[go: up one dir, main page]

CN101287893B - 提高带有一体化燃料气化器的燃气和蒸汽联合发电厂效率的方法 - Google Patents

提高带有一体化燃料气化器的燃气和蒸汽联合发电厂效率的方法 Download PDF

Info

Publication number
CN101287893B
CN101287893B CN200680037156.0A CN200680037156A CN101287893B CN 101287893 B CN101287893 B CN 101287893B CN 200680037156 A CN200680037156 A CN 200680037156A CN 101287893 B CN101287893 B CN 101287893B
Authority
CN
China
Prior art keywords
air
gas
power station
nitrogen
resolving device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN200680037156.0A
Other languages
English (en)
Other versions
CN101287893A (zh
Inventor
沃纳·冈斯特
埃里克·沃尔夫
格哈德·齐默尔曼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens Corp
Original Assignee
Siemens Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Corp filed Critical Siemens Corp
Publication of CN101287893A publication Critical patent/CN101287893A/zh
Application granted granted Critical
Publication of CN101287893B publication Critical patent/CN101287893B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/067Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle the combustion heat coming from a gasification or pyrolysis process, e.g. coal gasification
    • F01K23/068Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle the combustion heat coming from a gasification or pyrolysis process, e.g. coal gasification in combination with an oxygen producing plant, e.g. an air separation plant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04521Coupling of the air fractionation unit to an air gas-consuming unit, so-called integrated processes
    • F25J3/04527Integration with an oxygen consuming unit, e.g. glass facility, waste incineration or oxygen based processes in general
    • F25J3/04539Integration with an oxygen consuming unit, e.g. glass facility, waste incineration or oxygen based processes in general for the H2/CO synthesis by partial oxidation or oxygen consuming reforming processes of fuels
    • F25J3/04545Integration with an oxygen consuming unit, e.g. glass facility, waste incineration or oxygen based processes in general for the H2/CO synthesis by partial oxidation or oxygen consuming reforming processes of fuels for the gasification of solid or heavy liquid fuels, e.g. integrated gasification combined cycle [IGCC]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04521Coupling of the air fractionation unit to an air gas-consuming unit, so-called integrated processes
    • F25J3/04563Integration with a nitrogen consuming unit, e.g. for purging, inerting, cooling or heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04521Coupling of the air fractionation unit to an air gas-consuming unit, so-called integrated processes
    • F25J3/04563Integration with a nitrogen consuming unit, e.g. for purging, inerting, cooling or heating
    • F25J3/04575Integration with a nitrogen consuming unit, e.g. for purging, inerting, cooling or heating for a gas expansion plant, e.g. dilution of the combustion gas in a gas turbine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04521Coupling of the air fractionation unit to an air gas-consuming unit, so-called integrated processes
    • F25J3/04563Integration with a nitrogen consuming unit, e.g. for purging, inerting, cooling or heating
    • F25J3/04575Integration with a nitrogen consuming unit, e.g. for purging, inerting, cooling or heating for a gas expansion plant, e.g. dilution of the combustion gas in a gas turbine
    • F25J3/04581Hot gas expansion of indirect heated nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04521Coupling of the air fractionation unit to an air gas-consuming unit, so-called integrated processes
    • F25J3/04593The air gas consuming unit is also fed by an air stream
    • F25J3/04606Partially integrated air feed compression, i.e. independent MAC for the air fractionation unit plus additional air feed from the air gas consuming unit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04521Coupling of the air fractionation unit to an air gas-consuming unit, so-called integrated processes
    • F25J3/04612Heat exchange integration with process streams, e.g. from the air gas consuming unit
    • F25J3/04618Heat exchange integration with process streams, e.g. from the air gas consuming unit for cooling an air stream fed to the air fractionation unit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/04Mixing or blending of fluids with the feed stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2240/00Processes or apparatus involving steps for expanding of process streams
    • F25J2240/70Steam turbine, e.g. used in a Rankine cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2240/00Processes or apparatus involving steps for expanding of process streams
    • F25J2240/80Hot exhaust gas turbine combustion engine
    • F25J2240/82Hot exhaust gas turbine combustion engine with waste heat recovery, e.g. in a combined cycle, i.e. for generating steam used in a Rankine cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2245/00Processes or apparatus involving steps for recycling of process streams
    • F25J2245/42Processes or apparatus involving steps for recycling of process streams the recycled stream being nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2260/00Coupling of processes or apparatus to other units; Integrated schemes
    • F25J2260/42Integration in an installation using nitrogen, e.g. as utility gas, for inerting or purging purposes in IGCC, POX, GTL, PSA, float glass forming, incineration processes, for heat recovery or for enhanced oil recovery
    • F25J2260/44Integration in an installation using nitrogen, e.g. as utility gas, for inerting or purging purposes in IGCC, POX, GTL, PSA, float glass forming, incineration processes, for heat recovery or for enhanced oil recovery using nitrogen for cooling purposes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • Y02E20/18Integrated gasification combined cycle [IGCC], e.g. combined with carbon capture and storage [CCS]

