CN101295359A - Image processing program and image processing device - Google Patents
Image processing program and image processing device Download PDFInfo
- Publication number
- CN101295359A CN101295359A CNA2008100058810A CN200810005881A CN101295359A CN 101295359 A CN101295359 A CN 101295359A CN A2008100058810 A CNA2008100058810 A CN A2008100058810A CN 200810005881 A CN200810005881 A CN 200810005881A CN 101295359 A CN101295359 A CN 101295359A
- Authority
- CN
- China
- Prior art keywords
- color
- information
- specific object
- image
- data
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000012545 processing Methods 0.000 title claims abstract description 95
- 238000003672 processing method Methods 0.000 claims abstract description 13
- 238000006243 chemical reaction Methods 0.000 claims description 53
- 239000003086 colorant Substances 0.000 claims description 11
- 238000004891 communication Methods 0.000 claims description 8
- 238000000034 method Methods 0.000 description 63
- 238000000605 extraction Methods 0.000 description 41
- 238000010586 diagram Methods 0.000 description 21
- 238000012937 correction Methods 0.000 description 7
- 238000012015 optical character recognition Methods 0.000 description 7
- 230000004075 alteration Effects 0.000 description 4
- 230000006870 function Effects 0.000 description 2
- 241000872198 Serjania polyphylla Species 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000013528 artificial neural network Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000004042 decolorization Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/20—Analysis of motion
- G06T7/254—Analysis of motion involving subtraction of images
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/90—Determination of colour characteristics
Landscapes
- Engineering & Computer Science (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Multimedia (AREA)
- Character Input (AREA)
- Image Analysis (AREA)
- Image Processing (AREA)
- Facsimile Image Signal Circuits (AREA)
Abstract
Description
技术领域 technical field
本发明涉及一种利用光学文字读取装置(OCR:OpticalCharacter Reader)、扫描仪、数字照相机等拍摄例如帐票等文档,从生成的文档图像中抽取记入文字、印迹、标记等特定对象的图像处理方法及图像处理装置。The present invention relates to a method of taking pictures of documents such as bills by using an optical character reading device (OCR: Optical Character Reader), a scanner, a digital camera, etc., and extracting images of specific objects such as words, imprints, marks, etc. from the generated document images. Processing method and image processing device.
背景技术 Background technique
在金融机关或自治团体中,使用OCR等扫描仪装置,实现帐票等文档处理业务的高效化。OCR的主要功能是文档图像的生成、文档图像中文字的抽取、文字识别。作为生成的文档图像的种类,有二值图像、亮度图像、彩色图像。In financial institutions and local governments, scanner devices such as OCR are used to improve the efficiency of document processing tasks such as forms. The main functions of OCR are the generation of document images, the extraction of text in document images, and text recognition. Types of document images to be generated include binary images, luminance images, and color images.
使用二值图像的处理,由于数据量小,因此处理时间变少。但是,在二值图像处理中,在帐票中预先印刷的称为预印(Preprint)的格线、位线、提示文字、阴影和手写或后来印刷的记入文字有很大重叠的情况下,难以区分它们。因此,存在文字的抽取结果中产生噪声的情况、或抽取的文字的一部分欠缺的情况,有文字识别出错的问题。Processing using binary images reduces processing time due to the small amount of data. However, in binary image processing, when preprinted ruled lines, bit lines, reminder characters, shadows and handwritten or later printed entry characters are largely overlapped. , it is difficult to distinguish them. Therefore, noise may be generated in the character extraction result, or part of the extracted character may be missing, resulting in a character recognition error.
使用亮度图像的处理是黑白的浓淡图像处理。由于在亮度图像处理中,利用预印和记入文字的亮度值不同来区别它们,因此在预印和记入文字重叠的情况下,区分它们比二值图像处理变得容易。但预印和记入文字的亮度值相近的情况下,它们的判别精度变低。Processing using a luminance image is monochrome shading image processing. Since preprinted and inscribed characters are differentiated by their different luminance values in luminance image processing, it is easier to distinguish them than binary image processing when preprinted and inscribed characters overlap. However, when the luminance values of preprinted and inscribed characters are similar, their discrimination accuracy becomes low.
在利用彩色图像的处理中,由于能根据预印和记入文字的颜色的不同而区别,因此区别它们比亮度图像处理变得容易。在彩色图像处理中,通过去除预印的颜色来抽取记入文字、印迹、标记等。In processing using a color image, since preprinted and inscribed characters can be distinguished according to the color difference, it is easier to distinguish them than brightness image processing. In color image processing, written characters, imprints, marks, etc. are extracted by removing preprinted colors.
该方法中,有像【专利文献3】那样去除在帐票输入前指定的去除颜色的方法,和像【专利文献1】或【专利文献2】那样抽取在输入的帐票内的像格线那样的特定的形状部分,去除与该抽取部分的颜色相同颜色的方法。In this method, there is a method of removing the color specified before inputting the form as in [Patent Document 3], and extracting the ruled lines in the input form as in [Patent Document 1] or [Patent Document 2]. Such a specific shape part is a method of removing the same color as the color of the extracted part.
【专利文献1】特开2003-196592【Patent Document 1】JP-A-2003-196592
【专利文献2】特开2005-258683【Patent Document 2】JP-A-2005-258683
【专利文献3】特开2006-134355【Patent Document 3】JP-A-2006-134355
【专利文献4】特开2004-336106【Patent Document 4】JP-A-2004-336106
【专利文献5】特开2005-18810[Patent Document 5] JP-A-2005-18810
在上述彩色图像处理中,存在由于由OCR、扫描仪、数字照相机生成的图像中产生色偏差,不能正确地抽取记入文字或印迹等特定对象,而留有一部分预印,或特定对象的一部分欠缺等问题。In the above-mentioned color image processing, due to color deviation in the image generated by OCR, scanner, and digital camera, specific objects such as written characters or imprints cannot be correctly extracted, leaving a part of preprint, or a part of the specific object lack of issues.
