CN101285846A - Fiber Bragg Grating Accelerometer Based on Cantilever Beam Deflection - Google Patents
Fiber Bragg Grating Accelerometer Based on Cantilever Beam Deflection Download PDFInfo
- Publication number
- CN101285846A CN101285846A CNA2007100653224A CN200710065322A CN101285846A CN 101285846 A CN101285846 A CN 101285846A CN A2007100653224 A CNA2007100653224 A CN A2007100653224A CN 200710065322 A CN200710065322 A CN 200710065322A CN 101285846 A CN101285846 A CN 101285846A
- Authority
- CN
- China
- Prior art keywords
- fiber grating
- cantilever beam
- accelerometer
- side wall
- grating accelerometer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000835 fiber Substances 0.000 claims abstract description 80
- 230000035945 sensitivity Effects 0.000 claims abstract description 18
- 239000013307 optical fiber Substances 0.000 claims abstract description 8
- 230000001133 acceleration Effects 0.000 claims abstract description 5
- 230000008859 change Effects 0.000 claims description 4
- 239000000463 material Substances 0.000 claims description 4
- 230000009022 nonlinear effect Effects 0.000 claims description 3
- 238000012858 packaging process Methods 0.000 abstract description 3
- 230000009286 beneficial effect Effects 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 2
- 230000007123 defense Effects 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 230000000737 periodic effect Effects 0.000 description 2
- 238000006073 displacement reaction Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000003292 glue Substances 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
Landscapes
- Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
Abstract
本发明涉及光纤传感器技术领域,公开了一种基于悬臂梁挠度的光纤光栅加速度计,该光纤光栅加速度计包括:作为该光纤光栅加速度计支撑结构的外壳1,具有第一侧壁m、第二侧壁n、第三侧壁p和第四侧壁q;用于测量加速度的光纤光栅2,该光纤光栅2的一端与质量块5固定连接,另一端平行于第一侧壁m穿过所述光纤光栅加速度计第二侧壁n上的孔6并延伸至所述光纤光栅加速度计的外部;一端水平固定于所述光纤光栅加速度计第三侧壁p上的悬臂梁3,用于将振动信号传递给光纤光栅2;固定于所述悬臂梁3另一端的质量块5,用于调整光纤光栅加速度计的灵敏度和自振频率。本发明提高了光纤光栅加速度计的灵敏度,改进了光纤光栅加速度计的封装工艺。
The present invention relates to the technical field of optical fiber sensors, and discloses a fiber grating accelerometer based on the deflection of a cantilever beam. Side wall n, third side wall p, and fourth side wall q; a fiber grating 2 for measuring acceleration, one end of the fiber grating 2 is fixedly connected to the proof mass 5, and the other end is parallel to the first side wall m and passes through the The hole 6 on the second side wall n of the fiber grating accelerometer extends to the outside of the fiber grating accelerometer; one end is horizontally fixed on the cantilever beam 3 on the third side wall p of the fiber grating accelerometer, for The vibration signal is transmitted to the fiber grating 2; the mass block 5 fixed at the other end of the cantilever beam 3 is used to adjust the sensitivity and natural frequency of the fiber grating accelerometer. The invention improves the sensitivity of the fiber grating accelerometer and improves the packaging process of the fiber grating accelerometer.
Description
技术领域 technical field
本发明涉及光纤传感器技术领域,尤其涉及一种基于悬臂梁挠度的光纤光栅加速度计。The invention relates to the technical field of optical fiber sensors, in particular to an optical fiber grating accelerometer based on the deflection of a cantilever beam.
背景技术 Background technique
光纤传感器与对应的常规传感器相比,在灵敏度、动态范围、可靠性等方面也具有明显的优势,在国防、军事应用领域显得尤为突出,被许多国家列为重点发展的国防技术。Compared with the corresponding conventional sensors, optical fiber sensors also have obvious advantages in terms of sensitivity, dynamic range, and reliability. They are particularly prominent in the fields of national defense and military applications, and are listed as key national defense technologies by many countries.