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Power Engineering (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Abstract

本发明涉及一种提高带有一体化燃料气化器的燃气和蒸汽联合发电厂(10)效率的方法,该发电厂有一个燃气轮机-压气机(14)和一个带有规定工作压力的空气分解设备(18),其中,从燃气轮机-压气机(14)取出有一定压力水平的压缩空气,此压力水平与空气分解设备(18)的工作压力相配,取出的空气接着供入空气分解设备(18),空气在其中分解为它的各种成分,尤其氧和氮,从空气分解设备(18)取出在空气分解设备(18)内产生的氮,以及至少一部分取出的氮气量用作燃气和蒸汽联合发电厂的冷却剂,以提高其效率。

Description

提高带有一体化燃料气化器的燃气和蒸汽联合发电厂效率的方法
技术领域
本发明涉及一种提高带有一体化燃料气化器的燃气和蒸汽联合发电厂效率的方法,该发电厂有燃气轮机-压气机和按规定压力工作的空气分解设备。
背景技术
过去的十年世界上建造了许多以燃气和蒸汽联合过程为基础并通过它能明显降低有害物排放的发电厂。这些发电厂专业界的行话称为GUD发电厂(即“蒸汽和燃气轮机联合发电厂”)。
在GUD发电厂的基本形式即所谓IGCC发电厂中(“IGCC”涉及“Integrated Gasification Combined Cycle”的缩写),GUD发电厂附加地有一个一体化燃料气化器,借助它将液态或固态燃料,例如烟煤,在气化器内转化为合成气,后者接着在燃气轮机内燃烧。燃烧前通常进行合成气的净化。总之,以此方式使有害物质在燃烧前已经分离出或根本没有形成。
为了将燃料气化为合成气需要氧气。IGCC发电厂有用于产生氧的空气分解设备,在空气分解设备中由大气通过分馏除了所需要的氧气外尤其产生氮气。合成气在进一步处理前必须冷却。此时形成蒸汽,它可供IGCC发电厂的汽轮机发电。在气体冷却后过滤器首先滞留灰粒,接着,在需要时还可以去除二氧化碳。其他有害物质,如硫化物或重金属,同样通过化学和物理的方法系留。由此实现为运行燃气轮机必要的燃料纯度和IGCC发电厂的低排放。
合成气在燃气轮机的燃烧室前与来自空气分解设备的氮和/或与水蒸气混合,以抑制生成氧化氮。然后由与空气燃烧形成的工作燃气在燃气轮机的透平级内膨胀。
工作燃气在燃气轮机内膨胀和接着在锅炉内废热利用后将废气排入大气中。
来自粗煤气冷却装置和废气冷却装置的蒸汽流联合并共同引入汽轮机。在汽轮机内膨胀后,蒸汽经冷凝器冷凝以及凝结水经蓄水罐引回水或蒸汽循环内。
GUD发电厂或IGCC发电厂的燃气和蒸汽轮机与发电机耦连,其中涡轮机的旋转功转化为电能。
GUD发电厂或IGCC发电厂持续发展。在这方面要达到的目的主要是不断提高发电厂的效率或功率。
发明内容
本发明的目的是提供一种用于提高形式上为IGCC发电厂的GUD发电厂效率的方法,用此方法与已知的方法相比可以再次明显提高效率。
此目的按本发明通过前言所述一种提高带有一体化燃料气化器的燃气和蒸汽联合发电厂(IGCC发电厂)效率的方法达到,该发电厂有燃气轮机-压气机和按规定压力工作的空气分解设备,其中,从燃气轮机-压气机取出有一定压力水平的压缩空气,此压力水平与空气分解设备的工作压力相配,在这里,取出的空气接着供入空气分解设备,空气在其中分解为它的各种成分,尤其氧和氮,从空气分解设备取出在空气分解设备内产生的氮,以及至少一部分取出的氮气量用作冷却剂。由此节省冷却空气导致提高效率。
按本发明,在燃气轮机-压气机中压缩的、有与空气分解设备工作压力相配的压力水平的空气供给空气分解设备。因此,已经压缩的空气为了与空气分解设备的工作压力匹配,不需要如其余那些由周围通过压缩机输入空气分解设备中的或在空气分解设备内的空气那样压缩。