所谓色偏差是指感测到的3原色的颜色分量,成为红色分量的R值、成为绿色分量的G值及成为蓝色分量的B值中至少一个值的位置偏移。作为色偏差产生的主要原因,列举镜头的色差、传感器的配置位置、搬运速度等。特别是在利用台式扫描仪或数字照相机等的二维CCD的扫描仪中,产生较多因色差而带来的色偏差。The so-called color deviation refers to the positional deviation of at least one of the sensed color components of the three primary colors, the R value that becomes the red component, the G value that becomes the green component, and the B value that becomes the blue component. Causes of color shift include chromatic aberration of the lens, arrangement position of the sensor, conveyance speed, and the like. In particular, in a scanner using a two-dimensional CCD such as a desktop scanner or a digital camera, many color shifts due to chromatic aberration occur.
由于色偏差,在预印或记入文字等的特定对象的轮廓部分中,产生与特定对象的本来的颜色不同的伪色。例如,有在黑色文字的轮廓中,产生红色和蓝色的伪色的情况,或在蓝色的格线的轮廓上产生浅红色的伪色的情况等。因此,在根据颜色的信息区别记入文字和预印等的彩色图像处理中产生错误。Due to the color shift, a false color different from the original color of the specific object occurs in the outline of the specific object such as preprinted or written characters. For example, red and blue false colors may be generated on the outline of black characters, or a reddish false color may be generated on the outline of blue ruled lines. Therefore, an error occurs in color image processing that distinguishes written characters from preprinted characters based on color information.
对此,【专利文献4】尝试除去镜头的色差、【专利文献5】尝试除去由传感器的配置位置而产生的色偏差。In this regard, [Patent Document 4] attempts to remove chromatic aberration of the lens, and [Patent Document 5] attempts to remove chromatic aberration caused by the arrangement position of the sensor.
然而,即使进行计侧并补正偏差量的方法,从图像中完全除去色偏差是困难的。此外,更高精度的色偏差补正要花费很多的格线时间的问题也出现了。However, it is difficult to completely remove color shift from an image even with a method of calculating and correcting the shift amount. In addition, a problem arises that it takes a lot of time for the grid line to correct the color misalignment with higher precision.
此外,在上述彩色图像处理或亮度图像处理中,在图像中产生颜色模糊的情况下,存在不能正确地抽取记入文字或印迹等特定对象,留有一部分预印,或文字的一部分欠缺的问题。In addition, in the above-mentioned color image processing or luminance image processing, when color blurring occurs in the image, there is a problem that a specific object such as written characters or prints cannot be extracted correctly, a part of the preprint remains, or a part of the character is missing. .
所谓颜色模糊,是指格线或记入文字的轮廓部分的颜色模糊,产生浅色。由于颜色模糊而使预印或记入文字的红色分量、蓝色分量、绿色分量、明度、彩度、色相、亮度等颜色信息的分散变大,因此区别记入文字和预印变得困难。The so-called blurred color means that the color of the ruled line or the outline of the written text is blurred, resulting in a light color. Due to the blurred color, the dispersion of color information such as red component, blue component, green component, lightness, chroma, hue, brightness, etc. of preprinted or inscribed text becomes larger, so it becomes difficult to distinguish between inscribed text and preprinted.
发明内容 Contents of the invention
本发明鉴于这些问题而完成,提供一种从含有色偏差或颜色模糊的文档图像中,高精度地抽取记入文字、印迹、标记等特定对象的图像处理方法及图像处理装置。The present invention was made in view of these problems, and provides an image processing method and an image processing device for extracting specific objects such as written characters, prints, and marks with high precision from document images containing color deviation or color blur.
为达到上述目的,本发明在从利用扫描仪或数字照相机读取帐票等文档的彩色图像或亮度图像中,抽取记入文字、印迹、标记等特定对象的图像处理方法中,具备以下特征,具有:从彩色图像或亮度图像中除去背景,生成显示背景以外的部分的背景除去数据的背景除去生成处理;生成在彩色图像或亮度图像中的上述背景以外部分中、将背景以外部分的轮廓的颜色信息转换为在背景以外部分的轮廓内侧的图像的颜色信息的数据的轮廓颜色转换数据生成处理;和抽取特定对象部分的特定对象抽取处理。In order to achieve the above object, the present invention has the following features in the image processing method for extracting specific objects such as written characters, imprints, marks, etc. from color images or brightness images of documents such as ledgers read by a scanner or a digital camera, It has background removal generation processing for removing the background from a color image or a luminance image, and generating background removal data showing the portion other than the background; and generating a contour of the portion other than the background in the color image or luminance image. outline color conversion data generation processing of converting color information into data of color information of an image inside the outline of a portion other than the background; and specific object extraction processing of extracting a specific object portion.
此外,上述轮廓颜色转换数据生成处理的特征在于,对于彩色图像或亮度原图像内的关注像素,参照作为在其附近的多个像素的附近像素,生成将关注像素的红色分量、蓝色分量、绿色分量、明度、彩度、色相、亮度等颜色信息转换为在附近像素和关注像素中亮度值最低的像素的颜色信息的低亮度颜色膨胀亮度数据。In addition, the above-mentioned outline color conversion data generation process is characterized in that, for a pixel of interest in a color image or a luminance original image, a red component, a blue component, Color information such as green component, lightness, chroma, hue, and brightness is converted into low-brightness color expansion brightness data of the color information of the pixel with the lowest brightness value among nearby pixels and pixels of interest.
上述特定对象判别处理的特征在于,进行格线抽取、特定对象候补抽取、格线的颜色信息和特定对象的颜色信息的推定和特定对象的判别。The specific object discrimination process described above is characterized in that ruled line extraction, specific object candidate extraction, ruled line color information and specific object color information estimation, and specific object discrimination are performed.
根据本发明,即使是有色偏差或颜色模糊的彩色图像或亮度图像,也能高精度地区别预印、记入文字、印迹、标记等特定对象,例如能高精度地仅抽取记入文字。不仅限于记入文字,也能高精度地抽取印迹或标记等在文档图像内的特定对象。According to the present invention, even if it is a color image or a luminance image with color deviation or color blur, specific objects such as preprints, engraved characters, imprints, marks, etc. can be distinguished with high precision, for example, only engraved characters can be extracted with high accuracy. Not limited to writing text, it is also possible to extract specific objects such as imprints and marks in document images with high precision.
