CN101286592A - Broadband Circular Polarization Wide Beam Multimode Satellite Navigation Terminal Antenna - Google Patents
Broadband Circular Polarization Wide Beam Multimode Satellite Navigation Terminal Antenna Download PDFInfo
- Publication number
- CN101286592A CN101286592A CNA2008101148778A CN200810114877A CN101286592A CN 101286592 A CN101286592 A CN 101286592A CN A2008101148778 A CNA2008101148778 A CN A2008101148778A CN 200810114877 A CN200810114877 A CN 200810114877A CN 101286592 A CN101286592 A CN 101286592A
- Authority
- CN
- China
- Prior art keywords
- antenna
- metal
- satellite navigation
- microstrip
- navigation terminal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Waveguide Aerials (AREA)
- Variable-Direction Aerials And Aerial Arrays (AREA)
Abstract
本发明公开了一种用于对宽频带特性和圆极化特性要求较高场合的宽频带圆极化宽波束多模卫星导航终端天线,由天线本体和馈电网络两部分组成。天线本体包括天线罩(1)、介质支撑、金属辐射贴片(2)、四个L型金属馈电探针(3)和金属反射板(4);馈电网络包括一分四的微带功分移相网络(5)和金属屏蔽盒;天线本体的四个L型金属馈电探针(3)和天线馈电网络的微带功分移相网络(5)通过金属电连接在一起。本发明的天线可以使微带天线的相对带宽达到40%以上。同时,由于采用介质嵌套的微带天线实现工艺,大大提高了微带天线的低仰角增益,本发明天线5°仰角增益大于-5dBi,且具有良好的机械特性和温度特性。
The invention discloses a wide-band circular polarization wide-beam multi-mode satellite navigation terminal antenna used in occasions requiring high broadband characteristics and circular polarization characteristics, which is composed of two parts: an antenna body and a feed network. The antenna body includes a radome (1), a dielectric support, a metal radiation patch (2), four L-shaped metal feed probes (3) and a metal reflector (4); the feed network includes a microstrip divided into four Power-dividing phase-shifting network (5) and metal shielding box; four L-shaped metal feeding probes (3) of the antenna body and the microstrip power-dividing phase-shifting network (5) of the antenna feeding network are electrically connected together through metal . The antenna of the invention can make the relative bandwidth of the microstrip antenna reach more than 40%. At the same time, due to the use of the medium-embedded microstrip antenna to realize the technology, the low elevation gain of the microstrip antenna is greatly improved. The 5° elevation gain of the antenna of the present invention is greater than -5dBi, and has good mechanical characteristics and temperature characteristics.
Description
技术领域 technical field
本发明涉及无线通信领域的天线技术,特别是对宽频带特性和圆极化特性要求较高的如多模卫星导航终端等场合。The invention relates to antenna technology in the field of wireless communication, in particular to occasions such as multi-mode satellite navigation terminals and the like that have high requirements on broadband characteristics and circular polarization characteristics.
背景技术 Background technique
通常卫星导航天线终端(用户)天线为单频、双频或者三频,且都是针对单一的卫星导航系统,比如国外的GPS、GLONASS、GALILEO以及我国的北斗1号、北斗2号。这类天线的缺点是无法同时接收所有的导航信号,无法满足多模导航接收的需求。但是在实际应用中,用户需要根据实际需求选择上述一种或者多种不同卫星导航系统的导航信号,需要能够同时接收多种模式导航信号的宽频带多模导航终端天线。Usually satellite navigation antenna terminal (user) antennas are single-frequency, dual-frequency or triple-frequency, and they are all aimed at a single satellite navigation system, such as foreign GPS, GLONASS, GALILEO and my country's Beidou-1 and Beidou-2. The disadvantage of this type of antenna is that it cannot receive all navigation signals at the same time, and cannot meet the needs of multi-mode navigation reception. However, in practical applications, users need to select one or more navigation signals of the above-mentioned different satellite navigation systems according to actual needs, and need a broadband multi-mode navigation terminal antenna capable of receiving multiple modes of navigation signals at the same time.
美国GPS全球有24颗卫星供全球用户使用,而我国的北斗系统与GPS的卫星轨道不相同,而且数量较少,这就要求终端天线具有较好的低仰角增益。The United States GPS has 24 satellites for global users, while my country's Beidou system and GPS satellite orbits are different, and the number is small, which requires the terminal antenna to have better low elevation gain.