按本发明有待供给空气分解设备的空气部分或甚至全部可以从燃气轮机-压气机取出。由此明显减小随空气的分解发生的功率及效率损失。
在空气分解设备内,由空气通过分馏除了为气化燃料所需要的氧气外尤其产生氮气。按本发明从空气分解设备取出在空气分解设备中产生的氮,它由于在空气分解设备中进行的分馏(低温空气分解)因而导致有低的温度,其中,至少部分取出的氮气量用作IGCC发电厂的冷却剂,以提高其效率。
总之,借助按本发明的方法最终提供一种冷却剂,它对于IGCC发电厂的效率可造成不值一提的损失。按本发明如此提供的冷却剂可应用于实现其目的是提高IGCC发电厂效率或功率的冷却过程。按本发明的方法尤其在空气分解设备工作压力较低并因而也存在低的氮排放压力时是有利的,此时由于氮的膨胀造成的能量变换没有实际意义。
前言所述的目的按本发明还通过另一种提高带有一体化燃料气化器的燃气和蒸汽联合发电厂效率的方法达到,该发电厂有燃气轮机-压气机和按规定压力工作的空气分解设备,其中,从燃气轮机-压气机取出有一定压力水平的压缩空气,此压力水平与空气分解设备的工作压力相配,取出的空气接着供入空气分解设备,空气在其中分解为它的各种成分,尤其氧和氮,从空气分解设备取出在空气分解设备内产生的氮,以及加热至少部分取出的氮气量并在加热后使之在带有一体化燃料气化器的燃气和蒸汽联合发电厂的另一台透平内膨胀,以提高其效率。在这种情况下,膨胀时形成并可利用的旋转功提高了设备的效率。
与上面说明的按本发明第一种方法的区别在于,本方法尤其当空气分解设备的工作压力并因而氮排放压力有中等压力水平时是有利的。因此在另一台优选地形式上为膨胀器的透平内通过氮膨胀实施能量变换是有实际意义的。在膨胀后,氮按上面已说明的方法用作冷却剂。
优选地,在这种情况下为了加热部分取出的氮气量,将取出的压缩空气的热能通过传热器传给部分产生的氮气量。
按本发明方法的一项有利的进一步发展,产生的氮气量中用作冷却剂的部分加入燃气轮机-压气机内,为的是使在燃气轮机-压气机内压缩的空气通过与这部分产生的氮气量混合得到冷却。通过按本发明对在燃气轮机-压气机内压缩的空气如此进行冷却,可以明显提高IGCC发电厂效率。
按本发明方法的一项实际有效的进一步发展,为了冷却在燃气轮机-压气机内压缩的空气,将压缩空气的热能通过传热器传给产生的氮气量中用作冷却剂的那部分。因此按本发明与上述有利的进一步发展不同,可以借助传热器通过间接传热实现在燃气轮机-压气机内压缩的空气的冷却,其结果是明显提高效率。
按本发明方法另一项有利的进一步发展,取出的氮气量中用作冷却剂的部分与被燃气轮机-压气机吸入的空气混合,以冷却吸入的空气。因此按本发明要在燃气轮机-压气机内压缩的空气在压缩前就已经借助冷的氮气冷却。与直接混合不同,按本发明方法一项实际有效的进一步发展,为了冷却吸入的空气,将吸入的空气的热能通过传热器传给取出的氮气量中用作冷却剂的那部分。
按本发明方法另一项实际有效的进一步发展,取出的氮气量中用作冷却剂的部分,与之不同,也可以作为附加的冷却剂用于带有一体化燃料气化器的燃气和蒸汽联合发电厂汽轮机的冷凝器,由此进一步降低在汽轮机末级后的膨胀背压,并因而可以达到增大功率和提高汽轮机效率的目的。
附图说明
下面借助示意表示的IGCC发电厂的结构图详细说明本发明的方法。其中:
图1示意表示有一体化燃料气化器的燃气和蒸汽联合发电厂(IGCC发电厂);
图2示意表示按图1的IGCC发电厂,它说明借助来自空气分解设备的氮冷却压缩空气;以及
图3示意表示按图1的IGCC发电厂,它说明通过来自空气分解设备的氮膨胀提高IGCC发电厂效率。
具体实施方式