光纤加速度计是利用光纤的传光特性以及它与周围环境相互作用产生的种种调制效应,探测地面、空气中或者海底的振动等信号的仪器。它与传统的压电类加速度计相比,有以下主要优势:频带宽、声压灵敏度高、不受电磁干扰、重量轻、可设计成任意形状,以及兼具信息传感及光信息传输于一身等优点。Optical fiber accelerometer is an instrument that uses the light transmission characteristics of optical fiber and various modulation effects generated by its interaction with the surrounding environment to detect vibrations on the ground, in the air or on the seabed. Compared with the traditional piezoelectric accelerometer, it has the following main advantages: wide frequency range, high sound pressure sensitivity, no electromagnetic interference, light weight, can be designed into any shape, and has both information sensing and optical information transmission in One suit and other advantages.
鉴于光纤加速度计的如上技术优势,可满足各发达国家在石油、军事等领域的要求,目前已经在此方面积极展开研究。In view of the above technical advantages of the fiber optic accelerometer, it can meet the requirements of various developed countries in the fields of petroleum and military affairs, and research has been actively carried out in this area.
在常见的强度调制型、数字式、光纤光栅式光纤加速度计中,光纤光栅式加速度计由于其体积小、易于复用的特点得到了广泛的关注。Among the common intensity-modulated, digital, and FBG-based fiber accelerometers, FBG-based accelerometers have attracted widespread attention due to their small size and easy reusability.
余有龙等人报道了一种光纤光栅加速度计,是采用在将光纤光栅粘接在悬臂梁表面的方法。当悬臂梁发生振动时,其表面会有周期性的压拉应变,光纤光栅通过检测悬臂梁表面的应变来实现振动的测量。该种技术方案一方面光纤光栅的栅区直接被胶封装,容易使光纤光栅产生啁啾,另一方面为了使加速度和传感器的输出保持线性关系,悬臂梁的挠度不能过大,从而限制了传感器的灵敏度。Yu Youlong and others reported a kind of fiber grating accelerometer, which adopts the method of bonding the fiber grating on the surface of the cantilever beam. When the cantilever beam vibrates, there will be periodic compressive and tensile strains on its surface, and the fiber grating can measure the vibration by detecting the strain on the cantilever beam surface. In this technical solution, on the one hand, the gate region of the fiber grating is directly encapsulated by glue, which is easy to cause chirp of the fiber grating; sensitivity.
因此,如何改进光纤光栅加速度计的封装形式以及提高光纤光栅加速度计的灵敏度,是光纤光栅加速度计大规模应用必需解决的重要技术问题。Therefore, how to improve the packaging form of the FBG accelerometer and improve the sensitivity of the FBG accelerometer is an important technical problem that must be solved for the large-scale application of the FBG accelerometer.
发明内容 Contents of the invention
(一)要解决的技术问题(1) Technical problems to be solved
有鉴于此,本发明的主要目的在于提供一种基于悬臂梁挠度的光纤光栅加速度计,以提高光纤光栅加速度计的灵敏度并改进光纤光栅加速度计的封装工艺。In view of this, the main purpose of the present invention is to provide a fiber grating accelerometer based on the deflection of the cantilever beam, so as to improve the sensitivity of the fiber grating accelerometer and improve the packaging process of the fiber grating accelerometer.