经检索,与本发明专利内容密切相关的具体如下:专利号:ZL200520079254.3的“有良好低仰角性能的双频宽波束圆极化天线”,公开的天线组成结构为单极子天线的变形,通过增加寄生部分来改善低仰角增益,但该天线频带较窄,只可以用于双频工作。专利申请号:200620078410.9的“三频宽波束圆极化天线”,其组成结构为三层结构,最上面为偶极子天线,下面两层为微带天线,通过这三个天线的组合来实现三频工作,但该天线未提及低仰角特性。专利号:ZL 200520079197.9的“一种改善低仰角性能的双频宽波束圆极化天线”,其组成结构为两组L型单极子天线实现双频工作,并且通过L型单极子来改善低仰角增益。专利号:ZL 200420081255.7的“宽频微带天线”,其采用斜L型探针展宽带宽,相对带宽可达37%,该天线为线极化,由于应用的场合不同,未提及低仰角增益。After retrieval, the details closely related to the content of the patent of the present invention are as follows: Patent No.: ZL200520079254.3 "Dual Bandwidth Wide Beam Circular Polarization Antenna with Good Low Elevation Angle Performance", the disclosed antenna structure is a deformation of a monopole antenna , by increasing the parasitic part to improve the low elevation gain, but the antenna has a narrow frequency band and can only be used for dual-band work. Patent application number: 200620078410.9 "Three-band wide-beam circularly polarized antenna". Its composition structure is a three-layer structure. The topmost layer is a dipole antenna, and the bottom two layers are microstrip antennas. It is realized by the combination of these three antennas. Tri-band work, but this antenna does not mention low elevation characteristics. Patent No.: ZL 200520079197.9 "A dual-band wide-beam circularly polarized antenna with improved low-elevation angle performance". Low elevation gain. Patent No.: "Broadband Microstrip Antenna" of ZL 200420081255.7, which uses an inclined L-shaped probe to widen the bandwidth, and the relative bandwidth can reach 37%. The antenna is linearly polarized. Due to different application occasions, low elevation gain is not mentioned.
另外,一般的微带天线都采用印刷工艺来制作,即在双面覆铜微波介质板双面进行腐蚀印刷操作,去掉无用的铜箔,保留有用部分。由于铜箔很薄(一般为17微米或35微米),在温度聚变很快且变化范围很大的条件下,铜箔容易剥落,导致天线毁伤。而且印刷工艺实现的微带天线一般很薄,很难实现良好的低仰角增益。In addition, the general microstrip antenna is made by printing process, that is, the corrosion printing operation is performed on both sides of the double-sided copper-clad microwave dielectric board, and the useless copper foil is removed, and the useful part is retained. Because the copper foil is very thin (generally 17 microns or 35 microns), the copper foil is easy to peel off under the conditions of rapid temperature fusion and a wide range of changes, resulting in damage to the antenna. Moreover, the microstrip antenna realized by the printing process is generally very thin, and it is difficult to achieve good low elevation gain.
综上所述,能够同时接收多种模式导航信号的宽频带多模导航终端天线未见相关文献报道。To sum up, there are no relevant literature reports on broadband multi-mode navigation terminal antennas that can simultaneously receive multiple modes of navigation signals.
发明内容 Contents of the invention
本发明的技术解决问题是:提供一种相对带宽大于40%,能够覆盖所有卫星导航信号,宽频带范围内圆极化轴比小于1.5dB,提高天线的低仰角增益,能够接收所有导航信号的宽频带圆极化宽波束多模卫星导航终端天线。The technical solution problem of the present invention is: provide a kind of relative bandwidth greater than 40%, can cover all satellite navigation signals, circular polarization axis ratio is less than 1.5dB in the broadband range, improve the low elevation angle gain of antenna, can receive all navigation signals Broadband circular polarization wide beam multi-mode satellite navigation terminal antenna.