图1中示意表示的IGCC发电厂10主要由一台燃气轮机12和一台连接在该燃气轮机12上游的燃气轮机-压气机14组成。燃料,例如烟煤,在用于产生合成气的气化装置16内气化。为气化所需的氧在空气分解设备18内产生,在此设备中由空气通过分馏制造氧气。空气通常取自环境,以及,借助燃气轮机-压气机和/或燃气轮机附加的压气机,经压缩机20,加入空气分解设备18并压缩到分馏所需的压力。
在气化装置16中产生的合成气在进一步处理前在合成气冷却装置22内冷却,以及接着输入气体净化装置24内。在气体净化装置24中,过滤器(未表示)首先滞留灰粒,接着,在需要时还可以去除二氧化碳。其他有害物质,如硫化物或重金属,同样通过化学和物理的方法系留。总之,由此可以实现为运行燃气轮机12所需的燃料纯度。经净化的合成气接着在燃烧室26内燃烧,以及与空气燃烧后形成的工作燃气流入与发电机(未表示)连接的燃气轮机12内。工作燃气在燃气轮机12内膨胀后将它供入废热锅炉28,以利用包含在工作燃气内的热量产生蒸汽。废热锅炉28连接在蒸汽循环32内,通过该蒸汽循环另外将在合成气冷却装置22内冷却合成气时产生的蒸汽供给废热锅炉28。通过冷却合成气和工作燃气产生的蒸汽在汽轮机34内膨胀,为了生产电能,该汽轮机与发电机(未表示)连接。蒸汽在汽轮机34内膨胀后通过冷凝器36凝结,以及凝结水借助给水泵38送回废热锅炉28并因而引回蒸汽循环32内。
按本发明规定,将已在燃气轮机-压气机14内压缩、具有与空气分解设备18的工作压力相配的压力水平(尤其是具有相同工作压力值)的空气输入空气分解设备18,在这里,压缩空气在进入空气分解设备18前优选地借助一个传热器40预冷却。因此已经压缩的空气为了与空气分解设备18的工作压力匹配,不需要如其余那些由周围通过压缩机20吸入空气分解设备内并在空气分解设备18内压缩的空气那样,在同时带来效率或功率下降的情况下压缩。应供给空气分解设备的部分或甚至全部空气可以从燃气轮机-压气机取出。按本发明从空气分解设备18取出在空气分解设备18中产生的氮,它由于在空气分解设备18中进行的分馏因而导致有低的温度,以及通过一个氮压缩机42供入合成气流,以基本上抑制生成氧化氮。
按本发明,应供给气体净化装置24或气体调节装置的冷氮气的一部分在空气分解设备18与气体净化装置24之间分流出,以便用作冷却剂,其目的是通过适当冷却提高IGCC发电厂效率。按本发明这尤其可以如图2中示意地表示的那样实现。为此,规定作为冷却剂的氮气量直接加入燃气轮机-压气机14内,为的是在燃气轮机-压气机14内压缩的空气可通过与分流出的氮气混合得到冷却。
与之不同,要在燃气轮机-压气机14内压缩的空气也可以借助换热器(未表示)冷却,要压缩的空气通过换热器用分路的冷氮气冷却。如图2中同样示意地表示的那样,分路的氮气也可以与吸入的空气混合,以冷却吸入的空气。因此,按本发明要在燃气轮机-压气机14内压缩的空气在压缩前已经借助分路的冷氮气冷却。与之不同,在这里吸入的空气也可以借助换热器(未表示)冷却,吸入的空气通过换热器用分路的冷氮气冷却。
按本发明提高IGCC发电厂效率的另一种可能性在于,利用分路的冷氮气作为附加的冷却剂用于汽轮机34的冷凝器36,为的是还借助冷凝器36达到明显地提高效率或增大功率的目的。
图3示意表示IGCC发电厂10,它说明通过来自空气分解设备18的氮膨胀提高IGCC发电厂10的效率。
如图3所示,分路的冷氮气通过传热器40流动,它在那里用燃气轮机-压气机14热的压缩空气加热。加热后,分路的氮气在单独的膨胀器44内膨胀,以便驱动一台与膨胀器44连接的发电机46。因此当空气分解设备18的工作压力并因而氮排放压力有中等压力水平时,本方法可有效地使用于提高效率。此时通过氮气在膨胀器44内膨胀的能量变换是有实际意义的。在膨胀后,氮气可以按上述方法用作冷却剂。