(二)技术方案(2) Technical solution
为达到上述目的,本发明的技术方案是这样实现的:In order to achieve the above object, technical solution of the present invention is achieved in that way:
一种基于悬臂梁挠度的光纤光栅加速度计,该光纤光栅加速度计包括:A fiber grating accelerometer based on the deflection of a cantilever beam, the fiber grating accelerometer comprising:
作为该光纤光栅加速度计支撑结构的外壳1,具有第一侧壁m、第二侧壁n、第三侧壁p和第四侧壁q;As the housing 1 of the fiber grating accelerometer supporting structure, it has a first side wall m, a second side wall n, a third side wall p and a fourth side wall q;
用于测量加速度的光纤光栅2,该光纤光栅2的一端与质量块5固定连接,另一端平行于第一侧壁m穿过所述光纤光栅加速度计第二侧壁n上的孔6并延伸至所述光纤光栅加速度计的外部;A fiber grating 2 for measuring acceleration, one end of the fiber grating 2 is fixedly connected to the mass block 5, and the other end is parallel to the first side wall m and passes through the hole 6 on the second side wall n of the fiber grating accelerometer and extends to the exterior of the fiber grating accelerometer;
一端水平固定于所述光纤光栅加速度计第三侧壁p上的悬臂梁3,用于将振动信号传递给光纤光栅2;One end is horizontally fixed to the cantilever beam 3 on the third side wall p of the FBG accelerometer, which is used to transmit the vibration signal to the FBG 2;
固定于所述悬臂梁3另一端的质量块5,用于调整光纤光栅加速度计的灵敏度和自振频率。The mass block 5 fixed at the other end of the cantilever beam 3 is used to adjust the sensitivity and natural frequency of the fiber grating accelerometer.
上述方案中,所述孔6位于光纤光栅加速度计的第二侧壁n上,用于引出和固定光纤光栅2的尾纤。In the above solution, the hole 6 is located on the second side wall n of the FBG accelerometer, and is used to lead out and fix the pigtail of the FBG 2 .
上述方案中,所述光纤光栅2垂直于悬臂梁3,具有一定的初始应力。In the above solution, the fiber grating 2 is perpendicular to the cantilever beam 3 and has a certain initial stress.
上述方案中,所述质量块5的质量远大于悬臂梁3的质量,用于减小光纤光栅加速度计的非线性效应。In the above solution, the mass of the mass block 5 is much larger than that of the cantilever beam 3, so as to reduce the nonlinear effect of the fiber grating accelerometer.
上述方案中,当所述光纤光栅振动传感器受到振动激励时,所述悬臂梁3和质量块5构成一个弹簧-质量系统,质量块5在垂直于悬臂梁3的方向起振,带动悬臂梁3产生一定的挠度,悬臂量3的振动使得光纤光栅2中产生和振动频率一致的周期性变化的轴向应力。In the above scheme, when the fiber grating vibration sensor is excited by vibration, the cantilever beam 3 and the mass block 5 form a spring-mass system, and the mass block 5 vibrates in a direction perpendicular to the cantilever beam 3, driving the cantilever beam 3 A certain deflection is generated, and the vibration of the cantilever 3 causes the axial stress in the fiber grating 2 to change periodically in accordance with the vibration frequency.
上述方案中,所述悬臂梁3通过支座4水平固定于光纤光栅加速度计的第三侧壁p上。In the above solution, the cantilever beam 3 is horizontally fixed on the third side wall p of the fiber grating accelerometer through the support 4 .
上述方案中,所述光纤光栅加速度计通过调节质量块5的质量或改变悬臂梁3的材料和结构参数来改变光纤光栅加速度计的灵敏度和自振频率。In the above solution, the sensitivity and natural frequency of the fiber grating accelerometer can be changed by adjusting the mass of the mass block 5 or changing the material and structural parameters of the cantilever beam 3 .
(三)有益效果(3) Beneficial effects
从上述技术方案可以看出,本发明具有以下有益效果:As can be seen from the foregoing technical solutions, the present invention has the following beneficial effects:
1、本发明提供的基于悬臂梁挠度的光纤光栅加速度计,通过将悬臂梁的挠度转化为光纤光栅的轴向位移,相比于表面粘贴的方式,对于同样大小的振动信号,光纤光栅中将产生更大的应变,使光纤光栅加速度计具有较高的灵敏度。1. The fiber Bragg grating accelerometer based on the deflection of the cantilever provided by the present invention converts the deflection of the cantilever into the axial displacement of the fiber grating. A greater strain is generated, which makes the FBG accelerometer have higher sensitivity.