附图说明 Description of drawings
图1是表示特定对象抽取处理的结构的图。FIG. 1 is a diagram showing the configuration of specific object extraction processing.
图2是表示图像处理装置的图。FIG. 2 is a diagram showing an image processing device.
图3是彩色图像的例子。Figure 3 is an example of a color image.
图4是背景除去数据。Figure 4 is the background removal data.
图5是特定对象的判别结果。Fig. 5 is the discrimination result of a specific object.
图6是表示背景除去数据生成处理的例子的图。FIG. 6 is a diagram showing an example of background removal data generation processing.
图7是表示以往的特定对象判别处理的图。FIG. 7 is a diagram showing conventional specific object discrimination processing.
图8是格线抽取结果。Figure 8 is the result of grid line extraction.
图9是格线除去结果。Figure 9 is the result of grid line removal.
图10是特定对象候补抽取结果。Fig. 10 shows the results of specific object candidate extraction.
图11是记入文字的色偏差的例子。Fig. 11 is an example of color deviation of written characters.
图12是格线的色偏差的例子。Fig. 12 is an example of color deviation of ruled lines.
图13是表示轮廓颜色转换数据生成处理的例子的图。FIG. 13 is a diagram showing an example of outline color conversion data generation processing.
图14是表示图11的图像的轮廓颜色转换数据生成处理的图。FIG. 14 is a diagram showing contour color conversion data generation processing of the image in FIG. 11 .
图15是表示图12的图像的轮廓颜色转换数据生成处理的图。FIG. 15 is a diagram showing contour color conversion data generation processing of the image in FIG. 12 .
图16是表示特定对象判别处理的图。FIG. 16 is a diagram showing specific object discrimination processing.
图17是表示仅利用格线颜色的推定的特定对象判别处理的图。FIG. 17 is a diagram showing a specific object discrimination process using only the estimation of the color of the ruled line.
图18是表示仅利用特定对象颜色的推定的特定对象判别处理的图。FIG. 18 is a diagram showing a specific object discrimination process using only the estimation of the color of the specific object.
图19是表示利用聚类的特定对象判别处理的图。FIG. 19 is a diagram showing specific object discrimination processing using clustering.
图20是表示添加色偏差补正的特定对象抽取处理程序的结构的图。FIG. 20 is a diagram showing the configuration of a specific object extraction processing program with color misalignment correction added.
图21是表示具备抽取对象颜色指定功能的特定对象抽取处理程序的结构的图。FIG. 21 is a diagram showing the configuration of a specific object extraction processing program having an extraction object color designation function.
图22是表示包含指定抽取对象颜色的从属特定对象判别处理程序的图。Fig. 22 is a diagram showing a subordinate specific object discrimination processing program including specifying an extraction target color.
图23是表示利用包含指定抽取对象颜色的聚类的特定对象判别处理的图。FIG. 23 is a diagram showing specific object discrimination processing using a cluster including a specified extraction object color.
图24是表示颜色模糊的例子的图。FIG. 24 is a diagram showing an example of color blur.
图25是表示对于有颜色模糊的图像的轮廓颜色转换数据生成处理的情况的图。FIG. 25 is a diagram showing the state of contour color conversion data generation processing for an image with color blur.
图26是表示亮度图像输入的轮廓颜色转换数据生成处理的例子的图。FIG. 26 is a diagram showing an example of contour color conversion data generation processing for luminance image input.
图27是彩色图像的显示例。Fig. 27 is a display example of a color image.
图28是特定对象的判别结果的显示例。Fig. 28 is a display example of a determination result of a specific object.
(符号说明)(Symbol Description)
101图像取得模块101 image acquisition module
102背景除去数据生成模块102 background removal data generation module
103轮廓颜色转换数据生成模块103 contour color conversion data generation module
104特定对象判别模块104 specific object discrimination module
105控制模块105 control module
具体实施方式 Detailed ways
以下,对于应用本发明的图像处理方法及图像处理装置,利用附图详细说明。Hereinafter, an image processing method and an image processing device to which the present invention is applied will be described in detail with reference to the drawings.
实施例1Example 1
图2是表示本发明的图像处理装置的一实施方式的图。FIG. 2 is a diagram showing an embodiment of an image processing device of the present invention.
这是将通信装置201、图像取得装置202、显示装置203、外部存储装置204、存储器205、CPU(Central Processing Unit)206、键盘或鼠标等输入装置207利用PCI总线等通信线连接的图像处理装置208。This is an image processing device in which a
图1所示的具备特定对象抽取处理的结构的程序容纳在外部存储装置204或存储器205等的存储装置中,利用CPU205执行。The program having the configuration of the specific object extraction process shown in FIG. 1 is stored in a storage device such as the
输入到CPU中的文档的彩色图像或亮度图像,可以从扫描仪、OCR等图像取得装置202或通信装置201输入,也可以存储在外部存储装置204中。The color image or brightness image of the document input to the CPU may be input from the
特定对象抽取处理的结果,有输出到显示装置203中的情况、经由通信装置201输出到外部的情况或被用于在图像取得处理装置208内的其他程序的情况等。作为其他程序的例子,有进行文字识别的程序。The results of the specific object extraction processing may be output to the
图27是将从图像取得装置202或通信装置201输入、或存储在外部存储装置204中的彩色图像在显示装置203上的显示窗口2701中显示的例子。此外,图28是将特定对象抽取处理的结果在显示装置203上的显示窗口2702中显示的例子。FIG. 27 shows an example of displaying a color image input from the
图1是表示应用本发明的特定对象抽取处理程序的结构的图。特定对象抽取处理程序由图像取得模块101、背景除去数据生成模块102、轮廓颜色转换数据生成模块103、特定对象判别模块104及控制模块105构成。FIG. 1 is a diagram showing the structure of a specific object extraction processing program to which the present invention is applied. The specific object extraction processing program is composed of an
图像取得模块101进行利用扫描仪或OCR等取得将纸质文档等图像化的彩色图像或亮度图像的图像取得处理。The
背景除去数据生成模块102进行从输入到CPU206中的彩色图像或亮度图像中生成背景除去数据的背景除去数据生成处理。The background removal
例如,在取得像图3那样含有格线301、位线302和阴影303的预印和记入文字304的彩色图像的情况下,背景除去数据生成模块102生成图4所示的显示格线、位线和记入文字部分的数据。For example, when obtaining a color image of preprinted and written
背景除去数据生成处理是除去图像中的背景部分,抽取格线和位线的预印部分和记入文字部分的处理。为实现该处理有多种方法,采取图6所示的方法。The background removal data generation process is a process of removing the background part in the image, and extracting the preprinted part and the written character part of the ruled line and the bit line. There are various methods for realizing this processing, and the method shown in FIG. 6 is adopted.