本发明的技术解决方案是:宽频带圆极化宽波束多模卫星导航终端天线,由馈电网络和天线本体两部分组成,天线本体包括天线罩、介质支撑、金属辐射贴片、四个L型金属馈电探针和金属反射板;L型金属馈电探针嵌入介质支撑内,金属辐射贴片嵌入介质支撑上面的槽内;介质支撑与外部的天线罩连接为一整体;馈电网络包括微带功分移相网络和金属屏蔽盒,微带功分移相网络采用一分四的微带功分移相网络,四个馈电点依次相位相差90°;金属屏蔽盒位于天线本体金属反射板下方,微带功分移相网络安装在金属屏蔽盒内,在网络总输出口安装SMA接头;天线本体的四个L型金属馈电探针和天线馈电网络的微带功分移相网络通过金属电连接在一起。The technical solution of the present invention is: a broadband circularly polarized wide beam multi-mode satellite navigation terminal antenna, which consists of two parts: a feeding network and an antenna body, and the antenna body includes a radome, a dielectric support, a metal radiation patch, four L Type metal feeding probe and metal reflector; L-shaped metal feeding probe is embedded in the dielectric support, and the metal radiation patch is embedded in the groove above the dielectric support; the dielectric support and the external radome are connected as a whole; the feed network Including microstrip power division phase-shifting network and metal shielding box, the microstrip power division phase-shifting network adopts a microstrip power division phase-shifting network divided into four, and the four feeding points have a phase difference of 90°; the metal shielding box is located on the antenna body Under the metal reflector, the microstrip power division phase-shifting network is installed in the metal shielding box, and the SMA connector is installed at the network output port; the four L-shaped metal feed probes of the antenna body and the microstrip power division of the antenna feed network The phase-shifting network is electrically connected together through metal.
所述天线罩和介质支撑采用相同的介质材料,介质材料的相对介电常数εr选取范围为1<εr<20。The same dielectric material is used for the radome and the dielectric support, and the range of relative permittivity ε r of the dielectric material is 1<ε r <20.
所述天线罩和介质支撑为设计为一个整体。The radome and the dielectric support are designed as a whole.
所述金属辐射贴片为圆型,其半径
所述金属辐射贴片为正方形,其边长为
所述金属屏蔽盒和天线金属反射板设计为一个整体,金属屏蔽盒上壁充当天线金属反射板,减小了天线体积。The metal shielding box and the antenna metal reflection plate are designed as a whole, and the upper wall of the metal shielding box serves as the antenna metal reflection plate, which reduces the volume of the antenna.
本发明与现有技术相比具有如下优点:Compared with the prior art, the present invention has the following advantages:
1、由于采用新的L型探针馈电技术,本发明的天线可以将微带天线的带宽大大展宽,使相对带宽达到40%以上。微带天线的固有缺点为窄频带,一般相对带宽小于5%。为了展宽微带天线的带宽,本天线采用L型探针馈电技术,因为普通馈电探针表现为电容,通过L型加载,可以增加馈电探针的电感,这样通过优化L型探针的尺寸,使得天线相对带宽展宽。1. Due to the adoption of the new L-shaped probe feeding technology, the antenna of the present invention can greatly widen the bandwidth of the microstrip antenna, so that the relative bandwidth can reach more than 40%. The inherent disadvantage of the microstrip antenna is a narrow frequency band, generally less than 5% of the relative bandwidth. In order to widen the bandwidth of the microstrip antenna, this antenna adopts the L-shaped probe feeding technology, because the common feeding probe behaves as a capacitor, and the inductance of the feeding probe can be increased by L-shaped loading, so by optimizing the L-shaped probe The size of the antenna makes the relative bandwidth of the antenna wider.
2、由于本发明采用了介质嵌套的微带天线实现工艺,大大提高了微带天线的低仰角增益,本天线5°仰角增益大于-5dBi。同时具有良好的机械特性和温度特性。微带天线方向图本身具有半球形、宽波束的特点,本发明的天线将金属辐射贴片嵌套在支撑介质内,通过优化金属贴片和介质的尺寸,可以使得微带天线波束更宽,从而获得良好的低仰角增益。2. Since the present invention adopts the microstrip antenna technology embedded in the medium, the low elevation gain of the microstrip antenna is greatly improved, and the 5° elevation gain of the antenna is greater than -5dBi. At the same time, it has good mechanical properties and temperature characteristics. The microstrip antenna pattern itself has the characteristics of hemispherical and wide beam. The antenna of the present invention nests the metal radiation patch in the supporting medium. By optimizing the size of the metal patch and the medium, the beam of the microstrip antenna can be made wider. This results in good low elevation gain.