2、本发明提供的基于悬臂梁挠度的光纤光栅加速度计,通过在光纤光栅的两端进行固定的方式,在避免光纤光栅产生啁啾的同时简化了封装的工艺,制作工艺简单。2. The fiber grating accelerometer based on the deflection of the cantilever beam provided by the present invention is fixed at both ends of the fiber grating, which simplifies the packaging process while avoiding the chirp of the fiber grating, and the manufacturing process is simple.
3、本发明提供的基于悬臂梁挠度的光纤光栅加速度计,由于可以方便的通过调节质量块5的质量或改变悬臂梁3的材料和结构参数来改变传感器的灵敏度和自振频率,灵敏度和自振频率易于调节。3. The fiber grating accelerometer based on the deflection of the cantilever beam provided by the present invention can easily change the sensitivity and natural frequency of the sensor by adjusting the quality of the mass block 5 or changing the material and structural parameters of the cantilever beam 3. The vibration frequency is easy to adjust.
附图说明 Description of drawings
图1为本发明提供的基于悬臂梁挠度的光纤光栅加速度计结构的俯视图。Fig. 1 is a top view of the structure of the fiber grating accelerometer based on the deflection of the cantilever provided by the present invention.
具体实施方式 Detailed ways
为使本发明的目的、技术方案和优点更加清楚明白,以下结合具体实施例,并参照附图,对本发明进一步详细说明。In order to make the object, technical solution and advantages of the present invention clearer, the present invention will be further described in detail below in conjunction with specific embodiments and with reference to the accompanying drawings.
如图1所示,图1为本发明提供的基于悬臂梁挠度的光纤光栅加速度计结构的俯视图。该光纤光栅加速度计包括:作为该光纤光栅加速度计支撑结构的外壳1,具有第一侧壁m、第二侧壁n、第三侧壁p和第四侧壁q;用于测量加速度的光纤光栅2,该光纤光栅2的一端与质量块5固定连接,另一端平行于第一侧壁m穿过所述光纤光栅加速度计第二侧壁n上的孔6并延伸至所述光纤光栅加速度计的外部;一端水平固定于所述光纤光栅加速度计第三侧壁p上的悬臂梁3,用于将振动信号传递给光纤光栅2;固定于所述悬臂梁3另一端的质量块5,用于调整光纤光栅加速度计的灵敏度和自振频率。As shown in FIG. 1 , FIG. 1 is a top view of the structure of the fiber grating accelerometer based on the deflection of the cantilever beam provided by the present invention. The fiber grating accelerometer includes: a housing 1 as the supporting structure of the fiber grating accelerometer, which has a first side wall m, a second side wall n, a third side wall p and a fourth side wall q; an optical fiber for measuring acceleration A grating 2, one end of the fiber grating 2 is fixedly connected to the mass block 5, and the other end is parallel to the first side wall m and passes through the hole 6 on the second side wall n of the fiber grating accelerometer and extends to the fiber grating accelerometer The outside of the meter; one end is horizontally fixed on the cantilever beam 3 on the third side wall p of the fiber grating accelerometer, which is used to transmit the vibration signal to the fiber grating 2; the quality block 5 fixed on the other end of the cantilever beam 3, Used to adjust the sensitivity and natural frequency of the fiber grating accelerometer.
上述孔6位于光纤光栅加速度计的第二侧壁n上,用于引出和固定光纤光栅2的尾纤。The hole 6 is located on the second side wall n of the FBG accelerometer, and is used to lead out and fix the pigtail of the FBG 2 .
上述光纤光栅2垂直于悬臂梁3,具有一定的初始应力。The fiber grating 2 is perpendicular to the cantilever beam 3 and has a certain initial stress.
上述质量块5的质量远大于悬臂梁3的质量,悬臂梁3的质量相对于质量块5很小,可以忽略,用于减小光纤光栅加速度计的非线性效应。The mass of the mass block 5 is much larger than that of the cantilever beam 3, and the mass of the cantilever beam 3 is relatively small compared to the mass block 5 and can be ignored, which is used to reduce the nonlinear effect of the fiber grating accelerometer.