Claims (3)

1.一种提高带有一体化燃料气化器的燃气和蒸汽联合发电厂(10)效率的方法,该发电厂有一个燃气轮机-压气机(14)和一个带有规定工作压力的空气分解设备(18),其中,从燃气轮机-压气机(14)取出有一定压力水平的压缩空气,此压力水平与空气分解设备(18)的工作压力相适配,取出的压缩空气接着供入空气分解设备(18),空气在其中分解为它的各种成分,从空气分解设备(18)取出在空气分解设备(18)内产生的氮,以及至少一部分取出的氮气量用作燃气和蒸汽联合发电厂的冷却剂,以提高其效率,其特征在于,为了冷却要在燃气轮机-压气机(14)内压缩的空气,将压缩空气的热能通过一个传热器传给所述那部分取出的氮气量。
2.按照权利要求1所述的方法,其特征为,为了冷却被燃气轮机-压气机(14)吸入的空气,将吸入的空气的热能通过一个传热器传给所述部分取出的氮气量。
3.按照权利要求1所述的方法,其特征为,所述部分取出的氮气量作为附加的冷却剂用于所述带有一体化燃料气化器的燃气和蒸汽联合发电厂(10)汽轮机(34)的冷凝器(36)。
CN200680037156.0A 2005-08-05 2006-07-26 提高带有一体化燃料气化器的燃气和蒸汽联合发电厂效率的方法 Expired - Fee Related CN101287893B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP05017062 2005-08-05
EP05017062.0 2005-08-05
PCT/EP2006/064693 WO2007017387A2 (de) 2005-08-05 2006-07-26 Verfahren zur steigerung des wirkungsgrads eines kombinierten gas- und dampfkraftwerks mit integrierter brennstoffvergasung

Publications (2)

Publication Number Publication Date
CN101287893A CN101287893A (zh) 2008-10-15
CN101287893B true CN101287893B (zh) 2012-06-13