首先,在亮度值数据生成处理601中,从由RGB的3原色(R值、G值、B值)表示的彩色图像中生成由亮度表示的亮度图像。然后,在块分割(block generation)处理602中,将亮度图像分割为多个块。最后,在二值化处理603中,对每个块生成在块内将亮度值低的像素设为黑色、亮度值高的像素设为白色的二值数据。这样生成的二值数据,如图4所示,是黑色像素表示背景以外的部分的背景除去数据。First, in the luminance value
轮廓颜色转换数据生成模块103进行生成轮廓颜色转换数据1303的轮廓颜色转换数据生成处理,该轮廓颜色转换数据1303是输入彩色图像604及背景除去数据605,将格线、位线和记入文字的轮廓的颜色转换为轮廓的内侧部分的颜色而得到的。另外,彩色图像604可以是亮度图像。The outline color conversion
特定对象判别模块104,进行对于输入到CPU206中的背景除去数据605、参照轮廓颜色转换数据1303、生成表示图5所示的记入文字部分的数据的特定对象的判定处理,输出特定对象判别结果706。The specific
这里,利用图7对以往的特定对象判别处理进行说明。在以往的特定对象判别处理中,输入背景除去数据,参照彩色图像,输出特定对象的判别结果。Here, conventional specific object discrimination processing will be described with reference to FIG. 7 . In conventional specific object discrimination processing, background removal data is input, a color image is referred to, and a specific object discrimination result is output.
图7表示以往的特定对象判别处理。首先,在格线抽取处理701′中,抽取格线部分。在该处理中,通过抽取背景除去数据内的黑色像素长长地直线性地连接的部分而抽取格线部分。其结果是图8。FIG. 7 shows conventional specific object discrimination processing. First, in the ruled line extraction process 701', the ruled line portion is extracted. In this process, a ruled line portion is extracted by extracting a portion where black pixels in the background removal data are connected linearly for a long period of time. The result is Figure 8.
然后,在格线除去处理702′中,生成从背景除去数据中除去了格线部分的格线除去数据。其结果是图9。Then, in the ruled line removal process 702', the ruled line removed data from which the ruled line portion has been removed from the background removed data is generated. The result is Figure 9.
然后,在特定对象候补抽取处理703′中,从格线除去数据中,利用矩形的尺寸或位置的信息,抽取成为作为特定对象的记入文字部分的候补的记入文字部分候补。其结果是图10。Then, in the specified object candidate extraction process 703', from the ruled line removal data, the written character portion candidates that are candidates for the written character portion to be specified are extracted using the size and position information of the rectangle. The result is Figure 10.
然后,在格线颜色和特定对象颜色的推定处理704′中,通过参照彩色图像604,推定作为格线部分的颜色信息的格线部分颜色信息和作为记入文字候补部分的颜色信息的记入文字候补部分颜色信息。Then, in the ruled line color and specific object color estimation process 704', by referring to the
然后,在特定对象的判别处理705′中,利用格线部分颜色信息和记入文字候补部分颜色信息,判别背景除去数据中的黑色像素部分的各像素是否是记入文字的像素。该处理是在背景除去数据中的黑色像素部分的各像素的位置中,判别彩色图像的颜色信息属于格线部分颜色信息,还是属于记入文字候补部分的颜色信息的处理。Then, in the specific object discrimination process 705', it is judged whether or not each pixel in the black pixel portion in the background removal data is a pixel of written text by using the ruled line portion color information and the written text candidate portion color information. This processing is a process of discriminating whether the color information of the color image belongs to the color information of the ruled line part or the color information of the write-in character candidate part at each pixel position of the black pixel part in the background removal data.
具体来说,对每个在背景除去数据605中的黑色像素部分的像素进行以下的处理。在背景除去数据605中的某个黑色像素位置(Xa,Xb)的处理中,判定在彩色图像604的(Xa,Xb)中的颜色信息与由格线颜色和特定对象颜色的推定处理704′输出的格线部分颜色信息和记入文字候补部分颜色信息中的哪一个接近。并且,如果(Xa,Xb)的颜色信息接近格线部分颜色信息,则判定(Xa,Xb)的位置是格线部分,如果(Xa,Xb)的颜色信息接近记入文字候补部分颜色信息,则判定(Xa,Xb)的位置是记入文字部分。Specifically, the following processing is performed for each pixel in the black pixel portion in the
作为该彩色图像604的颜色信息,可以利用RGB 3原色的R值、G值、B值,也可以是将它们转换了的颜色信息,例如亮度值或HSV空间的色相、彩度、明度。此外可以仅利用它们中的一个值,也可以利用多个值。此外,在判别方法中,能使用利用教师数据的多种判别算法。例如,利用神经网络、线性识别器、马氏距离(MahalanobisDistance)等。As the color information of the
然后,通过参照彩色图像604,进行特定对象的判定处理,输出特定对象判别结果706′,特定对象判别处理结束。Then, by referring to the
然而,在以往的特定对象判别处理的情况下,如果输入的彩色图像604中有色偏差,由于彩色图像604中的颜色信息也产生偏差,所以基于接近格线部分颜色信息和记入文字候补部分颜色信息中的哪一个的颜色信息的判定本身有产生偏差的可能性,因此有利用颜色信息不能区别预印和记入文字的问题。因此,根据利用以往方法得到的特定对象判定结果,有时不能得到本申请发明的判别结果,例如图5那样的输出。However, in the case of conventional specific object discrimination processing, if there is color deviation in the
这里,图11是有色偏差的图像(记入文字)的例子。在图11中,本来是黑色的记入文字的轮廓上产生蓝色的伪色和红色的伪色。Here, FIG. 11 is an example of an image (written characters) with color deviation. In FIG. 11 , a blue false color and a red false color are generated on the outline of a written character that is originally black.