当该光纤光栅加速度计受到如图1所示方向的振动激励时,悬臂梁3和质量块5构成一个弹簧-质量系统,质量块5在垂直于悬臂梁3的方向起振,带动悬臂梁3产生一定的挠度。由于光纤光栅2的一端固定在质量块5上,从而悬臂量3的振动使得光纤光栅中产生和振动频率一致的周期性变化的轴向应力。对于光纤光栅,其反射波长的变化量与所受轴向应力成正比,故通过检测波长的变化量可以得到外界振动加速度的大小。When the fiber grating accelerometer is excited by vibration in the direction shown in Figure 1, the cantilever beam 3 and the mass block 5 form a spring-mass system, and the mass block 5 vibrates in a direction perpendicular to the cantilever beam 3, driving the cantilever beam 3 produce some deflection. Since one end of the fiber grating 2 is fixed on the mass block 5, the vibration of the cantilever 3 causes the axial stress in the fiber grating to produce periodic changes consistent with the vibration frequency. For fiber gratings, the variation of the reflected wavelength is proportional to the axial stress, so the external vibration acceleration can be obtained by detecting the variation of the wavelength.
上述悬臂梁3通过支座4水平固定于光纤光栅加速度计的第三侧壁p上。The above-mentioned cantilever beam 3 is horizontally fixed on the third side wall p of the fiber grating accelerometer through the support 4 .
另外,由于质量块5的质量将对加速度计的灵敏度和自振频率产生显著的影响,故可以通过调节质量块5的质量来改变加速度计的灵敏度和自振频率。悬臂梁3的刚度同样可以决定加速度计的灵敏度和自振频率,故改变悬臂梁3的材料和结构参数亦可以改变加速度计的灵敏度和自振频率。In addition, since the quality of the mass block 5 will have a significant impact on the sensitivity and natural frequency of the accelerometer, the sensitivity and natural frequency of the accelerometer can be changed by adjusting the mass of the mass block 5 . The stiffness of the cantilever beam 3 can also determine the sensitivity and natural frequency of the accelerometer, so changing the material and structural parameters of the cantilever beam 3 can also change the sensitivity and natural frequency of the accelerometer.
以上所述的具体实施例,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施例而已,并不用于限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。The specific embodiments described above have further described the purpose, technical solutions and beneficial effects of the present invention in detail. It should be understood that the above descriptions are only specific embodiments of the present invention and are not intended to limit the present invention. Any modifications, equivalent replacements, improvements, etc. made within the spirit and principles of the present invention shall be included within the protection scope of the present invention.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN200710065322A CN100585407C (en) | 2007-04-11 | 2007-04-11 | Fiber Bragg Grating Accelerometer Based on Cantilever Beam Deflection |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN200710065322A CN100585407C (en) | 2007-04-11 | 2007-04-11 | Fiber Bragg Grating Accelerometer Based on Cantilever Beam Deflection |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101285846A true CN101285846A (en) | 2008-10-15 |
CN100585407C CN100585407C (en) | 2010-01-27 |
Family
ID=40058157
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN200710065322A Expired - Fee Related CN100585407C (en) | 2007-04-11 | 2007-04-11 | Fiber Bragg Grating Accelerometer Based on Cantilever Beam Deflection |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN100585407C (en) |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102087300A (en) * | 2010-11-11 | 2011-06-08 | 西北大学 | Fiber grating acceleration transducer based on metal bellows structure |
CN102095892A (en) * | 2010-11-19 | 2011-06-15 | 中国计量学院 | Fiber bragg grating acceleration transducer based on fabrication structure |