Family

ID=37727668

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200680037156.0A Expired - Fee Related CN101287893B (zh) 2005-08-05 2006-07-26 提高带有一体化燃料气化器的燃气和蒸汽联合发电厂效率的方法

Country Status (5)

Country Link
US (1) US8020388B2 (zh)
EP (1) EP1913238A2 (zh)
CN (1) CN101287893B (zh)
IL (1) IL189153A0 (zh)
WO (1) WO2007017387A2 (zh)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8020397B2 (en) * 2008-10-30 2011-09-20 General Electric Company Reduction of diluent nitrogen compressor power using vapor absorption chiller
US8069672B2 (en) * 2008-12-22 2011-12-06 General Electric Company Method and systems for operating a combined cycle power plant
US20100186367A1 (en) * 2009-01-27 2010-07-29 General Electric Company Gas turbine with introduction of nitrogen
EP2256317A1 (en) * 2009-05-29 2010-12-01 Shell Internationale Research Maatschappij B.V. A process for generating power
US8529679B2 (en) 2009-11-05 2013-09-10 General Electric Company System and method for improving performance of an IGCC power plant
US8186169B2 (en) * 2010-10-22 2012-05-29 General Electric Company Nitrogen cooled gas turbine with combustor nitrogen injection and partial nitrogen recycling
AT12844U1 (de) * 2011-12-28 2012-12-15 Ge Jenbacher Gmbh & Co Ohg Verfahren zum Betreiben einer stationären Kraftanlage mit wenigstens einer Brennkraftmaschine
US9003796B2 (en) * 2012-06-05 2015-04-14 General Electric Company Heat recovery using organic rankine cycle
US20140020426A1 (en) * 2012-07-17 2014-01-23 General Electric Company System and method for using a chilled fluid to cool an electromechanical machine
US20140130509A1 (en) * 2012-11-13 2014-05-15 Raymond Francis Drnevich Combined gasification and power generation
RU2524317C1 (ru) * 2013-03-27 2014-07-27 Геннадий Павлович Барчан Способ преобразования энергии с регенерацией энергоносителей в циклическом процессе теплового двигателя
CN105673098A (zh) * 2016-03-02 2016-06-15 青岛捷能高新技术有限责任公司 侧向排气偏心凝汽系统及方法
EP3333123B1 (de) * 2016-12-09 2019-11-27 L'air Liquide, Société Anonyme Pour L'Étude Et L'exploitation Des Procédés Georges Claude Verfahren und anlage zur erzeugung von synthesegas
CN109252842B (zh) * 2018-10-29 2024-04-12 邓晓亮 超临界煤炭地下气化产出混合气体三联供发电系统
CN109441573B (zh) * 2018-11-02 2021-07-23 中国石油大学(华东) 用于调峰的零碳排放天然气联合发电工艺
CN109441574B (zh) * 2018-11-02 2021-07-23 中国石油大学(华东) 用于调峰的近零碳排放整体煤气化联合发电工艺
CN109609199B (zh) * 2019-01-15 2020-07-21 中国石油大学(华东) 零碳排放的煤气化热电联供工艺
CN109812335B (zh) * 2019-01-15 2021-11-16 中国石油大学(华东) 零碳排放的整体煤气化-蒸气联合循环发电工艺
CN109578098A (zh) * 2019-01-15 2019-04-05 中国石油大学(华东) 零碳排放的天然气热电联供发电工艺
CN109611171A (zh) * 2019-01-15 2019-04-12 中国石油大学(华东) 零碳排放的整体煤气化-超临界co2联合循环发电工艺

