finger recovery robot system and the method for work of brain electric control | |
Zhuang et al. | Voluntary control of an ankle joint exoskeleton by able-bodied individuals and stroke survivors using EMG-based admittance control scheme | |
CN100594867C (en) | A wearable hand function rehabilitation robot and its control system | |
CN106334265B (en) | The ectoskeleton walk help system driven with functional muscle electric stimulation | |
CN102698411B (en) | Recumbent lower limb rehabilitation robot | |
CN112494276B (en) | A hand rehabilitation robot system | |
CN102525712B (en) | Rope-traction upper limb rehabilitation robot and control method thereof | |
CN102058464A (en) | Motion control method of lower limb rehabilitative robot | |
CN114822761A (en) | Wrist rehabilitation training system based on muscle cooperation and variable stiffness impedance control | |
CN104840334B (en) | A kind of finger motion function rehabilitation training devicess | |
CN106074092A (en) | A kind of novel exoskeleton finger healing robot and method of work thereof | |
CN104490563A (en) | Pneumatic muscle based intelligent wearable lower limb | |
CN102641196A (en) | Rehealthy training robot control system and control method thereof | |
CN113397918B (en) | A wearable elbow exoskeleton rehabilitation control system | |
Wang et al. | An assistive system for upper limb motion combining functional electrical stimulation and robotic exoskeleton | |
CN106618963A (en) | Wearable rehabilitation robot glove device and rehabilitation training method after syndactylia operation | |
Zhang et al. | Design of a parallel wrist rehabilitation robot and analysis of physiological effect on training | |
WO2023240748A1 (en) | Adaptive control method and system for upper limb rehabilitation robot and based on game theory and semg | |
Wang et al. | Design and preliminary validation of a lightweight powered exoskeleton during level walking for persons with paraplegia |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
WD01 | Invention patent application deemed withdrawn after publication |
Open date: 20081112 |