CN102707091A (en) * | 2012-06-12 | 2012-10-03 | 中国科学院半导体研究所 | Double-grating optical fiber vector accelerometer based on cantilever beam |
CN102080986B (en) * | 2009-11-30 | 2012-11-14 | 同方威视技术股份有限公司 | Fiber bragg grating vibration sensing component, fiber bragg grating vibration sensing device, vibration measuring system and method |
CN104880243A (en) * | 2014-02-27 | 2015-09-02 | 同方威视技术股份有限公司 | Fiber grating vibration sensor |
CN105203202A (en) * | 2015-11-06 | 2015-12-30 | 山东省科学院激光研究所 | Fiber grating vibration displacement sensor |
CN106645795A (en) * | 2016-12-07 | 2017-05-10 | 三峡大学 | Manufacturing method of cantilever beam fiber grating accelerometer |
CN107076584A (en) * | 2015-05-08 | 2017-08-18 | 辉固科技有限公司 | optical sensor device, sensor device and cable |
CN108593961A (en) * | 2018-04-08 | 2018-09-28 | 西安交通大学 | A kind of low g value raster pattern mems accelerometer |
CN108760109A (en) * | 2018-03-22 | 2018-11-06 | 湖北省路桥集团有限公司 | The soil pressure measuring device and method of changeable fluid based on bragg grating |
CN109782021A (en) * | 2019-01-09 | 2019-05-21 | 蚌埠学院 | A Method for Selecting Mass of Inertial Element of Fiber Bragg Grating Accelerometer |
CN111239438A (en) * | 2020-02-24 | 2020-06-05 | 山东省科学院激光研究所 | Optical fiber grating acceleration sensor |
CN111308125A (en) * | 2020-02-24 | 2020-06-19 | 北京大学 | A jerk detection method and accelerometer based on optical fiber Sagnac interferometer |
CN111579817A (en) * | 2020-06-03 | 2020-08-25 | 武汉理工大学 | Fiber Bragg Grating 2D Accelerometer Based on Multi-hinge and Its Manufacturing Process |
CN118604901A (en) * | 2024-08-08 | 2024-09-06 | 吉林大学 | A three-component optical fiber gravity measurement system |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000230935A (en) * | 1999-02-08 | 2000-08-22 | Shimizu Corp | Accelerometer and acceleration measuring device having the same |
US6955085B2 (en) * | 2003-06-02 | 2005-10-18 | Weatherford/Lamb, Inc. | Optical accelerometer or displacement device using a flexure system |
CN2651754Y (en) * | 2003-11-12 | 2004-10-27 | 中国科学院半导体研究所 | Fibre-optic raster accelerator |
CN2784933Y (en) * | 2004-04-28 | 2006-05-31 | 南开大学 | Fiber grating acceleration sensor |
-
2007
- 2007-04-11 CN CN200710065322A patent/CN100585407C/en not_active Expired - Fee Related
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102080986B (en) * | 2009-11-30 | 2012-11-14 | 同方威视技术股份有限公司 | Fiber bragg grating vibration sensing component, fiber bragg grating vibration sensing device, vibration measuring system and method |
CN102087300B (en) * | 2010-11-11 | 2012-05-30 | 西北大学 | A Fiber Bragg Grating Acceleration Sensor Based on Metal Bellows Structure |
CN102087300A (en) * | 2010-11-11 | 2011-06-08 | 西北大学 | Fiber grating acceleration transducer based on metal bellows structure |
CN102095892A (en) * | 2010-11-19 | 2011-06-15 | 中国计量学院 | Fiber bragg grating acceleration transducer based on fabrication structure |
CN102095892B (en) * | 2010-11-19 | 2012-07-25 | 中国计量学院 | Fiber bragg grating acceleration transducer based on fabrication structure |
CN102707091A (en) * | 2012-06-12 | 2012-10-03 | 中国科学院半导体研究所 | Double-grating optical fiber vector accelerometer based on cantilever beam |
CN104880243A (en) * | 2014-02-27 | 2015-09-02 | 同方威视技术股份有限公司 | Fiber grating vibration sensor |
CN107076584A (en) * | 2015-05-08 | 2017-08-18 | 辉固科技有限公司 | optical sensor device, sensor device and cable |
CN105203202A (en) * | 2015-11-06 | 2015-12-30 | 山东省科学院激光研究所 | Fiber grating vibration displacement sensor |