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2503193A1 (de) 1975-01-27 1976-07-29 Linde Ag Verfahren zur herstellung eines heizgases durch druckvergasung kohlenstoffhaltiger brennstoffe
US4907405A (en) * 1989-01-24 1990-03-13 Union Carbide Corporation Process to cool gas
GB9111157D0 (en) 1991-05-23 1991-07-17 Boc Group Plc Fluid production method and apparatus
US5459994A (en) * 1993-05-28 1995-10-24 Praxair Technology, Inc. Gas turbine-air separation plant combination
US5406786A (en) 1993-07-16 1995-04-18 Air Products And Chemicals, Inc. Integrated air separation - gas turbine electrical generation process
JPH0814062A (ja) 1994-06-28 1996-01-16 Mitsubishi Heavy Ind Ltd 複合発電プラント
JPH08211891A (ja) 1995-02-06 1996-08-20 Oki Electric Ind Co Ltd ヒドン・マルコフ・モデルの学習方法
JPH08218891A (ja) * 1995-02-09 1996-08-27 Hitachi Ltd ガス化発電プラント
US6141950A (en) * 1997-12-23 2000-11-07 Air Products And Chemicals, Inc. Integrated air separation and combustion turbine process with steam generation by indirect heat exchange with nitrogen
JP3973772B2 (ja) 1998-08-28 2007-09-12 株式会社東芝 石炭ガス化コンバインドサイクル発電プラント
US6588212B1 (en) * 2001-09-05 2003-07-08 Texaco Inc. Combustion turbine fuel inlet temperature management for maximum power outlet
US7284362B2 (en) * 2002-02-11 2007-10-23 L'Air Liquide, Société Anonyme à Directoire et Conseil de Surveillance pour l'Étude et l'Exploitation des Procedes Georges Claude Integrated air separation and oxygen fired power generation system
US7584599B2 (en) * 2005-08-10 2009-09-08 Alstom Technology Ltd. Method for operating a gas turbine as well as a gas turbine for implementing the method

Also Published As

Publication number Publication date
WO2007017387A2 (de) 2007-02-15
CN101287893A (zh) 2008-10-15
IL189153A0 (en) 2009-08-03
US8020388B2 (en) 2011-09-20
US20100146929A1 (en) 2010-06-17
EP1913238A2 (de) 2008-04-23
WO2007017387A3 (de) 2008-07-03

Similar Documents

Publication Publication Date Title
CN101287893B (zh) 提高带有一体化燃料气化器的燃气和蒸汽联合发电厂效率的方法
US6877322B2 (en) Advanced hybrid coal gasification cycle utilizing a recycled working fluid
CN101187338B (zh) 具有二氧化碳隔离的发电系统和方法
US6684643B2 (en) Process for the operation of a gas turbine plant
US5664411A (en) S cycle electric power system
FI84290C (fi) Foerfarande foer alstring av elektrisk energi och aonga.
JP2007507639A (ja) 発電
US20100018218A1 (en) Power plant with emissions recovery
US20050076645A1 (en) Method for operating a power plant by means of a CO2 process
RU2594096C2 (ru) Устройство для компрессии диоксида углерода
CN101537301A (zh) Igcc发电厂的co2回收
US10753600B2 (en) Turbine system and method
CN1630769A (zh) 组合的空气分离和氧助发电系统
RU133250U1 (ru) Газораспределительная станция
Matveev et al. New combined-cycle gas turbine system for plasma-assisted disposal of sewage sludge
CN102305109A (zh) 一种富氧-煤气化烟气再热联合循环动力系统
CN101793174B (zh) 降低气化系统中冷却水和动力消耗的系统及其组装方法
CN215486282U (zh) 一种适应快速调峰的igcc系统
JP2015500934A (ja) 窒素を燃焼室に供給する方法及び装置
RU2395695C1 (ru) Способ работы парогазовой установки
RU2525041C1 (ru) Способ работы газораспределительной станции
JP2001207861A (ja) ハイドレートスラリ燃料による発電方法及びその装置
JP6014319B2 (ja) 合成ガスからのガス状副生成物の除去システム
JPH06511062A (ja) 組み合わせられたガス・蒸気式動力設備においてエネルギを発生させる方法
CN106594787A (zh) 利用低压饱和蒸汽进行发电的方法、设备及焦化系统

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20120613

Termination date: 20140726

EXPY Termination of patent right or utility model