3、本发明采用了四点馈电技术,合理控制馈电网络四个馈电点的幅度和相位不平衡度,使天线具有良好的圆极化特性,天线在频段内主要工作角域圆极化轴比AR<3dB。四个L型馈电探针对称分布,保证了天线方位面方向图的全向性,具有较小的不圆度。3. The present invention adopts the four-point feed technology to reasonably control the amplitude and phase imbalance of the four feed points of the feed network, so that the antenna has good circular polarization characteristics, and the main working angle of the antenna in the frequency band is circular pole Shaft ratio AR<3dB. The four L-shaped feeding probes are symmetrically distributed, which ensures the omnidirectionality of the antenna azimuth pattern and has a small out-of-roundness.
4、本发明天线的宽频带特性在天线装配完成即可获得,结构简单,无需调试,具有良好的一致性。4. The broadband characteristics of the antenna of the present invention can be obtained after the antenna is assembled, the structure is simple, no debugging is required, and it has good consistency.
附图说明 Description of drawings
图1为本发明的结构示意图;Fig. 1 is a structural representation of the present invention;
图2为本发明的侧视图;Fig. 2 is a side view of the present invention;
图3为本发明的馈电网络结构图;Fig. 3 is a feed network structural diagram of the present invention;
图4为本发明的驻波比(VSWR)带宽测试图;Fig. 4 is standing wave ratio (VSWR) bandwidth test figure of the present invention;
图5为本发明的方向图和增益设计图。Fig. 5 is the direction diagram and gain design diagram of the present invention.
具体实施方式 Detailed ways
下面结合附图对本发明作进一步说明。The present invention will be further described below in conjunction with accompanying drawing.
如图1、2和3所示,本发明的宽频带圆极化宽波束多模卫星导航终端天线,包络天线本体和馈电网络两部分。As shown in Figures 1, 2 and 3, the wide-band circularly polarized wide-beam multi-mode satellite navigation terminal antenna of the present invention includes two parts: the envelope antenna body and the feed network.
天线本体包括天线罩及介质支撑1、金属辐射贴片2、L型金属馈电探针3和金属反射板4。本实施例的天线罩及介质支撑1一体化设计,两者为相同的介质材料。介质材料主要关心其工作的环境要求,比如环境温度、振动要求等,最主要的是其电参数相对介电常数εr,选取范围为1<εr<20,1是自由空间的理论最小值,如果相对介电常数大于20,损耗增大,导致天线辐射效率下降,反而降低天线增益。本实施例中选用材料的相对介电常数εr=3.15。The antenna body includes a radome and a dielectric support 1 , a
通过在该介质支撑1内部打孔,将L型金属探针3的垂直部分嵌入其中,然后在介质支撑1上面开槽,将L型金属探针3水平部分嵌入,垂直部分和水平部分焊接连接。By drilling a hole inside the medium support 1, the vertical part of the L-
在介质支撑1上面开出圆形槽,将金属辐射贴片2嵌入。具体过程为:将5°仰角增益设为优化目标,先保持金属贴片尺寸不变,分别改变介质的厚度和边长,观察增益的变化,将增益最大对应的厚度和边长作为设计结果。本天线5°仰角增益大于-5dBi。A circular groove is opened on the dielectric support 1, and the
最后将天线罩和介质支撑1连接为一个整体,则天线本体安装完毕。Finally, the radome and the dielectric support 1 are connected as a whole, and the installation of the antenna body is completed.
L型金属探针3的主要参数是其馈电点的位置,本实施例中的馈电点位于阻抗为50欧姆的位置。L型金属探针3垂直部分高度和水平部分高度的具体尺寸选择和优化可以根据设计的频率以及所选用材料试验确定。The main parameter of the L-shaped
金属辐射贴片2的大小主要由天线的工作频率和介电常数而定。本实施例中金属辐射贴片2为圆型,其半径为:The size of the
其中天线工作中心频率f=1.5GHz,r=3.3厘米。Wherein, the working center frequency of the antenna is f=1.5GHz, and r=3.3cm.