此外,图12也是有色偏差的图像(格线)的例子。在图12中,本来是蓝色的格线的轮廓上产生了浅红色的伪色。考虑从包括黑色的记入文字和蓝色的格线的图像中利用颜色信息仅抽取记入文字的情况。In addition, FIG. 12 is also an example of an image (ruled lines) with color shift. In Figure 12, a reddish false color is produced on the outline of the originally blue grid. Consider a case where only the typed characters are extracted using color information from an image including black typed characters and blue ruled lines.
在记入文字和格线中没有色偏差的情况下,能利用以往的特定对象判别处理仅抽取记入文字。但是,在如图11和图12那样有色偏差的图像中,由于在记入文字的轮廓和格线的轮廓中都存在红色分量,因此有格线的轮廓部分作为噪声产生的情况或文字的一部分欠缺的情况。在这样产生色偏差的情况下,有不能利用颜色信息区别预印和记入文字的问题。When there is no color shift between the written characters and the ruled lines, only the written characters can be extracted by conventional specific object discrimination processing. However, in images with color shift as shown in Figures 11 and 12, since there is a red component in both the outline of the written characters and the outline of the ruled lines, the outline of the ruled lines may be noise or part of the text lack of situation. When color shift occurs in this way, there is a problem that preprinted and written characters cannot be distinguished using color information.
对于图11、12那样的图像,在应用本发明的图像处理装置中进行轮廓颜色转换数据生成处理,参照轮廓颜色转换数据进行特定对象判别处理。11 and 12, the image processing apparatus to which the present invention is applied performs contour color conversion data generation processing, and performs specific object discrimination processing with reference to the contour color conversion data.
上述轮廓颜色转换数据生成模块103进行轮廓颜色转换数据生成处理。具体来说,生成在彩色图像604中的背景以外部分中、将背景以外部分的轮廓的颜色转换为在背景以外部分的轮廓的内侧中的像素的颜色的数据。也就是说,生成将彩色图像中的格线、位线和记入文字的轮廓的颜色信息转换为该轮廓的内侧部分的颜色信息的数据。The above-mentioned outline color conversion
图13是轮廓颜色转换数据生成处理的具体的处理流程的例子。FIG. 13 is an example of a specific processing flow of outline color conversion data generation processing.
在轮廓颜色转换数据生成处理中,从通信装置201、图像取得装置202或外部存储装置204经由存储器205,输入彩色图像604和背景除去数据605。In the contour color conversion data generation process, a
并且,在附近亮度值生成处理1301和低亮度颜色膨胀处理1302中,逐一选择(将被选择的像素称为关注像素)在彩色图像中背景以外的区域中的像素,转换该关注像素的颜色信息。这两个处理重复进行至在彩色图像中的背景以外的区域中的所有的像素被处理。In addition, in the nearby luminance
在附近亮度值生成处理1302中,分别生成围着关注像素的附近的领域内的像素(在图14的例子中,作为以关注像素为中心的3×3的范围的领域内的9像素)的亮度值。以下设领域内的关注像素以外的像素为附近像素。上述领域,不仅限于3×3,例如也可以是2×2或4×4。此外,关注像素不仅限于领域内的中心,可将领域设定为使关注像素位于领域内的任何位置。In the neighborhood luminance
然后,在低亮度颜色膨胀处理1302中,将关注像素的颜色信息(例如R值、G值和B值)转换为在关注像素和附近像素中亮度值最低的像素的颜色信息。这样,将R值、G值、B值产生偏差的轮廓部的颜色信息转换为轮廓部的内侧的颜色信息,成为模拟地将伪色转换为本来的颜色信息的处理。Then, in the low-brightness
更具体来说,算出领域内的关注像素及附近像素的亮度值,抽取具有最低亮度值的像素,将关注像素的颜色信息转换为具有最低亮度值的像素的颜色信息。如果关注像素的亮度值是最低的亮度值,关注像素的颜色信息按原样维持。这样,在彩色图像604中的格线、位线和记入文字的部分中,生成作为转换了颜色信息的数据的轮廓颜色转换数据1303。More specifically, the luminance values of the pixel of interest and nearby pixels in the area are calculated, the pixel with the lowest luminance value is extracted, and the color information of the pixel of interest is converted into the color information of the pixel with the lowest luminance value. If the luminance value of the pixel of interest is the lowest luminance value, the color information of the pixel of interest is maintained as it is. In this way, outline
利用轮廓颜色转换数据生成处理,例如在记入文字的情况下,如图14所示,将在图11中所示的记入文字的轮廓部中的亮度高的红色和蓝色的伪色转换为在轮廓内侧中的亮度低的黑色。In the outline color conversion data generation process, for example, in the case of writing characters, as shown in FIG. It is black with low luminance inside the outline.
此外,利用轮廓颜色转换数据生成处理,例如在格线的情况下,如图15所示,将在图12中所示的格线的轮廓部中的亮度高的浅红色的伪色转换为在本轮廓内侧中的亮度低的蓝色。Also, with the outline color conversion data generation processing, for example, in the case of a ruled line, as shown in FIG. Blue with low brightness inside this outline.
图16是本实施例1中特定对象判别处理的具体的处理流程的图。FIG. 16 is a diagram showing a specific processing flow of specific object discrimination processing in the first embodiment.
首先,进行输入背景除去数据、抽取格线部分的格线抽取处理701。First, a ruled
然后,进行生成从背景除去数据中除去格线部分的格线除去数据的格线除去处理702。Next, ruled
然后,进行从格线除去数据中、利用矩形的尺寸或位置的信息、抽取成为作为特定对象的记入文字部分的候补的记入文字部分候补的特定对象候补抽取处理703。Then, specific object
然后,在本发明的特定对象判别处理中,在格线颜色和特定对象颜色的推定处理1601和特定对象的判别处理1602中,参照轮廓颜色转换数据1303的RGB值。Then, in the specific object discrimination process of the present invention, the RGB values of the outline
在相当于背景颜色除去数据的黑色像素区域的轮廓颜色转换数据1303的区域中,由于具有因色偏差产生的伪色的像素变少,因此特定对象颜色和格线颜色的推定精度更佳,作为结果,也提高格线和特定对象的判别的精度。In the area of the outline
这样,在应用本发明的图像处理装置208中,在格线颜色和特定对象颜色的推定1601和特定对象的判别处理1602中,由于能将记入文字部设为黑色,格线部设为蓝色来处理,因此能正确地判别记入文字部分。In this way, in the
以上,根据图像处理装置208,参照含有轮廓颜色转换处理后的RGB值的轮廓颜色转换数据,因此能从含有色偏差的彩色图像中,高精度地抽取成为特定对象的记入文字。此外,将作为该图像处理装置的输出的记入文字抽取结果作为输入的文字识别装置,能得到更高精度的识别结果。并且,将抽取记入文字作为例子而利用,但是在抽取印迹或标记的情况下也同样能高精度地抽取。As described above, according to the
下面,对本发明的其他实施方式进行说明。Next, other embodiments of the present invention will be described.
实施例2Example 2
如图17所示,也可以在特定对象判别部104中,采用仅利用格线颜色的推定而进行特定对象的判别的特定对象抽取处理。As shown in FIG. 17 , in the specific
图17所示的处理是在格线颜色的推定处理1701中,参照轮廓颜色转换数据,仅推定格线的颜色信息。然后,在格线颜色部分的除去处理1702中,通过利用格线的颜色信息,从背景除去数据605除去格线颜色部分,判别成为特定对象的记入文字部分。In the processing shown in FIG. 17 , only the color information of the ruled line is estimated by referring to the outline color conversion data in the ruled line color estimation process 1701 . Then, in the ruled line color part removal process 1702, the ruled line color part is removed from the
实施例3Example 3
如图18所示,也可以在特定对象判别部104中,采用仅利用特定对象颜色的推定而进行特定对象判别处理的特定对象抽取处理。As shown in FIG. 18 , in the specific
图18所示的处理是在特定对象颜色的推定处理1801中,参照轮廓颜色转换数据1303,仅推定特定对象候补的颜色信息。然后,在特定对象颜色部分的抽取处理1702中,利用特定对象的颜色信息,从背景除去数据605抽取成为特定对象的记入文字部分。In the process shown in FIG. 18 , only the color information of the specific target candidate is estimated by referring to the outline
实施例4Example 4
如图19所示,也可以采用在特定对象判别部104中,利用聚类进行特定对象判别处理的特定对象抽取处理。As shown in FIG. 19 , specific object extraction processing may be employed in which specific object identification processing is performed using clustering in the specific
图19所示的处理中,没有利用格线抽取的结果而仅利用背景以外部分的颜色信息进行判别。首先在聚类处理1901中,对背景以外部分的轮廓颜色转换数据1303进行聚类。在聚类中,可利用RGB 3原色的R值、G值、B值,也可以是将它们转换了的颜色信息,例如亮度值或HSV空间的色相、彩度、明度。此外可以仅利用它们中的一个值,也可利用多个值。在聚类的方法中,有k-means法或区域扩张法或判别分析等方法。In the processing shown in FIG. 19 , the result of ruled line extraction is not used, but only the color information of parts other than the background is used for discrimination. First, in
然后,在特定对象的类的选择处理1902中,从利用聚类得到的多个类中,选择特定对象的类。选择的方法有多种方法,例如选择具有亮度值高的值的类等方法。Then, in the
并且,在特定对象类颜色部分的抽取1903中,通过从背景除去数据的黑色像素部分中抽取具有上述选择的类的颜色信息的像素,抽取成为特定对象的记入文字。Then, in the
实施例5Example 5
也可采用在图1所示的特定对象抽取处理程序的结构中,又添加色偏差补正模块2001的特定对象抽取处理。It is also possible to employ a specific object extraction process in which a color
该特定对象抽取处理程序是如图20所示的结构,除了下面所说明的处理以外进行与如图1所示的实施例相同的处理。This specific object extraction processing program is configured as shown in FIG. 20, and performs the same processing as the embodiment shown in FIG. 1 except for the processing described below.
色偏差补正模块2001执行色偏差补正处理。色偏差补正处理通过改变利用文档图像取得处理所取得的彩色图像604的R值、G值、B值,或扩大缩小等,来生成作为减轻了颜色的偏差的数据的色偏差补正数据。The color
并且,相对于在图1所示的结构中,输入到背景除去数据生成处理、轮廓颜色转换数据生成处理中的数据利用彩色图像604,在图20中的实施例中,输入到背景除去数据生成处理、轮廓颜色转换数据生成处理中的数据是色偏差补正数据。这样,即使在色偏差的偏差量多的图像中,也能高精度地抽取记入文字等特定对象。And, in contrast to the configuration shown in FIG. 1, the data input to the background removal data generation process and the outline color conversion data generation process use the
实施例6Example 6
也可采用在图1所示的特定对象抽取处理程序的结构中,又添加指定颜色取得模块2101的特定对象抽取处理。It is also possible to employ the specific object extraction processing in which the specified
该特定对象抽取处理是如图21所示的结构,除了下面所说明的处理以外进行与如图1所示的实施例相同的处理。This specific object extraction process has a configuration as shown in FIG. 21, and performs the same processing as in the embodiment shown in FIG. 1 except for the processing described below.
在指定颜色取得模块中,进行指定颜色取得处理。指定颜色取得处理中取得作为抽取的特定对象而指定的颜色即指定抽取对象颜色信息2203。关于该指定抽取对象颜色信息,有用户预先在程序中指定的信息、或从键盘或鼠标等输入装置输入的信息等等。并且,该颜色信息,可利用RGB的R值、G值、B值,也可以是将它们转换了的颜色信息,例如亮度值或HSV空间的色相、彩度、明度。此外可以仅利用它们中的一个值,也可利用多个值。此外,可以是显示一个颜色的值,也可以是显示颜色的值的范围。In the designated color acquisition module, designated color acquisition processing is performed. In the specified color acquisition process, the specified extraction
并且,特定对象判别处理成为如图22或图23那样将指定抽取对象颜色信息2203包含在输入中的处理。Furthermore, the specific target discrimination process is a process in which the specified extraction
图22在图16的特定对象判别处理中,利用指定抽取对象颜色信息2203和格线颜色和特定对象颜色的推定1601的结果,进行特定对象的判别2201。In FIG. 22 , in the specific object discrimination process in FIG. 16 ,
图23在利用图19的聚类1901的特定对象判别处理中,利用指定抽取对象颜色信息2203进行特定对象的类的确定2301。In FIG. 23 , in the specific object discrimination process using the
以上所说明的实施例,不仅对于色偏差的问题,对于颜色模糊的问题也是有效的。图24是记入文字的轮廓部分变成浅色的颜色模糊的例子。对于图24的图像,如果进行轮廓颜色转换数据生成处理,就生成图25所示的轮廓颜色转换数据1303。在轮廓颜色转换数据1303中,输入的彩色图像604中模糊的浅色的部分,被转换成深色。这样,对于有颜色模糊的图像也能高精度地抽取特定对象。The above-described embodiments are effective not only for the problem of color shift but also for the problem of color blur. Fig. 24 is an example in which the outline of the written characters is blurred with a light color. For the image in FIG. 24, when the outline color conversion data generation process is performed, the outline
此外,以上所说明的实施例,不仅在输入彩色文档的情况下,对于在输入了产生颜色模糊的亮度图像的情况下也是有效的。在输入了亮度图像的情况下,在图1的实施例中,通过将轮廓颜色转换数据生成处理设为图26所示的处理而能够应对。In addition, the above-described embodiments are effective not only when a color document is input, but also when a luminance image that causes color blur is input. In the case where a luminance image is input, it can be handled by setting the outline color conversion data generation process to the process shown in FIG. 26 in the embodiment of FIG. 1 .
图26中输入亮度图像2604和背景除去数据605,在亮度图像2604中除了背景以外的部分中,对每个像素逐一进行亮度图像的低亮度颜色膨胀处理2601的处理。并且,背景以外的部分,也就是在格线、位线和记入文字的部分中,生成作为将亮度图像2604中亮度值转换了的数据的轮廓颜色转换数据1303。In FIG. 26 , a
在亮度图像的低亮度颜色膨胀处理2601中,将关注像素和附近像素中亮度值最低的像素的亮度值转换为关注像素的亮度值。In low-brightness
Claims (15)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007114988A JP4857173B2 (en) | 2007-04-25 | 2007-04-25 | Image processing apparatus, image processing method, and image processing program |
JP2007-114988 | 2007-04-25 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101295359A true CN101295359A (en) | 2008-10-29 |
CN101295359B CN101295359B (en) | 2010-09-29 |
Family
ID=40048876
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2008100058810A Expired - Fee Related CN101295359B (en) | 2007-04-25 | 2008-02-15 | Image processing device and image processing method |
Country Status (4)
Country | Link |
---|---|
JP (1) | JP4857173B2 (en) |
KR (1) | KR101461233B1 (en) |
CN (1) | CN101295359B (en) |
TW (1) | TWI350997B (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101916327A (en) * | 2010-07-09 | 2010-12-15 | 北京商纳科技有限公司 | Method and system for generating wrong answer list |
CN106228157A (en) * | 2016-07-26 | 2016-12-14 | 江苏鸿信系统集成有限公司 | Coloured image word paragraph segmentation based on image recognition technology and recognition methods |
CN106599818A (en) * | 2016-12-07 | 2017-04-26 | 广州视源电子科技股份有限公司 | Method and device for generating handwriting format file based on picture |
CN107659799A (en) * | 2016-07-25 | 2018-02-02 | 佳能株式会社 | Camera device, image processing method and storage medium |
CN109104545A (en) * | 2017-06-20 | 2018-12-28 | 富士施乐株式会社 | Image processing equipment, image processing method and image processing system |
CN109389658A (en) * | 2017-08-10 | 2019-02-26 | 富士施乐株式会社 | Information processing unit |
CN110536043A (en) * | 2018-05-23 | 2019-12-03 | 富士施乐株式会社 | Information processing unit, information processing method and storage medium |
CN110895696A (en) * | 2019-11-05 | 2020-03-20 | 泰康保险集团股份有限公司 | Image information extraction method and device |
CN113083804A (en) * | 2021-04-25 | 2021-07-09 | 中国铁建重工集团股份有限公司 | Laser intelligent derusting method and system and readable medium |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5127739B2 (en) * | 2009-02-06 | 2013-01-23 | キヤノン株式会社 | Image processing method, image processing apparatus, and program |
JP5337563B2 (en) * | 2009-04-08 | 2013-11-06 | 日立コンピュータ機器株式会社 | Form recognition method and apparatus |
JP5867045B2 (en) * | 2011-12-12 | 2016-02-24 | 富士ゼロックス株式会社 | Image processing apparatus and program |
RU2534005C2 (en) * | 2013-02-01 | 2014-11-27 | Корпорация "САМСУНГ ЭЛЕКТРОНИКС Ко., Лтд." | Method and system for converting screenshot into metafile |
WO2015159941A1 (en) * | 2014-04-16 | 2015-10-22 | グローリー株式会社 | Method and device for removing background of character in color image, method for adjusting installation of line camera, and chart for adjusting installation |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58142675A (en) * | 1982-02-18 | 1983-08-24 | Sanyo Electric Co Ltd | Color picture processing system |
JP3048158B2 (en) * | 1988-10-04 | 2000-06-05 | キヤノン株式会社 | Color image processing equipment |
JP2746692B2 (en) * | 1989-10-09 | 1998-05-06 | 富士通株式会社 | Color image data processing device |
JPH0414960A (en) * | 1990-05-09 | 1992-01-20 | Fujitsu Ltd | color reading device |
JPH06266816A (en) * | 1993-03-12 | 1994-09-22 | Fujitsu Ltd | Color image processing method and color image processing apparatus |
JP3923293B2 (en) * | 2000-11-22 | 2007-05-30 | シャープ株式会社 | Image processing method, image processing apparatus, and image forming apparatus |
JP4141310B2 (en) * | 2003-04-16 | 2008-08-27 | 株式会社リコー | Image processing apparatus, image processing method, and program executed by computer |
JP4423076B2 (en) * | 2004-03-22 | 2010-03-03 | キヤノン株式会社 | Recognition object cutting apparatus and method |