CN106645795A (en) * | 2016-12-07 | 2017-05-10 | 三峡大学 | Manufacturing method of cantilever beam fiber grating accelerometer |
CN106645795B (en) * | 2016-12-07 | 2019-04-19 | 三峡大学 | Fabrication method of a cantilever beam type fiber grating acceleration sensor |
CN108760109A (en) * | 2018-03-22 | 2018-11-06 | 湖北省路桥集团有限公司 | The soil pressure measuring device and method of changeable fluid based on bragg grating |
CN108593961A (en) * | 2018-04-08 | 2018-09-28 | 西安交通大学 | A kind of low g value raster pattern mems accelerometer |
CN108593961B (en) * | 2018-04-08 | 2020-01-14 | 西安交通大学 | Grating type MEMS accelerometer with low g value |
CN109782021A (en) * | 2019-01-09 | 2019-05-21 | 蚌埠学院 | A Method for Selecting Mass of Inertial Element of Fiber Bragg Grating Accelerometer |
CN111239438A (en) * | 2020-02-24 | 2020-06-05 | 山东省科学院激光研究所 | Optical fiber grating acceleration sensor |
CN111308125A (en) * | 2020-02-24 | 2020-06-19 | 北京大学 | A jerk detection method and accelerometer based on optical fiber Sagnac interferometer |
CN111579817A (en) * | 2020-06-03 | 2020-08-25 | 武汉理工大学 | Fiber Bragg Grating 2D Accelerometer Based on Multi-hinge and Its Manufacturing Process |
CN118604901A (en) * | 2024-08-08 | 2024-09-06 | 吉林大学 | A three-component optical fiber gravity measurement system |
Also Published As
Publication number | Publication date |
---|---|
CN100585407C (en) | 2010-01-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101285847B (en) | Temperature insensitive optical fibre grating acceleration sensor | |
CN101285846A (en) | Fiber Bragg Grating Accelerometer Based on Cantilever Beam Deflection | |
CN101285845A (en) | A cantilever beam fiber grating accelerometer | |
CN101398440B (en) | Fiber Laser Acceleration Sensor | |
CN100587415C (en) | A piston fiber grating hydrophone | |
Liu et al. | UV adhesive diaphragm-based FPI sensor for very-low-frequency acoustic sensing | |
CN100507475C (en) | A static pressure self-compensating fiber grating hydrophone | |
CN101210832A (en) | Fiber Bragg Grating Hydrophone | |
US7714271B1 (en) | Simple fiber optic seismometer for harsh environments | |
CN206321660U (en) | Double grating optical fiber acceleration transducer based on spring | |
CN102707091A (en) | Double-grating optical fiber vector accelerometer based on cantilever beam | |
CN105866474A (en) | Flexible hinge beam fiber Bragg grating two-dimensional acceleration sensor | |
CN104296856A (en) | Sensitization platform fiber bragg grating vibration sensor | |
CN102087300A (en) | Fiber grating acceleration transducer based on metal bellows structure | |
CN201548559U (en) | An intensity-demodulated chirped fiber grating accelerometer with automatic temperature compensation | |
CN102353982B (en) | Push-pull fiber detector | |
CN101210852A (en) | A fiber grating hydrophone | |
CN101441103A (en) | Optical fiber vibration sensor | |
CN116519113A (en) | Method for measuring vibration of object to be measured based on fiber bragg grating and vibration sensor | |
CN105203202B (en) | Optical fiber raster vibration displacement sensor | |
CN103323621B (en) | A kind of comprehensive semi-girder optical fiber acceleration transducer device | |
US8130594B2 (en) | Mechanically filtered hydrophone | |
CN101441105A (en) | Optical fiber vibration sensor | |
CN101922289B (en) | Temperature compensation structure of optical fiber detector for high-temperature oil well | |
CN202133785U (en) | A fiber detector |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20100127 Termination date: 20150411 |
|
EXPY | Termination of patent right or utility model |