本发明的馈电网络包括微带功分移相网络5和金属屏蔽盒4,微带功分移相网络5采用一分四的微带功分移相网络,四个馈电点依次相位相差90°,即四个馈电点的相对相位分别为0°、90°、180°、270°。本实施例中金属屏蔽盒和天线金属反射板4一体化设计,金属屏蔽盒上壁充当天线反射板,从而减小天线体积。将微带功分移相网络5安装在金属屏蔽盒内,在网络总输出口安装SMA接头,则天线馈电网络安装完毕。The feeding network of the present invention includes a microstrip power-dividing phase-shifting
金属反射板的作用是抑制天线后瓣辐射,提高前向增益。理论上,金属反射板的尺寸越大越好,但是实际上一般根据实际约束(比如安装尺寸限制)来确定其大小。The function of the metal reflector is to suppress the radiation of the antenna rear lobe and increase the forward gain. In theory, the larger the size of the metal reflector, the better, but in practice, its size is generally determined according to practical constraints (such as installation size restrictions).
将天线本体的四个L型金属馈电探针3和天线馈电网络的微带功分移相网络5通过金属电连接在一起。两者的结构部分通过螺钉连接为一个整体,则整个天线安装完毕,构成一个宽频带、圆极化、宽波束多模卫星导航终端天线。The four L-shaped metal feeding probes 3 of the antenna body and the microstrip power division phase-shifting
图4为本实施例的驻波比带宽测试图,其驻波比带宽(VSWR<2)的带宽为1.02GHz~1.7GHz,相对带宽大于50%,能够满足目前及未来所有卫星导航系统的应用需求。Fig. 4 is the VSWR bandwidth test chart of the present embodiment, the bandwidth of its VSWR<2) is 1.02GHz~1.7GHz, and the relative bandwidth is greater than 50%, which can satisfy the application of all current and future satellite navigation systems need.
图5为本实施例的主平面方向图,描述了增益和角度之间的关系,可以看出天线5°仰角增益大于-5dBi。FIG. 5 is the main plane pattern of this embodiment, which describes the relationship between the gain and the angle. It can be seen that the gain of the antenna at a 5° elevation angle is greater than -5dBi.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN200810114877A CN101286592B (en) | 2008-06-13 | 2008-06-13 | Multimodal satellite navigation terminal antennae with wide-band circular polarized wide wave beam |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN200810114877A CN101286592B (en) | 2008-06-13 | 2008-06-13 | Multimodal satellite navigation terminal antennae with wide-band circular polarized wide wave beam |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101286592A true CN101286592A (en) | 2008-10-15 |
CN101286592B CN101286592B (en) | 2012-09-26 |
Family
ID=40058641
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN200810114877A Active CN101286592B (en) | 2008-06-13 | 2008-06-13 | Multimodal satellite navigation terminal antennae with wide-band circular polarized wide wave beam |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101286592B (en) |
Cited By (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102013549A (en) * | 2010-09-17 | 2011-04-13 | 航天恒星科技有限公司 | Precise GNSS directional antenna |
CN102185182A (en) * | 2011-04-09 | 2011-09-14 | 合肥安大电子检测技术有限公司 | Circularly polarized multimode wideband antenna and microstrip power division phase shift network |
CN102299399A (en) * | 2011-05-30 | 2011-12-28 | 东南大学 | Double-frequency circularly polarized combined antenna with wide wave beam and high gain |
CN102332637A (en) * | 2011-08-31 | 2012-01-25 | 华南理工大学 | A dual-polarized multi-system compatible antenna |
CN102882013A (en) * | 2012-09-26 | 2013-01-16 | 华为技术有限公司 | Low-profile broadband antenna array and antenna |
CN102916263A (en) * | 2012-10-21 | 2013-02-06 | 西安电子科技大学 | Multi-mode antenna for satellite navigation |
CN103367916A (en) * | 2013-07-12 | 2013-10-23 | 西安电子科技大学 | Multi-mode multi-frequency circularly-polarized satellite positioning receiving antenna |
CN103474757A (en) * | 2013-09-11 | 2013-12-25 | 华为技术有限公司 | Antenna system |
CN103887598A (en) * | 2014-04-15 | 2014-06-25 | 北京敏视达雷达有限公司 | Satellite navigation antenna |
CN105322288A (en) * | 2015-04-30 | 2016-02-10 | 滕崴 | Small broadband microstrip antenna for satellite navigation system terminal |