JP2006042267A (en) * | 2004-07-30 | 2006-02-09 | Canon Inc | Image processing method, image processor, and program |
JP4127691B2 (en) * | 2004-10-04 | 2008-07-30 | 株式会社東芝 | Character recognition apparatus and method |
TWI309026B (en) * | 2005-04-12 | 2009-04-21 | Newsoft Technology Corp | Method for auto-cropping image objects and method for detecting image object contour |
KR20060109211A (en) * | 2005-04-15 | 2006-10-19 | 삼성전자주식회사 | How to create ABB system and bitmap font outlines |
-
2007
- 2007-04-25 JP JP2007114988A patent/JP4857173B2/en not_active Expired - Fee Related
-
2008
- 2008-01-31 TW TW097103726A patent/TWI350997B/en not_active IP Right Cessation
- 2008-02-14 KR KR1020080013550A patent/KR101461233B1/en active Active
- 2008-02-15 CN CN2008100058810A patent/CN101295359B/en not_active Expired - Fee Related
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101916327A (en) * | 2010-07-09 | 2010-12-15 | 北京商纳科技有限公司 | Method and system for generating wrong answer list |
CN101916327B (en) * | 2010-07-09 | 2011-11-09 | 北京商纳科技有限公司 | Method and system for generating wrong answer list |
CN107659799B (en) * | 2016-07-25 | 2022-03-25 | 佳能株式会社 | Image pickup apparatus, image processing method, and storage medium |
CN107659799A (en) * | 2016-07-25 | 2018-02-02 | 佳能株式会社 | Camera device, image processing method and storage medium |
CN106228157A (en) * | 2016-07-26 | 2016-12-14 | 江苏鸿信系统集成有限公司 | Coloured image word paragraph segmentation based on image recognition technology and recognition methods |
CN106599818B (en) * | 2016-12-07 | 2020-10-27 | 广州视源电子科技股份有限公司 | Method and device for generating handwriting format file based on picture |
CN106599818A (en) * | 2016-12-07 | 2017-04-26 | 广州视源电子科技股份有限公司 | Method and device for generating handwriting format file based on picture |
CN109104545A (en) * | 2017-06-20 | 2018-12-28 | 富士施乐株式会社 | Image processing equipment, image processing method and image processing system |
CN109389658A (en) * | 2017-08-10 | 2019-02-26 | 富士施乐株式会社 | Information processing unit |
CN109389658B (en) * | 2017-08-10 | 2023-07-28 | 富士胶片商业创新有限公司 | Information processing apparatus |
CN110536043A (en) * | 2018-05-23 | 2019-12-03 | 富士施乐株式会社 | Information processing unit, information processing method and storage medium |
US11399119B2 (en) | 2018-05-23 | 2022-07-26 | Fujifilm Business Innovation Corp. | Information processing apparatus and non-transitory computer readable medium storing program for color conversion |
CN110895696A (en) * | 2019-11-05 | 2020-03-20 | 泰康保险集团股份有限公司 | Image information extraction method and device |
CN113083804A (en) * | 2021-04-25 | 2021-07-09 | 中国铁建重工集团股份有限公司 | Laser intelligent derusting method and system and readable medium |
Also Published As
Publication number | Publication date |
---|---|
JP4857173B2 (en) | 2012-01-18 |
KR101461233B1 (en) | 2014-11-12 |
KR20080095743A (en) | 2008-10-29 |
TWI350997B (en) | 2011-10-21 |
TW200842734A (en) | 2008-11-01 |
JP2008269509A (en) | 2008-11-06 |
CN101295359B (en) | 2010-09-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101295359B (en) | Image processing device and image processing method | |
JP5830338B2 (en) | Form recognition method and form recognition apparatus | |
US9171224B2 (en) | Method of improving contrast for text extraction and recognition applications | |
CN108965646B (en) | Image processing apparatus, image processing method, and program | |
JP4913094B2 (en) | Image collation method, image collation apparatus, image data output processing apparatus, program, and storage medium | |
CN102722729A (en) | Method of detection document alteration by comparing characters using shape features of characters | |
CN114283156B (en) | Method and device for removing document image color and handwriting | |
JP4362537B2 (en) | Image processing apparatus, image forming apparatus, image transmitting apparatus, image reading apparatus, image processing system, image processing method, image processing program, and recording medium thereof | |
JP2012243216A (en) | Image processing device, and image processing program | |
US8300929B2 (en) | Automatic red-eye object classification in digital photographic images | |
US20140086473A1 (en) | Image processing device, an image processing method and a program to be used to implement the image processing | |
US8254693B2 (en) | Image processing apparatus, image processing method and program | |
JP5887242B2 (en) | Image processing apparatus, image processing method, and program | |
JP5929282B2 (en) | Image processing apparatus and image processing program | |
JP2010186246A (en) | Image processing apparatus, method, and program | |
CN108133205B (en) | Method and device for copying text content in image | |
US20240144711A1 (en) | Reliable determination of field values in documents with removal of static field elements | |
US12205394B2 (en) | Image processing apparatus, image processing method, and storage medium | |
KR20100011187A (en) | Method of an image preprocessing for recognizing scene-text | |
JP4936250B2 (en) | Write extraction method, write extraction apparatus, and write extraction program | |
Sherkat et al. | Use of colour for hand-filled form analysis and recognition | |
JP4792117B2 (en) | Document image processing apparatus, document image processing method, and document image processing program | |
Konya et al. | Adaptive methods for robust document image understanding | |
CN118887672B (en) | A method and device for detecting missing printed text on a card with a template image | |
CN115273061B (en) | Image content level extraction method and system based on principal component analysis |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20100929 Termination date: 20180215 |