CN106374228A (en) * | 2016-11-21 | 2017-02-01 | 广东工业大学 | A single-chip dual-band broadband patch antenna |
WO2017054127A1 (en) * | 2015-09-29 | 2017-04-06 | 华为技术有限公司 | Communication equipment |
CN106711594A (en) * | 2016-11-25 | 2017-05-24 | 成都银丰信禾电子科技有限公司 | Global navigation satellite terminal antenna using air dielectric |
CN108172984A (en) * | 2017-12-01 | 2018-06-15 | 北京北方联星科技有限公司 | A kind of circular polarized antenna being made of multiple PIFA antennas |
CN108761502A (en) * | 2018-08-31 | 2018-11-06 | 广东圣大电子有限公司 | A kind of multimode GNSS test receivers with precise phase center |
CN109033910A (en) * | 2018-07-04 | 2018-12-18 | 东莞市明日视界科技有限公司 | Reader for ultrahigh frequency passive RFID (radio frequency identification) in-road parking management system |
CN109244650A (en) * | 2018-10-25 | 2019-01-18 | 苏州博海创业微系统有限公司 | Wide-beam circularly-polarizedmicrostrip microstrip antenna and array |
CN109509964A (en) * | 2018-10-29 | 2019-03-22 | 成都市克莱微波科技有限公司 | A kind of broadband circle polarized array antenna |
CN110265779A (en) * | 2019-07-23 | 2019-09-20 | 福州大学 | A dual cross-shaped wideband high and low elevation gain satellite navigation terminal antenna |
CN110289484A (en) * | 2019-06-25 | 2019-09-27 | 广东盛路通信科技股份有限公司 | A kind of broadband navigation antenna |
CN110739532A (en) * | 2019-10-30 | 2020-01-31 | 上海华测导航技术股份有限公司 | ultra-wideband high-precision satellite navigation antenna |
CN111525280A (en) * | 2020-04-10 | 2020-08-11 | 上海交通大学 | Circularly polarized scanning array antenna based on Rotman lens |
CN111682303A (en) * | 2020-05-09 | 2020-09-18 | 四川九洲电器集团有限责任公司 | Common-aperture full-airspace coverage antenna |
CN112216960A (en) * | 2019-07-09 | 2021-01-12 | 成都信芒电子科技有限公司 | Dielectric navigation antenna |
CN112467366A (en) * | 2020-08-24 | 2021-03-09 | 西安空间无线电技术研究所 | Near-field low-interference satellite-borne microstrip feed source assembly |
CN113497358A (en) * | 2021-07-21 | 2021-10-12 | 德州学院 | Wide-angle dual-circularly-polarized antenna with low elevation gain enhancement and equipment |
CN114006161A (en) * | 2021-11-02 | 2022-02-01 | 湖南迈克森伟电子科技有限公司 | Double-layer double-frequency slot antenna and electronic equipment |
CN114284735A (en) * | 2021-11-24 | 2022-04-05 | 北京遥测技术研究所 | Broadband small circularly polarized receiving antenna |
CN114421136A (en) * | 2022-01-12 | 2022-04-29 | 深圳华大北斗科技股份有限公司 | Low-cost four-point coupling feed full-frequency-band high-precision navigation antenna |
CN114976597A (en) * | 2022-05-26 | 2022-08-30 | 福耀玻璃工业集团股份有限公司 | Vehicle-mounted glass integrated with antenna, manufacturing method and vehicle |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100428564C (en) * | 2004-06-01 | 2008-10-22 | 香港城市大学 | Broadband patch antenna with double L-shaped probes |
-
2008
- 2008-06-13 CN CN200810114877A patent/CN101286592B/en active Active
Cited By (42)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102013549A (en) * | 2010-09-17 | 2011-04-13 | 航天恒星科技有限公司 | Precise GNSS directional antenna |
CN102013549B (en) * | 2010-09-17 | 2013-05-01 | 航天恒星科技有限公司 | Precise GNSS directional antenna |
CN102185182B (en) * | 2011-04-09 | 2014-02-12 | 合肥安大电子检测技术有限公司 | Circularly polarized multimode wideband antenna and microstrip power division phase shift network |
CN102185182A (en) * | 2011-04-09 | 2011-09-14 | 合肥安大电子检测技术有限公司 | Circularly polarized multimode wideband antenna and microstrip power division phase shift network |
CN102299399A (en) * | 2011-05-30 | 2011-12-28 | 东南大学 | Double-frequency circularly polarized combined antenna with wide wave beam and high gain |
CN102299399B (en) * | 2011-05-30 | 2013-07-10 | 东南大学 | Double-frequency circularly polarized combined antenna with wide wave beam and high gain |
CN102332637A (en) * | 2011-08-31 | 2012-01-25 | 华南理工大学 | A dual-polarized multi-system compatible antenna |
CN102882013A (en) * | 2012-09-26 | 2013-01-16 | 华为技术有限公司 | Low-profile broadband antenna array and antenna |
CN102916263A (en) * | 2012-10-21 | 2013-02-06 | 西安电子科技大学 | Multi-mode antenna for satellite navigation |
CN103367916A (en) * | 2013-07-12 | 2013-10-23 | 西安电子科技大学 | Multi-mode multi-frequency circularly-polarized satellite positioning receiving antenna |
CN103474757A (en) * | 2013-09-11 | 2013-12-25 | 华为技术有限公司 | Antenna system |
CN103887598A (en) * | 2014-04-15 | 2014-06-25 | 北京敏视达雷达有限公司 | Satellite navigation antenna |
CN103887598B (en) * | 2014-04-15 | 2016-08-31 | 北京敏视达雷达有限公司 | A kind of satellite navigation aerial |
CN105322288A (en) * | 2015-04-30 | 2016-02-10 | 滕崴 | Small broadband microstrip antenna for satellite navigation system terminal |
CN105322288B (en) * | 2015-04-30 | 2018-10-23 | 成都银丰信禾电子科技有限公司 | Satellite navigation system terminal broadband small-sized microstrip antenna |
WO2017054127A1 (en) * | 2015-09-29 | 2017-04-06 | 华为技术有限公司 | Communication equipment |
US11355832B2 (en) | 2015-09-29 | 2022-06-07 | Huawei Technologies Co., Ltd. | Communications device |
CN106374228A (en) * | 2016-11-21 | 2017-02-01 | 广东工业大学 | A single-chip dual-band broadband patch antenna |
CN106374228B (en) * | 2016-11-21 | 2022-12-27 | 广东工业大学 | Single-chip double-frequency broadband patch antenna |
CN106711594A (en) * | 2016-11-25 | 2017-05-24 | 成都银丰信禾电子科技有限公司 | Global navigation satellite terminal antenna using air dielectric |
CN108172984A (en) * | 2017-12-01 | 2018-06-15 | 北京北方联星科技有限公司 | A kind of circular polarized antenna being made of multiple PIFA antennas |
CN109033910A (en) * | 2018-07-04 | 2018-12-18 | 东莞市明日视界科技有限公司 | Reader for ultrahigh frequency passive RFID (radio frequency identification) in-road parking management system |
CN108761502B (en) * | 2018-08-31 | 2024-02-02 | 广东圣大电子有限公司 | Multimode GNSS test receiver with accurate phase center |
CN108761502A (en) * | 2018-08-31 | 2018-11-06 | 广东圣大电子有限公司 | A kind of multimode GNSS test receivers with precise phase center |
CN109244650A (en) * | 2018-10-25 | 2019-01-18 | 苏州博海创业微系统有限公司 | Wide-beam circularly-polarizedmicrostrip microstrip antenna and array |
CN109509964A (en) * | 2018-10-29 | 2019-03-22 | 成都市克莱微波科技有限公司 | A kind of broadband circle polarized array antenna |
CN110289484A (en) * | 2019-06-25 | 2019-09-27 | 广东盛路通信科技股份有限公司 | A kind of broadband navigation antenna |
CN110289484B (en) * | 2019-06-25 | 2023-09-15 | 广东盛路通信科技股份有限公司 | Broadband navigation antenna |
CN112216960A (en) * | 2019-07-09 | 2021-01-12 | 成都信芒电子科技有限公司 | Dielectric navigation antenna |
CN110265779A (en) * | 2019-07-23 | 2019-09-20 | 福州大学 | A dual cross-shaped wideband high and low elevation gain satellite navigation terminal antenna |
CN110265779B (en) * | 2019-07-23 | 2024-02-06 | 福州大学 | Dual-cross broadband high-low elevation gain satellite navigation terminal antenna |
CN110739532A (en) * | 2019-10-30 | 2020-01-31 | 上海华测导航技术股份有限公司 | ultra-wideband high-precision satellite navigation antenna |
CN110739532B (en) * | 2019-10-30 | 2022-06-21 | 上海双微导航技术有限公司 | Ultra-wideband high-precision satellite navigation antenna |
CN111525280A (en) * | 2020-04-10 | 2020-08-11 | 上海交通大学 | Circularly polarized scanning array antenna based on Rotman lens |
CN111682303A (en) * | 2020-05-09 | 2020-09-18 | 四川九洲电器集团有限责任公司 | Common-aperture full-airspace coverage antenna |
CN112467366A (en) * | 2020-08-24 | 2021-03-09 | 西安空间无线电技术研究所 | Near-field low-interference satellite-borne microstrip feed source assembly |
CN113497358A (en) * | 2021-07-21 | 2021-10-12 | 德州学院 | Wide-angle dual-circularly-polarized antenna with low elevation gain enhancement and equipment |
CN114006161A (en) * | 2021-11-02 | 2022-02-01 | 湖南迈克森伟电子科技有限公司 | Double-layer double-frequency slot antenna and electronic equipment |
CN114284735A (en) * | 2021-11-24 | 2022-04-05 | 北京遥测技术研究所 | Broadband small circularly polarized receiving antenna |
CN114421136A (en) * | 2022-01-12 | 2022-04-29 | 深圳华大北斗科技股份有限公司 | Low-cost four-point coupling feed full-frequency-band high-precision navigation antenna |
CN114976597A (en) * | 2022-05-26 | 2022-08-30 | 福耀玻璃工业集团股份有限公司 | Vehicle-mounted glass integrated with antenna, manufacturing method and vehicle |
CN114976597B (en) * | 2022-05-26 | 2024-03-01 | 福耀玻璃工业集团股份有限公司 | Vehicle-mounted glass integrated with antenna, manufacturing method and vehicle |
Also Published As
Publication number | Publication date |
---|---|
CN101286592B (en) | 2012-09-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101286592B (en) | Multimodal satellite navigation terminal antennae with wide-band circular polarized wide wave beam | |
Chen et al. | A compact circularly polarized MIMO dielectric resonator antenna over electromagnetic band-gap surface for 5G applications | |
Zhou et al. | Dual band proximity-fed stacked patch antenna for tri-band GPS applications | |
Gao et al. | Circularly polarized antennas | |
Massie et al. | A new wideband circularly polarized hybrid dielectric resonator antenna | |
CN106252858B (en) | S/X band co-aperture broadband miniaturized planar antenna | |
Gupta et al. | Dual-band miniature coupled double loop GPS antenna loaded with lumped capacitors and inductive pins | |
Cao et al. | Compact mobile terminal antenna with endfire circularly polarized beam for satellite communications | |
Xu et al. | Small‐size reconfigurable antenna for WWAN/LTE/GNSS smartphone applications | |
CN215342996U (en) | Circularly polarized antenna | |
CN112909512B (en) | Ultra-wideband antenna and antenna array | |
Ren et al. | Function-reconfigurable water short backfire antenna | |
Jović et al. | Novel wideband antenna for GNSS and satellite communications | |
CN103682651B (en) | A kind of miniaturization broad beam microstrip antenna | |
Wang et al. | A Dual-band Circularly Polarized Stacked Microstrip Antenna for BeiDou Navigation Application | |
CN115548703A (en) | A phase-controllable dual-frequency circularly polarized antenna | |
Mustafa et al. | Parasitic Slotted Patch Antenna for Dual-Band Operation over S-Band | |
Liberto et al. | A Dual-Wideband Circular Polarized Shared-Aperture Antenna for CubeSat Applications | |
Xue et al. | Spaceborne miniaturized UHF dual band helix antenna with a small frequency ratio | |
CN218958017U (en) | C-band space-based terminal fixed beam high-gain antenna | |
CN204407481U (en) | Communication antenna, antenna system and communication equipment | |
CN219959424U (en) | High-precision global navigation satellite antenna device | |
CN117748131B (en) | Broadband high-efficiency high-low elevation gain circular polarization cone-mode four-arm spiral antenna | |
Zheng et al. | Design of Dual-Mode Dual-Band Vehicle Mounted Monopole Antenna | |
CA2732644C (en) | Wideband circularly polarized hybrid dielectric resonator antenna |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |