CN101280094A - Bioactive hydrogel-conductive polymer nanocomposite material and its synthesis method - Google Patents
Bioactive hydrogel-conductive polymer nanocomposite material and its synthesis method Download PDFInfo
- Publication number
- CN101280094A CN101280094A CNA2008100711417A CN200810071141A CN101280094A CN 101280094 A CN101280094 A CN 101280094A CN A2008100711417 A CNA2008100711417 A CN A2008100711417A CN 200810071141 A CN200810071141 A CN 200810071141A CN 101280094 A CN101280094 A CN 101280094A
- Authority
- CN
- China
- Prior art keywords
- ethylene glycol
- block copolymer
- hydroxy acid
- conductive polymer
- gel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000463 material Substances 0.000 title claims abstract description 42
- 239000002114 nanocomposite Substances 0.000 title claims abstract description 32
- 229920001940 conductive polymer Polymers 0.000 title claims abstract description 28
- 230000000975 bioactive effect Effects 0.000 title claims abstract description 19
- 238000001308 synthesis method Methods 0.000 title abstract description 5
- 229920001400 block copolymer Polymers 0.000 claims abstract description 83
- 239000005977 Ethylene Substances 0.000 claims abstract description 46
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 claims abstract description 43
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 39
- 229920001223 polyethylene glycol Polymers 0.000 claims abstract description 29
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 claims abstract description 28
- 239000002202 Polyethylene glycol Substances 0.000 claims abstract description 26
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 claims abstract description 24
- KAESVJOAVNADME-UHFFFAOYSA-N Pyrrole Chemical compound C=1C=CNC=1 KAESVJOAVNADME-UHFFFAOYSA-N 0.000 claims abstract description 22
- 238000004132 cross linking Methods 0.000 claims abstract description 22
- 229920000767 polyaniline Polymers 0.000 claims abstract description 21
- 229920000128 polypyrrole Polymers 0.000 claims abstract description 20
- PAYRUJLWNCNPSJ-UHFFFAOYSA-N Aniline Chemical compound NC1=CC=CC=C1 PAYRUJLWNCNPSJ-UHFFFAOYSA-N 0.000 claims abstract description 16
- 239000002131 composite material Substances 0.000 claims abstract description 16
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical group COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 claims abstract description 15
- 229920001577 copolymer Polymers 0.000 claims abstract description 15
- 150000001261 hydroxy acids Chemical class 0.000 claims abstract description 13
- 239000003999 initiator Substances 0.000 claims abstract description 13
- 239000000178 monomer Substances 0.000 claims abstract description 11
- HFBMWMNUJJDEQZ-UHFFFAOYSA-N acryloyl chloride Chemical compound ClC(=O)C=C HFBMWMNUJJDEQZ-UHFFFAOYSA-N 0.000 claims abstract description 9
- 150000003254 radicals Chemical class 0.000 claims abstract description 5
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 claims description 42
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N EtOH Substances CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 32
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 claims description 29
- 230000015572 biosynthetic process Effects 0.000 claims description 28
- 238000003786 synthesis reaction Methods 0.000 claims description 26
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 24
- 239000007864 aqueous solution Substances 0.000 claims description 24
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 claims description 21
- ROOXNKNUYICQNP-UHFFFAOYSA-N ammonium persulfate Chemical group [NH4+].[NH4+].[O-]S(=O)(=O)OOS([O-])(=O)=O ROOXNKNUYICQNP-UHFFFAOYSA-N 0.000 claims description 20
- 238000006297 dehydration reaction Methods 0.000 claims description 20
- 239000000243 solution Substances 0.000 claims description 17
- 239000012535 impurity Substances 0.000 claims description 16
- 238000003756 stirring Methods 0.000 claims description 16
- 230000018044 dehydration Effects 0.000 claims description 15
- -1 by mass percentage Polymers 0.000 claims description 13
- 229910052757 nitrogen Inorganic materials 0.000 claims description 12
- 238000006116 polymerization reaction Methods 0.000 claims description 12
- 229910001870 ammonium persulfate Inorganic materials 0.000 claims description 10
- 239000000047 product Substances 0.000 claims description 10
- RKDVKSZUMVYZHH-UHFFFAOYSA-N 1,4-dioxane-2,5-dione Chemical compound O=C1COC(=O)CO1 RKDVKSZUMVYZHH-UHFFFAOYSA-N 0.000 claims description 8
- YEJRWHAVMIAJKC-UHFFFAOYSA-N 4-Butyrolactone Chemical compound O=C1CCCO1 YEJRWHAVMIAJKC-UHFFFAOYSA-N 0.000 claims description 8
- OZJPLYNZGCXSJM-UHFFFAOYSA-N 5-valerolactone Chemical compound O=C1CCCCO1 OZJPLYNZGCXSJM-UHFFFAOYSA-N 0.000 claims description 8
- 238000001035 drying Methods 0.000 claims description 8
- 238000011065 in-situ storage Methods 0.000 claims description 8
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 claims description 8
- 238000006243 chemical reaction Methods 0.000 claims description 7
- 239000000706 filtrate Substances 0.000 claims description 7
- 239000004310 lactic acid Substances 0.000 claims description 7
- 238000001556 precipitation Methods 0.000 claims description 7
- GEHJYWRUCIMESM-UHFFFAOYSA-L sodium sulfite Chemical compound [Na+].[Na+].[O-]S([O-])=O GEHJYWRUCIMESM-UHFFFAOYSA-L 0.000 claims description 7
- KSBAEPSJVUENNK-UHFFFAOYSA-L tin(ii) 2-ethylhexanoate Chemical compound [Sn+2].CCCCC(CC)C([O-])=O.CCCCC(CC)C([O-])=O KSBAEPSJVUENNK-UHFFFAOYSA-L 0.000 claims description 7
- ILWRPSCZWQJDMK-UHFFFAOYSA-N triethylazanium;chloride Chemical compound Cl.CCN(CC)CC ILWRPSCZWQJDMK-UHFFFAOYSA-N 0.000 claims description 7
- 239000002244 precipitate Substances 0.000 claims description 6
- SCYULBFZEHDVBN-UHFFFAOYSA-N 1,1-Dichloroethane Chemical compound CC(Cl)Cl SCYULBFZEHDVBN-UHFFFAOYSA-N 0.000 claims description 5
- 230000002194 synthesizing effect Effects 0.000 claims description 5
- 229910021578 Iron(III) chloride Inorganic materials 0.000 claims description 4
- RBTARNINKXHZNM-UHFFFAOYSA-K iron trichloride Chemical compound Cl[Fe](Cl)Cl RBTARNINKXHZNM-UHFFFAOYSA-K 0.000 claims description 4
- 235000014655 lactic acid Nutrition 0.000 claims description 4
- 238000000034 method Methods 0.000 claims description 4
- 238000002156 mixing Methods 0.000 claims description 4
- PAPBSGBWRJIAAV-UHFFFAOYSA-N ε-Caprolactone Chemical compound O=C1CCCCCO1 PAPBSGBWRJIAAV-UHFFFAOYSA-N 0.000 claims description 4
- USHAGKDGDHPEEY-UHFFFAOYSA-L potassium persulfate Chemical compound [K+].[K+].[O-]S(=O)(=O)OOS([O-])(=O)=O USHAGKDGDHPEEY-UHFFFAOYSA-L 0.000 claims description 3
- 235000010265 sodium sulphite Nutrition 0.000 claims description 3
- WHNWPMSKXPGLAX-UHFFFAOYSA-N N-Vinyl-2-pyrrolidone Chemical compound C=CN1CCCC1=O WHNWPMSKXPGLAX-UHFFFAOYSA-N 0.000 claims description 2
- MMCPOSDMTGQNKG-UHFFFAOYSA-N anilinium chloride Chemical compound Cl.NC1=CC=CC=C1 MMCPOSDMTGQNKG-UHFFFAOYSA-N 0.000 claims description 2
- 229930188620 butyrolactone Natural products 0.000 claims description 2
- 239000003054 catalyst Substances 0.000 claims description 2
- 238000010189 synthetic method Methods 0.000 claims 5
- 239000002322 conducting polymer Substances 0.000 claims 3
- BFNBIHQBYMNNAN-UHFFFAOYSA-N ammonium sulfate Chemical compound N.N.OS(O)(=O)=O BFNBIHQBYMNNAN-UHFFFAOYSA-N 0.000 claims 1
- 229910052921 ammonium sulfate Inorganic materials 0.000 claims 1
- 235000011130 ammonium sulphate Nutrition 0.000 claims 1
- 238000009830 intercalation Methods 0.000 claims 1
- 230000002687 intercalation Effects 0.000 claims 1
- JRKICGRDRMAZLK-UHFFFAOYSA-L peroxydisulfate Chemical compound [O-]S(=O)(=O)OOS([O-])(=O)=O JRKICGRDRMAZLK-UHFFFAOYSA-L 0.000 claims 1
- 239000000499 gel Substances 0.000 abstract description 45
- 239000000017 hydrogel Substances 0.000 abstract description 18
- 239000012528 membrane Substances 0.000 abstract description 6
- 230000000694 effects Effects 0.000 abstract description 5
- 230000004071 biological effect Effects 0.000 abstract description 4
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 abstract 1
- 238000006555 catalytic reaction Methods 0.000 abstract 1
- 239000003292 glue Substances 0.000 abstract 1
- 125000005474 octanoate group Chemical group 0.000 abstract 1
- PIEVJZKSBRWADK-UHFFFAOYSA-N ethane-1,2-diol;oxepan-2-one Chemical class OCCO.O=C1CCCCCO1 PIEVJZKSBRWADK-UHFFFAOYSA-N 0.000 description 9
- MKPYMOGHTWOQOL-UHFFFAOYSA-N ethane-1,2-diol;2-hydroxypropanoic acid Chemical compound OCCO.CC(O)C(O)=O MKPYMOGHTWOQOL-UHFFFAOYSA-N 0.000 description 8
- XJGIEHFEAQQJIV-UHFFFAOYSA-N ethane-1,2-diol;oxolan-2-one Chemical group OCCO.O=C1CCCO1 XJGIEHFEAQQJIV-UHFFFAOYSA-N 0.000 description 8
- 230000000149 penetrating effect Effects 0.000 description 8
- 210000004027 cell Anatomy 0.000 description 6
- 239000000126 substance Substances 0.000 description 6
- 238000012360 testing method Methods 0.000 description 6
- 238000010521 absorption reaction Methods 0.000 description 5
- 239000008367 deionised water Substances 0.000 description 5
- 229910021641 deionized water Inorganic materials 0.000 description 5
- 238000001914 filtration Methods 0.000 description 5
- 239000011521 glass Substances 0.000 description 5
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 5
- 239000011541 reaction mixture Substances 0.000 description 5
- IXPNQXFRVYWDDI-UHFFFAOYSA-N 1-methyl-2,4-dioxo-1,3-diazinane-5-carboximidamide Chemical compound CN1CC(C(N)=N)C(=O)NC1=O IXPNQXFRVYWDDI-UHFFFAOYSA-N 0.000 description 3
- 238000001157 Fourier transform infrared spectrum Methods 0.000 description 3
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 3
- 230000009286 beneficial effect Effects 0.000 description 3
- 239000012620 biological material Substances 0.000 description 3
- 229940079593 drug Drugs 0.000 description 3
- 239000003814 drug Substances 0.000 description 3
- 229920005615 natural polymer Polymers 0.000 description 3
- 229920000642 polymer Polymers 0.000 description 3
- HNJBEVLQSNELDL-UHFFFAOYSA-N pyrrolidin-2-one Chemical compound O=C1CCCN1 HNJBEVLQSNELDL-UHFFFAOYSA-N 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- 235000010413 sodium alginate Nutrition 0.000 description 3
- 239000000661 sodium alginate Substances 0.000 description 3
- 229940005550 sodium alginate Drugs 0.000 description 3
- WSLDOOZREJYCGB-UHFFFAOYSA-N 1,2-Dichloroethane Chemical compound ClCCCl WSLDOOZREJYCGB-UHFFFAOYSA-N 0.000 description 2
- 229920001609 Poly(3,4-ethylenedioxythiophene) Polymers 0.000 description 2
- 229920000954 Polyglycolide Polymers 0.000 description 2
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 2
- 210000000845 cartilage Anatomy 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 238000006731 degradation reaction Methods 0.000 description 2
- 125000004185 ester group Chemical group 0.000 description 2
- 125000000524 functional group Chemical group 0.000 description 2
- 230000001939 inductive effect Effects 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 235000015097 nutrients Nutrition 0.000 description 2
- 229920000747 poly(lactic acid) Polymers 0.000 description 2
- 238000006068 polycondensation reaction Methods 0.000 description 2
- 239000004633 polyglycolic acid Substances 0.000 description 2
- 229920000123 polythiophene Polymers 0.000 description 2
- KDYFGRWQOYBRFD-UHFFFAOYSA-N succinic acid Chemical compound OC(=O)CCC(O)=O KDYFGRWQOYBRFD-UHFFFAOYSA-N 0.000 description 2
- 229920001059 synthetic polymer Polymers 0.000 description 2
- 210000001519 tissue Anatomy 0.000 description 2
- KIUKXJAPPMFGSW-DNGZLQJQSA-N (2S,3S,4S,5R,6R)-6-[(2S,3R,4R,5S,6R)-3-Acetamido-2-[(2S,3S,4R,5R,6R)-6-[(2R,3R,4R,5S,6R)-3-acetamido-2,5-dihydroxy-6-(hydroxymethyl)oxan-4-yl]oxy-2-carboxy-4,5-dihydroxyoxan-3-yl]oxy-5-hydroxy-6-(hydroxymethyl)oxan-4-yl]oxy-3,4,5-trihydroxyoxane-2-carboxylic acid Chemical compound CC(=O)N[C@H]1[C@H](O)O[C@H](CO)[C@@H](O)[C@@H]1O[C@H]1[C@H](O)[C@@H](O)[C@H](O[C@H]2[C@@H]([C@@H](O[C@H]3[C@@H]([C@@H](O)[C@H](O)[C@H](O3)C(O)=O)O)[C@H](O)[C@@H](CO)O2)NC(C)=O)[C@@H](C(O)=O)O1 KIUKXJAPPMFGSW-DNGZLQJQSA-N 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 1
- 101100008050 Caenorhabditis elegans cut-6 gene Proteins 0.000 description 1
- 229920001661 Chitosan Polymers 0.000 description 1
- 102000008186 Collagen Human genes 0.000 description 1
- 108010035532 Collagen Proteins 0.000 description 1
- 108010037362 Extracellular Matrix Proteins Proteins 0.000 description 1
- 102000010834 Extracellular Matrix Proteins Human genes 0.000 description 1
- 102000009123 Fibrin Human genes 0.000 description 1
- 108010073385 Fibrin Proteins 0.000 description 1
- BWGVNKXGVNDBDI-UHFFFAOYSA-N Fibrin monomer Chemical compound CNC(=O)CNC(=O)CN BWGVNKXGVNDBDI-UHFFFAOYSA-N 0.000 description 1
- 238000005033 Fourier transform infrared spectroscopy Methods 0.000 description 1
- 108010010803 Gelatin Proteins 0.000 description 1
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 description 1
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 1
- 229920000388 Polyphosphate Polymers 0.000 description 1
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 1
- XKRFYHLGVUSROY-UHFFFAOYSA-N argon Substances [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 210000001188 articular cartilage Anatomy 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 229920000249 biocompatible polymer Polymers 0.000 description 1
- 229920002988 biodegradable polymer Polymers 0.000 description 1
- 239000005312 bioglass Substances 0.000 description 1
- 229920001222 biopolymer Polymers 0.000 description 1
- 210000001185 bone marrow Anatomy 0.000 description 1
- 235000010410 calcium alginate Nutrition 0.000 description 1
- 239000000648 calcium alginate Substances 0.000 description 1
- 229960002681 calcium alginate Drugs 0.000 description 1
- OKHHGHGGPDJQHR-YMOPUZKJSA-L calcium;(2s,3s,4s,5s,6r)-6-[(2r,3s,4r,5s,6r)-2-carboxy-6-[(2r,3s,4r,5s,6r)-2-carboxylato-4,5,6-trihydroxyoxan-3-yl]oxy-4,5-dihydroxyoxan-3-yl]oxy-3,4,5-trihydroxyoxane-2-carboxylate Chemical compound [Ca+2].O[C@@H]1[C@H](O)[C@H](O)O[C@@H](C([O-])=O)[C@H]1O[C@H]1[C@@H](O)[C@@H](O)[C@H](O[C@H]2[C@H]([C@@H](O)[C@H](O)[C@H](O2)C([O-])=O)O)[C@H](C(O)=O)O1 OKHHGHGGPDJQHR-YMOPUZKJSA-L 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 238000004113 cell culture Methods 0.000 description 1
- 210000003169 central nervous system Anatomy 0.000 description 1
- 229940045110 chitosan Drugs 0.000 description 1
- 229920001436 collagen Polymers 0.000 description 1
- 229960005188 collagen Drugs 0.000 description 1
- 238000007334 copolymerization reaction Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 230000005518 electrochemistry Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- LYCAIKOWRPUZTN-UHFFFAOYSA-N ethylene glycol Substances OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 1
- 210000002744 extracellular matrix Anatomy 0.000 description 1
- 229950003499 fibrin Drugs 0.000 description 1
- 239000008273 gelatin Substances 0.000 description 1
- 229920000159 gelatin Polymers 0.000 description 1
- 235000019322 gelatine Nutrition 0.000 description 1
- 235000011852 gelatine desserts Nutrition 0.000 description 1
- 229920002674 hyaluronan Polymers 0.000 description 1
- 229960003160 hyaluronic acid Drugs 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 231100000053 low toxicity Toxicity 0.000 description 1
- 229920002521 macromolecule Polymers 0.000 description 1
- 238000013365 molecular weight analysis method Methods 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 210000000944 nerve tissue Anatomy 0.000 description 1
- 230000000399 orthopedic effect Effects 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 238000011056 performance test Methods 0.000 description 1
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- 239000008055 phosphate buffer solution Substances 0.000 description 1
- 229920002401 polyacrylamide Polymers 0.000 description 1
- 239000004626 polylactic acid Substances 0.000 description 1
- 239000001205 polyphosphate Substances 0.000 description 1
- 235000011176 polyphosphates Nutrition 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 125000004151 quinonyl group Chemical group 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 239000000523 sample Substances 0.000 description 1
- 210000004872 soft tissue Anatomy 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 230000000638 stimulation Effects 0.000 description 1
- 239000001384 succinic acid Substances 0.000 description 1
- 230000017423 tissue regeneration Effects 0.000 description 1
- 229920000428 triblock copolymer Polymers 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- 230000004580 weight loss Effects 0.000 description 1
Images
Landscapes
- Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
Abstract
具生物活性水凝胶—导电聚合物纳米复合材料及合成方法,涉及一种生物活性材料,首先将聚乙二醇与羟基酸在辛酸锡催化下合成得到乙二醇—羟基酸嵌段共聚物;共聚物与丙烯酰氯和三乙胺反应后得到丙烯酸基团封端的乙二醇—羟基酸嵌段共聚物;将上述共聚物溶于水中,采用光引发交联或自由基交联的方法得到凝胶;最后将凝胶经吡咯或苯胺单体溶液溶涨,并在引发剂作用下聚合得到乙二醇—羟基酸嵌段共聚物与聚吡咯或聚苯胺的纳米复合材料。将PEG通过与羟基酸共聚,赋予凝胶体系生物可降解性;且水凝胶膜材料蜂窝状的孔洞为导电聚合物提供复合空间;而聚吡咯、聚苯胺所具有的生物活性,与水凝胶复合后可赋予生物活性,同时对凝胶体系有纳米增强作用。Biologically active hydrogel-conductive polymer nanocomposite material and synthesis method, relating to a bioactive material, first synthesize polyethylene glycol and hydroxy acid under the catalysis of octoate tin to obtain ethylene glycol-hydroxy acid block copolymer ; The copolymer reacts with acryloyl chloride and triethylamine to obtain an acrylic acid group-terminated ethylene glycol-hydroxy acid block copolymer; the above-mentioned copolymer is dissolved in water and obtained by photo-induced crosslinking or free radical crosslinking Gel; finally, the gel is swollen with pyrrole or aniline monomer solution, and polymerized under the action of an initiator to obtain a nanocomposite material of ethylene glycol-hydroxy acid block copolymer and polypyrrole or polyaniline. By copolymerizing PEG with hydroxy acid, the gel system is endowed with biodegradability; and the honeycomb hole of the hydrogel membrane material provides a composite space for the conductive polymer; and the biological activity of polypyrrole and polyaniline, and the hydrogel After the glue is compounded, it can impart biological activity and at the same time have a nano-reinforcement effect on the gel system.
Description
技术领域technical field
本发明涉及一种纳米复合材料,尤其是涉及一种可生物降解的具生物活性水凝胶-导电聚合物纳米复合材料及其合成方法。The invention relates to a nanocomposite material, in particular to a biodegradable bioactive hydrogel-conductive polymer nanocomposite material and a synthesis method thereof.
背景技术Background technique
生物玻璃的发明人Hench教授在Science杂志上(Hench L L,Polak J M.Science,2002,295:1014-1017)明确指出:第三代生物材料将不是生物惰性材料,也不单纯是生物可降解材料,而是兼具可降解性和组织细胞诱导活性的生物活性材料。水凝胶的含水量高,有利于营养物质和氧气扩散供应及细胞产生的废物排放;在生物环境中界面张力低,生物相容性好;且可通过外界环境信号的改变,如pH值、离子强度、温度、电信号等控制体积变化;此外可调节力学性质,使之与软组织相近,因而在生物医学领域,水凝胶作为药物释放载体、软骨支架、细胞外基质、生物传感器、隐形眼睛等显示出巨大的应用前景。生物高分子水凝胶包括天然高分子和合成高分子,如胶原、纤维蛋白、透明质酸、海藻酸钠、壳聚糖等天然高分子,而合成高分子聚乳酸(PLA)、聚乙醇酸(PGA)、聚乙二醇(PEG)、PLA-co-PEG、聚氧乙烯-聚氧丙烯-聚氧乙烯三嵌段共聚物(张琰,邵芳可,吴唯,杨武利,府寿宽,高分子通报,2007,(10):34-40)等各种共聚物是目前应用最广的几种凝胶材料(Yu G H,Fan Y B.Journal ofBiomaterials Science,Polymer Edition,2008,19(1):87-98)。Leong等(Li Q,Wang J,Shahani S,Sun D D N,Sharma B,Elisseeff J H,Leong K W.Biomaterials,2006,27:1027-1034)合成一种生物可降解的带上丙烯酸基团的聚磷酸酯,采用光引发的方法交联形成凝胶,用作骨髓间质细胞培养的支架材料。Grinstaff等(Sontjens S H M,Nettles D L,Carnahan M A,Setton L A,Grinstaff M W.Biomacromolecules,2006,7:310-316)合成以PEG为核,由丙三醇与丁二酸缩聚得到树枝状大分子,外围再用甲基丙烯酸甲酯封端,交联形成凝胶,作为软骨组织修复的支架材料。张秀芳等(朱琳,刘海霞,公衍道,赵南明,张秀芳.中国组织工程研究与临床康复,2007,11(48):9650-9654)将海藻酸钠与明胶的复合水凝胶作为支架用于关节软骨修复。余斌等(余斌,高成杰,汪志中,苏秀云,杨建成,中华创伤骨科杂志,2005,7(5):435-436)用酒精和藻酸钙改性聚乳酸-羟基乙酸凝胶,提高其亲水性和力学强度。但水凝胶作为生物活性材料要解决几个问题:(1)虽然凝胶材料容易进行细胞接种,但若内部缺少互相联通的孔,不利于材料内部的细胞获取营养物质;(2)作为支架材料,降解性和生物相容性是两重要性能要求,虽然天然高分子生物相容性好,但存在力学性能差,不易加工成型的缺陷。合成力学强度较好,且具微孔贯穿结构的可生物降解和生物相容的高分子水凝胶是学者们研究的重要方向。乙二醇-羟基酸嵌段共聚物,有丰富的羟基,容易通过羟基引入其他可聚合的官能团,形成凝胶体系,改善力学强度,而羟基酸具生物可降解性,可赋予嵌段共聚物生物降解性。凝胶形成后加入易低沸点溶剂脱水有利于凝胶支架的固定及形成贯穿的微孔结构。Professor Hench, the inventor of bioglass, clearly pointed out in Science magazine (Hench L L, Polak J M.Science, 2002, 295: 1014-1017) that the third generation of biological materials will not be biologically inert materials, nor are they simply bioavailable. It is not a degradable material, but a bioactive material with both degradability and tissue cell-inducing activity. The high water content of the hydrogel is conducive to the diffusion supply of nutrients and oxygen and the discharge of waste generated by cells; in the biological environment, the interfacial tension is low and the biocompatibility is good; and it can be changed by external environmental signals, such as pH value, Ionic strength, temperature, electrical signal, etc. control the volume change; in addition, the mechanical properties can be adjusted to make it similar to soft tissue. Therefore, in the field of biomedicine, hydrogels are used as drug release carriers, cartilage scaffolds, extracellular matrix, biosensors, and contact lenses. etc. show great application prospects. Biopolymer hydrogels include natural polymers and synthetic polymers, such as collagen, fibrin, hyaluronic acid, sodium alginate, chitosan and other natural polymers, while synthetic polymers polylactic acid (PLA), polyglycolic acid (PGA), polyethylene glycol (PEG), PLA-co-PEG, polyoxyethylene-polyoxypropylene-polyoxyethylene triblock copolymer (Zhang Yan, Shao Fangke, Wu Wei, Yang Wuli, Fu Shou Wide, Polymer Bulletin, 2007, (10): 34-40) etc. various copolymers are several gel materials (Yu G H, Fan Y B.Journal of Biomaterials Science, Polymer Edition, 2008, 19(1):87-98). Leong et al. (Li Q, Wang J, Shahani S, Sun D D N, Sharma B, Elisseeff J H, Leong K W. Biomaterials, 2006, 27:1027-1034) synthesized a biodegradable acrylic acid group The polyphosphate is cross-linked by light to form a gel, which is used as a scaffold material for bone marrow mesenchymal cell culture. Grinstaff et al. (Sontjens S H M, Nettles DL, Carnahan M A, Setton L A, Grinstaff M W. Biomacromolecules, 2006, 7: 310-316) synthesized PEG as the core, obtained by polycondensation of glycerol and succinic acid The dendritic macromolecule is capped with methyl methacrylate at the periphery and cross-linked to form a gel, which is used as a scaffold material for cartilage tissue repair. Zhang Xiufang et al. (Zhu Lin, Liu Haixia, Gong Yandao, Zhao Nanming, Zhang Xiufang. China Tissue Engineering Research and Clinical Rehabilitation, 2007, 11(48): 9650-9654) used the composite hydrogel of sodium alginate and gelatin as a scaffold for Articular cartilage repair. Yu Bin et al. (Yu Bin, Gao Chengjie, Wang Zhizhong, Su Xiuyun, Yang Jiancheng, Chinese Journal of Traumatology and Orthopedics, 2005, 7(5): 435-436) modified polylactic acid-glycolic acid gel with alcohol and calcium alginate to improve Its hydrophilicity and mechanical strength. However, as a bioactive material, hydrogel has to solve several problems: (1) Although the gel material is easy to seed cells, if there are no interconnected pores inside, it is not conducive to the cells inside the material to obtain nutrients; (2) as a scaffold For materials, degradability and biocompatibility are two important performance requirements. Although natural polymers have good biocompatibility, they have the disadvantages of poor mechanical properties and difficult processing and molding. Synthesizing biodegradable and biocompatible polymer hydrogels with good mechanical strength and microporous penetrating structure is an important research direction for scholars. Ethylene glycol-hydroxy acid block copolymers are rich in hydroxyl groups, and it is easy to introduce other polymerizable functional groups through hydroxyl groups to form a gel system and improve mechanical strength. Hydroxy acid is biodegradable, which can endow the block copolymer with Biodegradability. After the gel is formed, adding an easy-to-low-boiling-point solvent for dehydration is beneficial to the fixation of the gel scaffold and the formation of a penetrating microporous structure.
导电高分子,如聚吡咯(Polypyrrole,PPy)、聚苯胺(Polyaniline,PAn)、聚噻吩(Polythiophene,PTh)等具有良好的生物相容性,细胞诱导活性,同时其丰富的电化学活性,通过电刺激可改变细胞活性;而PPy以其低毒性、生物安全性更是受到研究者的喜爱。当导电聚合物为纳米态时,具各种活性可得到强化(Abidian M R,Kim D H,Martin D C.Adv.Mater,2006,18:405-409)。将导电高分子与水凝胶复合必然可以设计出一系列新型的生物活性材料。Martin(Kim D H,Abidian M,Martin D C.Journal of Biomedical Materials Research Part A,2004,71A(4):577-585;Kim D H,Richardson-Burns S M,Hendricks J L,Sequera C,Martin D C,Adv.Funct.Mater,2007,17:79-86)就导电聚合物/水凝胶复合体系在神经组织工程及药物释放等的应用作了很多工作,主要合成PPy、聚(3,4-乙撑二氧基噻吩)(PEDOT)与海藻酸钠、聚丙交酯(PLLA)或丙交酯-乙二醇共聚物水凝胶复合材料,应用于中枢神经修护探针上的支架材料。Lira等(Lira L M,Cordoba de Torresi S I.Electrochemistry Communications,2005,7:717-723)采用电化学聚合法合成聚丙烯酰胺水凝胶-PAn互穿网络,并将其用于电位控制药物释放。Conductive polymers, such as polypyrrole (Polypyrrole, PPy), polyaniline (Polyaniline, PAn), polythiophene (Polythiophene, PTh), etc. have good biocompatibility, cell-inducing activity, and their rich electrochemical activity, through Electrical stimulation can change cell activity; PPy is favored by researchers for its low toxicity and biological safety. When the conductive polymer is in the nano state, various activities can be enhanced (Abidian MR, Kim D H, Martin D C. Adv. Mater, 2006, 18: 405-409). A series of new bioactive materials can be designed by combining conductive polymers with hydrogels. Martin (Kim D H, Abidian M, Martin D C. Journal of Biomedical Materials Research Part A, 2004, 71A(4): 577-585; Kim D H, Richardson-Burns S M, Hendricks J L, Sequera C, Martin D C, Adv.Funct.Mater, 2007, 17:79-86) has done a lot of work on the application of conductive polymer/hydrogel composite system in nerve tissue engineering and drug release, mainly synthesizing PPy, poly(3, 4-ethylenedioxythiophene) (PEDOT) and sodium alginate, polylactide (PLLA) or lactide-ethylene glycol copolymer hydrogel composite material, applied to the scaffold on the central nervous system repair probe Material. Lira et al. (Lira L M, Cordoba de Torresi S I. Electrochemistry Communications, 2005, 7: 717-723) synthesized polyacrylamide hydrogel-PAn interpenetrating network by electrochemical polymerization, and used it to control drug potential freed.
发明内容Contents of the invention
本发明的目的在于提供一种生物可降解的具生物活性水凝胶-导电聚合物纳米复合材料及合成方法。The purpose of the present invention is to provide a biodegradable bioactive hydrogel-conductive polymer nanocomposite material and a synthesis method.
本发明所述的具生物活性水凝胶-导电聚合物纳米复合材料为乙二醇-羟基酸嵌段共聚物与聚吡咯或聚苯胺的复合材料,按质量百分比,导电聚合物聚吡咯或聚苯胺占复合材料总质量的7%~50%。The bioactive hydrogel-conductive polymer nanocomposite material of the present invention is a composite material of ethylene glycol-hydroxy acid block copolymer and polypyrrole or polyaniline, and by mass percentage, the conductive polymer polypyrrole or polyaniline Aniline accounts for 7% to 50% of the total mass of the composite material.
其中所述的羟基酸为乳酸、乙交酯、丁内酯、戊内酯或己内酯等。Wherein said hydroxy acid is lactic acid, glycolide, butyrolactone, valerolactone or caprolactone and the like.
本发明所述的具生物活性水凝胶-导电聚合物纳米复合材料的合成方法包括以下步骤:The synthesis method of the bioactive hydrogel-conductive polymer nanocomposite of the present invention comprises the following steps:
1)乙二醇-羟基酸嵌段共聚物的合成1) Synthesis of ethylene glycol-hydroxy acid block copolymer
在氮气保护下取聚乙二醇(PEG)与羟基酸混合,羟基酸与PEG的摩尔比为2~10,按质量百分比,再加入总体系的0.05%~0.1%的辛酸锡催化剂,抽真空,升温至190~210℃搅拌,降至150~170℃继续搅拌反应,冷却至室温,得到乙二醇-羟基酸嵌段共聚物,将产物溶于二氯乙烷,用无水乙醚沉淀,过滤,干燥,得到纯化的乙二醇-羟基酸嵌段共聚物;Under the protection of nitrogen, mix polyethylene glycol (PEG) with hydroxyacid, the molar ratio of hydroxyacid to PEG is 2-10, according to mass percentage, then add 0.05%-0.1% tin octoate catalyst of the total system, and vacuumize , raise the temperature to 190-210°C and stir, lower the temperature to 150-170°C to continue the stirring reaction, cool to room temperature to obtain ethylene glycol-hydroxy acid block copolymer, dissolve the product in dichloroethane, and precipitate with anhydrous ether, Filter and dry to obtain purified ethylene glycol-hydroxy acid block copolymer;
2)丙烯酸封端的乙二醇-羟基酸嵌段共聚物的合成2) Synthesis of acrylic acid-terminated ethylene glycol-hydroxy acid block copolymers
取上述纯化的乙二醇-羟基酸嵌段共聚物溶于二氯甲烷,按质量百分比,浓度为10%~14%,在冰浴中冷却至0~5℃,按摩尔比,在无水无氧条件下加入浓度为0.5~0.83mol的丙烯酰氯和浓度为0.33~0.67mol的三乙胺,在0~5℃下搅拌反应10~18h,而后室温下搅拌反应12~18h,过滤除掉三乙胺盐酸盐,在滤液中加入过量的干燥的二乙醚,得到丙烯酸基团封端的乙二醇-羟基酸嵌段共聚物,将丙烯酸基团封端的乙二醇-羟基酸嵌段共聚物用二氯甲烷溶解,己烷沉淀纯化,干燥;Take the above-mentioned purified ethylene glycol-hydroxy acid block copolymer and dissolve it in dichloromethane, the concentration is 10%~14% by mass percentage, cool to 0~5°C in an ice bath, molar ratio, in anhydrous Add acryloyl chloride with a concentration of 0.5-0.83 mol and triethylamine with a concentration of 0.33-0.67 mol under anaerobic conditions, stir and react at 0-5°C for 10-18 hours, then stir and react at room temperature for 12-18 hours, and filter out Triethylamine hydrochloride, add excess dry diethyl ether to the filtrate to obtain acrylic acid group-terminated ethylene glycol-hydroxy acid block copolymer, acrylic acid group-terminated ethylene glycol-hydroxy acid block copolymer The product was dissolved in dichloromethane, purified by hexane precipitation, and dried;
3)交联凝胶的合成3) Synthesis of cross-linked gel
将上述丙烯酸基团封端的乙二醇-羟基酸嵌段共聚物溶于水中,采用光引发交联或自由基交联的方法得到凝胶;dissolving the ethylene glycol-hydroxy acid block copolymer terminated by the acrylic acid group in water, and obtaining a gel by photo-initiated cross-linking or free radical cross-linking;
4)吡咯或苯胺单体原位聚合4) In-situ polymerization of pyrrole or aniline monomer
将步骤3)得到的凝胶烘干,浸泡在pH为3~7、单体浓度为5~50mmol/L的吡咯或苯胺盐酸水溶液中溶涨,然后将经单体溶液溶涨的凝胶置于引发剂溶液中,冰浴~室温下搅拌,单体在凝胶交联网络体系中聚合,形成互穿网络体系,经过滤、水洗、干燥,再经水溶胀-乙醇脱水循环,除去杂质,干燥后得到乙二醇-羟基酸嵌段共聚物与聚吡咯或聚苯胺的纳米复合材料。The gel obtained in step 3) is dried, soaked and swollen in an aqueous solution of pyrrole or aniline hydrochloric acid with a pH of 3 to 7 and a monomer concentration of 5 to 50 mmol/L, and then the gel swollen by the monomer solution is placed In the initiator solution, stirred in an ice bath to room temperature, the monomers are polymerized in the gel cross-linked network system to form an interpenetrating network system, filtered, washed with water, dried, and then subjected to water swelling-ethanol dehydration cycle to remove impurities. After drying, a nanocomposite material of ethylene glycol-hydroxy acid block copolymer and polypyrrole or polyaniline is obtained.
所述聚乙二醇的分子量最好为200~1000。The molecular weight of the polyethylene glycol is preferably 200-1000.
在步骤3)中,所述的引发剂为过硫酸铵、过硫酸钾或过硫酸铵-亚硫酸钠的18%~25%水溶液;其中过硫酸铵和亚硫酸钠的摩尔比为1∶1。In step 3), the initiator is an 18%-25% aqueous solution of ammonium persulfate, potassium persulfate or ammonium persulfate-sodium sulfite; wherein the molar ratio of ammonium persulfate to sodium sulfite is 1:1.
所述的光引发交联为取上述丙烯酸基团封端的乙二醇-羟基酸嵌段共聚物配成按质量百分比浓度为18%~25%的丙烯酸基团封端的乙二醇-羟基酸嵌段共聚物的水溶液A,将光引发剂2,2-二甲基-2-二苯基苯乙酮溶于N-乙烯基吡咯烷酮配成0.3g/mL的溶液B,将溶液A和溶液B按体积比为1000∶(2~5)混合,用光辐射20~60s引发交联,加入过量乙醇脱水,再经水溶涨-乙醇脱水循环,除掉杂质,最后干燥。The photo-initiated crosslinking is obtained by taking the above-mentioned acrylic group-terminated ethylene glycol-hydroxy acid block copolymer to form an acrylic group-terminated ethylene glycol-hydroxy acid block copolymer with a mass percentage concentration of 18% to 25%. Aqueous solution A of segment copolymer, photoinitiator 2,2-dimethyl-2-diphenylacetophenone is dissolved in N-vinylpyrrolidone and is made into solution B of 0.3g/mL, solution A and solution B Mix according to the volume ratio of 1000: (2-5), use light radiation for 20-60s to initiate cross-linking, add excess ethanol for dehydration, and then go through water swelling-ethanol dehydration cycle to remove impurities and finally dry.
所述的自由基交联为取丙烯酸基团封端的乙二醇-羟基酸嵌段共聚物配成按质量百分比浓度为18%~25%的丙烯酸基团封端的乙二醇-羟基酸嵌段共聚物水溶液,用KOH中和至pH为6~7,加入引发剂溶液混合,混合后共聚物与引发剂的质量百分比为100∶(1~5),置于70~90℃烘箱中,引发交联聚合,加入过量乙醇迅速脱水,再经水溶涨-乙醇脱水循环,除掉杂质,最后干燥。The free radical crosslinking is to take the ethylene glycol-hydroxy acid block copolymer terminated by the acrylic acid group to prepare the ethylene glycol-hydroxy acid block with a concentration of 18% to 25% by mass percentage. Copolymer aqueous solution, neutralized with KOH to pH 6-7, adding initiator solution and mixing, after mixing, the mass percentage of copolymer and initiator is 100: (1-5), placed in an oven at 70-90°C, and initiated Cross-linking polymerization, adding excess ethanol to quickly dehydrate, and then go through water swelling-ethanol dehydration cycle to remove impurities, and finally dry.
在步骤4)中,所述的引发剂为过硫酸铵或三氯化铁等,其中按摩尔比,单体浓度与引发剂浓度为1∶(1~3)。In step 4), the initiator is ammonium persulfate or ferric chloride, etc., wherein the monomer concentration and the initiator concentration are 1: (1-3) in molar ratio.
本发明合成的乙二醇-羟基酸嵌段共聚物与聚吡咯、聚苯胺的纳米复合材料具有如下优点:(1)PEG有丰富的端羟基,容易与其他官能团反应,并且通过调节PEG分子量不同及PEG与羟基酸的当量比,可控制嵌段共聚物的序列结构;(2)PEG本身不具有可降解性,与羟基酸共聚后,乳酸等羟基酸的生物可降解性赋予凝胶体系生物可降解性;(3)采用光聚合交联有利于聚合物前驱体水溶液原位交联,可用于制备可注射水凝胶,产物几何形状易于控制,在室温或生理温度下固化时间短,反应热低;(4)嵌段共聚物交联形成凝胶后加入乙醇迅速脱水,有利于凝胶支架的固定及形成贯穿的微孔结构;(5)聚吡咯、聚苯胺具有生物活性,与水凝胶复合后可赋予生物活性,同时对凝胶体系有纳米增强作用。The nanocomposite material of ethylene glycol-hydroxyacid block copolymer synthesized by the present invention and polypyrrole, polyaniline has the following advantages: (1) PEG has abundant terminal hydroxyl groups, is easy to react with other functional groups, and by adjusting PEG molecular weight difference And the equivalent ratio between PEG and hydroxy acid can control the sequence structure of the block copolymer; (2) PEG itself is not degradable, after copolymerization with hydroxy acid, the biodegradability of hydroxy acid such as lactic acid endows the gel system with biodegradability Degradability; (3) The use of photopolymerization crosslinking is beneficial to the in-situ crosslinking of polymer precursor aqueous solution, which can be used to prepare injectable hydrogels. The product geometry is easy to control, and the curing time is short at room temperature or physiological temperature. The heat is low; (4) Add ethanol to dehydrate quickly after the block copolymer is cross-linked to form a gel, which is beneficial to the fixation of the gel scaffold and the formation of a penetrating microporous structure; (5) Polypyrrole and polyaniline have biological activity, After the gel is compounded, it can impart biological activity and at the same time have a nano-reinforcement effect on the gel system.
附图说明Description of drawings
图1为实施例1中聚苯胺与PEG-乳酸嵌段共聚物复合材料的FTIR谱。在图1中,横坐标为波数Wavenumbers/cm-1。Fig. 1 is the FTIR spectrum of polyaniline and PEG-lactic acid block copolymer composite material in
图2为实施例2中PEG与乙交酯的FTIR光谱图。在图2中,横坐标为波数Wavenumbers/cm-1。Fig. 2 is the FTIR spectrogram of PEG and glycolide in embodiment 2. In Fig. 2, the abscissa is Wavenumbers/cm -1 .
图3为乙二醇-羟基酸嵌段共聚物水凝胶膜的SEM照片,其中A为乙二醇-乳酸、B为乙二醇-乙交酯、C为乙二醇-ε-己内酯、D为乙二醇-δ-戊内酯、E为乙二醇-γ-丁内酯Figure 3 is the SEM photo of ethylene glycol-hydroxy acid block copolymer hydrogel film, where A is ethylene glycol-lactic acid, B is ethylene glycol-glycolide, and C is ethylene glycol-ε-caprolactone Esters, D is ethylene glycol-δ-valerolactone, E is ethylene glycol-γ-butyrolactone
具体实施方式Detailed ways
下面通过实施例对本发明做进一步详细说明。The present invention will be described in further detail below by way of examples.
实施例1:乙二醇-乳酸嵌段共聚物凝胶与聚苯胺纳米复合材料的合成:Embodiment 1: Synthesis of ethylene glycol-lactic acid block copolymer gel and polyaniline nanocomposite:
(1)乙二醇-乳酸嵌段共聚物的合成:(1) Synthesis of ethylene glycol-lactic acid block copolymer:
在氮气保护下取10g PEG(数均分子量200)与36gdl-乳酸,23mg的辛酸锡加入100ml的三颈圆底烧瓶中。反应混合物在真空、200℃下搅拌反应4h,而后降至160℃,继续搅拌反应2h,最后冷却至室温,得到乙二醇-乳酸嵌段共聚物,将产物溶于二氯乙烷,用无水乙醚沉淀,过滤,干燥,得到纯化的乙二醇-乳酸嵌段共聚物。从图3A的SEM照片中可以看到,所合成的水凝胶膜材料表现出蜂窝状,这些贯穿的孔洞为导电聚合物提供复合空间。Get 10g PEG (number-average molecular weight 200) and 36gdl-lactic acid under nitrogen protection, and the tin octoate of 23mg is added in the three-neck round bottom flask of 100ml. The reaction mixture was stirred under vacuum at 200°C for 4h, then lowered to 160°C, continued to stir for 2h, and finally cooled to room temperature to obtain an ethylene glycol-lactic acid block copolymer, which was dissolved in dichloroethane and used without Precipitate with water and ether, filter and dry to obtain a purified ethylene glycol-lactic acid block copolymer. From the SEM photo of Figure 3A, it can be seen that the synthesized hydrogel membrane material exhibits a honeycomb shape, and these penetrating holes provide a composite space for the conductive polymer.
(2)丙烯酸封端的乙二醇-乳酸嵌段共聚物的合成:(2) Synthesis of ethylene glycol-lactic acid block copolymer terminated by acrylic acid:
取30g上述共聚物溶于270ml二氯甲烷,置于500mL圆底烧瓶,在冰浴中冷却至0℃,用氮气置换反应瓶三次,获得无水无氧环境,从橡皮塞用针筒加入13.9mL三乙胺和16.2mL丙烯酰氯,在0℃下搅拌反应12h,而后室温下搅拌反应12h。过滤除掉三乙胺盐酸盐,而后在滤液中加入过量的干燥的二乙醚,得到丙烯酸基团封端的乙二醇-乳酸嵌段共聚物。用二氯甲烷溶解,己烷沉淀纯化一次。最后置于70℃真空干燥24h。Take 30g of the above-mentioned copolymer and dissolve it in 270ml of dichloromethane, place it in a 500mL round bottom flask, cool it to 0°C in an ice bath, replace the reaction bottle with nitrogen three times to obtain an anhydrous and oxygen-free environment, and add 13.9 mL of triethylamine and 16.2 mL of acryloyl chloride were stirred at 0° C. for 12 h, and then at room temperature for 12 h. Remove triethylamine hydrochloride by filtration, and then add excess dry diethyl ether to the filtrate to obtain an acrylic acid group-terminated ethylene glycol-lactic acid block copolymer. It was dissolved in dichloromethane and purified once by hexane precipitation. Finally, it was dried under vacuum at 70°C for 24 hours.
(3)交联凝胶体系的合成:取100ml上述嵌段共聚物20%的水溶液,加入0.5ml 0.3g/mL的2,2-二甲基-2-二苯基苯乙酮N-乙烯基吡咯烷酮溶液。至于一玻璃培养皿中,用氩离子紫外激光灯辐照30s引发交联。加入过量乙醇迅速脱水,再经两次水溶涨-乙醇脱水循环,除掉杂质。置于60℃真空干燥24h。(3) Synthesis of cross-linked gel system: Take 100ml of 20% aqueous solution of the above-mentioned block copolymer, add 0.5ml of 0.3g/mL 2,2-dimethyl-2-diphenylacetophenone N-ethylene base pyrrolidone solution. As for a glass Petri dish, cross-linking was initiated by irradiation with an argon-ion UV laser for 30 s. Add excess ethanol to quickly dehydrate, and then go through two water swelling-ethanol dehydration cycles to remove impurities. Placed at 60°C for 24 hours in vacuum.
(4)苯胺原位聚合(4) In situ polymerization of aniline
裁取上述干凝胶5g,室温浸泡在10mmol/L的苯胺水溶液中30min,用HCl调节pH为5,然后将溶涨的凝胶置于20mmol/L过硫酸铵水溶液中,冰浴下,磁力搅拌24h。最后经过滤、水洗、干燥,再经一次去离子水溶胀-脱水循环,除去剩余杂质,干燥后得到乙二醇-乳酸嵌段共聚物与聚苯胺的纳米复合材料。从聚苯胺与PEG-乳酸嵌段共聚物复合材料的FTIR谱(图1)可见,1575、1496cm-1是聚苯胺的醌式结构与苯式结构吸收峰,1728、1110cm- 1对应于羰基与C-O-C的伸缩振动峰,说明分子链中存在酯基。这证明了聚苯胺复合进入了嵌段共聚物中。纳米复合材料的各项理化性能测试结果见表1,其中降解时间测试为将干凝胶浸泡在pH7.4的磷酸缓冲溶液中(0.2g/LKCl、0.2g/LKH2PO4、8g/L1.15g/LNa2HPO4),每隔一定时间测试其重量损失。Cut 5g of the above dry gel, soak it in 10mmol/L aniline aqueous solution at room temperature for 30min, adjust the pH to 5 with HCl, then place the swollen gel in 20mmol/L ammonium persulfate aqueous solution, place it in an ice bath, and magnetically Stir for 24h. Finally, it is filtered, washed with water, dried, and then subjected to a deionized water swelling-dehydration cycle to remove remaining impurities, and after drying, a nanocomposite material of ethylene glycol-lactic acid block copolymer and polyaniline is obtained. From the FTIR spectrum (Fig. 1) of polyaniline and PEG-lactic acid block copolymer composite material, it can be seen that 1575 and 1496cm-1 are the quinone structure and benzene structure absorption peaks of polyaniline, and 1728 and 1110cm - 1 correspond to carbonyl and The stretching vibration peak of COC indicates that there is an ester group in the molecular chain. This demonstrates the incorporation of polyaniline into the block copolymer. The test results of various physical and chemical properties of the nanocomposite are shown in Table 1, wherein the degradation time test is to soak the dry gel in a phosphate buffer solution of pH 7.4 (0.2g/LKCl, 0.2g/LKH 2 PO 4 , 8g/L1 .15g/LNa 2 HPO 4 ), the weight loss was tested at regular intervals.
实施例2:乙二醇-乙交酯嵌段共聚物凝胶与聚吡咯纳米复合材料的合成:Embodiment 2: Synthesis of ethylene glycol-glycolide block copolymer gel and polypyrrole nanocomposite material:
(1)乙二醇-乙交酯嵌段共聚物的合成:(1) Synthesis of ethylene glycol-glycolide block copolymer:
在氮气保护下取20g PEG(数均分子量400)与22.8g乙交酯(0.2mol,M144),25mg的辛酸锡加入100ml的三颈圆底烧瓶中。反应混合物在真空,190℃下搅拌反应5h,而后降至150℃,继续搅拌反应4h,最后冷却至室温。得到乙二醇-乙交酯嵌段共聚物,将产物溶于二氯乙烷,用无水乙醚沉淀,过滤,干燥,得到纯化的乙二醇-乙交酯嵌段共聚物。从图3B的SEM照片中可以看到,所合成的水凝胶膜材料表现出蜂窝状,这些贯穿的孔洞为导电聚合物提供复合空间。Under nitrogen protection, take 20g PEG (number average molecular weight 400) and 22.8g glycolide (0.2mol, M144), and add 25mg of tin octoate into a 100ml three-neck round bottom flask. The reaction mixture was stirred in vacuum at 190°C for 5h, then lowered to 150°C, stirred for 4h, and finally cooled to room temperature. The ethylene glycol-glycolide block copolymer is obtained, and the product is dissolved in dichloroethane, precipitated with anhydrous ether, filtered, and dried to obtain a purified ethylene glycol-glycolide block copolymer. From the SEM photo of Figure 3B, it can be seen that the synthesized hydrogel membrane material exhibits a honeycomb shape, and these penetrating holes provide a composite space for the conductive polymer.
(2)丙烯酸封端的乙二醇-乙交酯嵌段共聚物的合成:(2) Synthesis of ethylene glycol-glycolide block copolymer terminated by acrylic acid:
取33g上述共聚物溶于267ml二氯甲烷,置于500mL圆底烧瓶,在冰浴中冷却至3℃,用氮气置换反应瓶三次,获得无水无氧环境,从橡皮塞用针筒加入15mL三乙胺和12.2mL丙烯酰氯,在3℃下搅拌反应10h,而后室温下搅拌反应10h。过滤除掉三乙胺盐酸盐,而后在滤液中加入过量的干燥的二乙醚,得到丙烯酸基团封端的乙二醇-乙交酯嵌段共聚物。用二氯甲烷溶解,己烷沉淀纯化一次。最后置于60℃真空干燥18h。Take 33g of the above-mentioned copolymer and dissolve it in 267ml of dichloromethane, put it in a 500mL round-bottomed flask, cool it to 3°C in an ice bath, replace the reaction bottle with nitrogen three times to obtain an anhydrous and oxygen-free environment, and add 15mL of Triethylamine and 12.2 mL of acryloyl chloride were stirred at 3°C for 10 h, and then at room temperature for 10 h. Remove triethylamine hydrochloride by filtration, and then add excess dry diethyl ether to the filtrate to obtain an acrylic acid group-terminated ethylene glycol-glycolide block copolymer. It was dissolved in dichloromethane and purified once by hexane precipitation. Finally, it was dried under vacuum at 60°C for 18 hours.
从PEG与乙交酯的FTIR光谱(图2)可见,1756cm-1羰基吸收峰和1110cm-1的C-O-C伸缩振动峰说明分子链中存在酯基,PEG与乙交酯发生缩聚反应。与PEG相比较,嵌段共聚物中3500cm-1附近的羟基吸收峰消失,说明丙烯酰氯已与嵌段共聚物的端羟基发生封端反应。嵌段共聚物的分子量分析,共聚物的分子量高于PEG预聚体,这些均说明所得的产物为丙烯酸封端的PEG与乙交酯的嵌段共聚物。From the FTIR spectrum of PEG and glycolide (Figure 2), it can be seen that the carbonyl absorption peak at 1756cm -1 and the COC stretching vibration peak at 1110cm -1 indicate that there are ester groups in the molecular chain, and PEG and glycolide undergo polycondensation reaction. Compared with PEG, the hydroxyl absorption peak near 3500cm -1 in the block copolymer disappeared, which indicated that acryloyl chloride had reacted with the terminal hydroxyl of the block copolymer. The molecular weight analysis of the block copolymer shows that the molecular weight of the copolymer is higher than that of the PEG prepolymer, which all indicate that the resulting product is a block copolymer of acrylic acid-terminated PEG and glycolide.
(3)交联凝胶体系的合成:取乙二醇-乙交酯嵌段共聚物18%的水溶液100mL,用KOH中和至pH为6,加入3mL过硫酸铵溶液(18%)混合,置于玻璃培养皿中,置于80℃烘箱3h,引发交联聚合。加入过量乙醇迅速脱水,再经两次水溶涨-乙醇脱水循环,除掉杂质。最后置于60℃真空干燥18h。(3) Synthesis of cross-linked gel system: Take 100 mL of 18% aqueous solution of ethylene glycol-glycolide block copolymer, neutralize it to pH 6 with KOH, add 3 mL of ammonium persulfate solution (18%) and mix, Place in a glass Petri dish and place in an oven at 80°C for 3 hours to initiate cross-linking polymerization. Add excess ethanol to quickly dehydrate, and then go through two water swelling-ethanol dehydration cycles to remove impurities. Finally, it was dried under vacuum at 60°C for 18 hours.
(4)吡咯原位聚合(4) In situ polymerization of pyrrole
裁取上述干凝胶6g,室温浸泡在5mmol/L的吡咯水溶液中50min,用HCl调节pH为6,然后将溶涨的凝胶置于15mmol/L过硫酸铵水溶液中,室温下磁力搅拌24h。最后经过滤、水洗、干燥,再经一次去离子水溶胀-脱水循环,除去剩余杂质,干燥后得到乙二醇-乙交酯嵌段共聚物与聚吡咯的纳米复合材料。其各项理化性能测试结果见表1。Cut 6 g of the above dry gel, soak it in 5 mmol/L pyrrole aqueous solution at room temperature for 50 minutes, adjust the pH to 6 with HCl, then place the swollen gel in 15 mmol/L ammonium persulfate aqueous solution, and stir magnetically at room temperature for 24 hours . Finally, it is filtered, washed with water, dried, and then subjected to a deionized water swelling-dehydration cycle to remove remaining impurities, and the nanocomposite material of ethylene glycol-glycolide block copolymer and polypyrrole is obtained after drying. The test results of its physical and chemical properties are shown in Table 1.
实施例3:乙二醇-ε-己内酯嵌段共聚物凝胶与聚苯胺纳米复合材料的合成:Embodiment 3: Synthesis of ethylene glycol-ε-caprolactone block copolymer gel and polyaniline nanocomposite material:
(1)乙二醇-ε-己内酯嵌段共聚物的合成:(1) Synthesis of ethylene glycol-ε-caprolactone block copolymer:
在氮气保护下取30g PEG(数均分子量600)与45.6gε-己内酯(0.4mol,M114),48mg的辛酸锡加入100ml的三颈圆底烧瓶中。反应混合物在真空,210℃下搅拌反应3h,而后降至170℃,继续搅拌反应1.5h,最后冷却至室温。得到乙二醇-ε-己内酯嵌段共聚物,将产物溶于二氯乙烷,用无水乙醚沉淀,过滤,干燥,得到纯化的乙二醇-ε-己内酯嵌段共聚物。从图3C的SEM照片中可以看到,所合成的水凝胶膜材料表现出蜂窝状,这些贯穿的孔洞为导电聚合物提供复合空间。Under the protection of nitrogen, take 30g PEG (number average molecular weight 600) and 45.6g ε-caprolactone (0.4mol, M114), and add 48mg of tin octoate into a 100ml three-neck round bottom flask. The reaction mixture was stirred under vacuum at 210°C for 3h, then lowered to 170°C, continued to stir for 1.5h, and finally cooled to room temperature. To obtain ethylene glycol-ε-caprolactone block copolymer, dissolve the product in dichloroethane, precipitate with anhydrous ether, filter, and dry to obtain purified ethylene glycol-ε-caprolactone block copolymer . From the SEM photo of Figure 3C, it can be seen that the synthesized hydrogel membrane material exhibits a honeycomb shape, and these penetrating holes provide a composite space for the conductive polymer.
(2)丙烯酸封端的乙二醇-ε-己内酯嵌段共聚物的合成:(2) Synthesis of ethylene glycol-ε-caprolactone block copolymer terminated by acrylic acid:
取36g上述共聚物溶于264ml二氯甲烷,置于500mL圆底烧瓶,在冰浴中冷却至5℃,用氮气置换反应瓶三次,获得无水无氧环境,从橡皮塞用针筒加入21mL三乙胺和20.3mL丙烯酰氯(0.25mol),在5℃下搅拌反应18h,而后室温下搅拌反应18h。过滤除掉三乙胺盐酸盐,而后在滤液中加入过量的干燥的二乙醚,得到丙烯酸基团封端的乙二醇-ε-己内酯嵌段共聚物。用二氯甲烷溶解,己烷沉淀纯化一次。最后置于70℃真空干燥36h。Take 36g of the above-mentioned copolymer and dissolve it in 264ml of dichloromethane, put it in a 500mL round bottom flask, cool it to 5°C in an ice bath, replace the reaction bottle with nitrogen three times to obtain an anhydrous and oxygen-free environment, and add 21mL of Triethylamine and 20.3 mL of acryloyl chloride (0.25 mol) were stirred at 5° C. for 18 h, and then at room temperature for 18 h. Triethylamine hydrochloride was removed by filtration, and then an excess of dry diethyl ether was added to the filtrate to obtain an acrylic acid group-terminated ethylene glycol-ε-caprolactone block copolymer. It was dissolved in dichloromethane and purified once by hexane precipitation. Finally, it was dried under vacuum at 70°C for 36 hours.
(3)交联凝胶体系的合成:取乙二醇-ε-己内酯嵌段共聚物25%的水溶液100mL,用KOH中和至pH为7,加入5mL过硫酸钾溶液(25%)混合,置于玻璃培养皿中,置于70℃烘箱6h,引发交联聚合,加入过量乙醇迅速脱水,再经两次水溶涨-乙醇脱水循环,除掉杂质。最后置于70℃真空干燥36h。(3) Synthesis of cross-linked gel system: Take 100 mL of 25% aqueous solution of ethylene glycol-ε-caprolactone block copolymer, neutralize it with KOH to pH 7, add 5 mL of potassium persulfate solution (25%) Mixed, placed in a glass petri dish, placed in an oven at 70°C for 6 hours to initiate cross-linking polymerization, added excess ethanol for rapid dehydration, and then went through two water swelling-ethanol dehydration cycles to remove impurities. Finally, it was dried under vacuum at 70°C for 36 hours.
(4)苯胺原位聚合(4) In situ polymerization of aniline
裁取上述干凝胶8g,室温浸泡在20mmol/L的苯胺水溶液中45min,用HCl调节pH为7,然后将溶涨的凝胶置于50mmol/L三氯化铁水溶液中,冰浴下磁力搅拌12h。最后经过滤、水洗、干燥,再经一次去离子水溶胀-脱水循环,除去剩余杂质,干燥后得到乙二醇-ε-己内酯嵌段共聚物与聚苯胺的纳米复合材料。其各项理化性能测试结果见表1。Cut 8g of the above dry gel, soak it in 20mmol/L aniline aqueous solution at room temperature for 45min, adjust the pH to 7 with HCl, then place the swollen gel in a 50mmol/L ferric chloride aqueous solution, and place it in an ice bath under magnetic force. Stir for 12h. Finally, it is filtered, washed with water, dried, and then subjected to a deionized water swelling-dehydration cycle to remove remaining impurities, and the nanocomposite material of ethylene glycol-ε-caprolactone block copolymer and polyaniline is obtained after drying. The test results of its physical and chemical properties are shown in Table 1.
实施例4:乙二醇-δ-戊内酯嵌段共聚物凝胶与聚吡咯纳米复合材料的合成:Embodiment 4: Synthesis of ethylene glycol-delta-valerolactone block copolymer gel and polypyrrole nanocomposite:
(1)乙二醇-δ-戊内酯嵌段共聚物的合成:(1) Synthesis of ethylene glycol-delta-valerolactone block copolymer:
在氮气保护下取40g PEG(数均分子量800)与60gδ-戊内酯(0.6mol,M100),75mg的辛酸锡加入150ml的三颈圆底烧瓶中。反应混合物在真空,205℃下搅拌反应4h,而后降至165℃,继续搅拌反应2h,最后冷却至室温。得到乙二醇-δ-戊内酯嵌段共聚物,将产物溶于二氯乙烷,用无水乙醚沉淀,过滤,干燥,得到纯化的乙二醇-δ-戊内酯嵌段共聚物。从图3D的SEM照片中可以看到,所合成的水凝胶膜材料表现出蜂窝状,这些贯穿的孔洞为导电聚合物提供复合空间。Under the protection of nitrogen, take 40g PEG (number average molecular weight 800) and 60g δ-valerolactone (0.6mol, M100), and add 75mg of tin octoate into a 150ml three-neck round bottom flask. The reaction mixture was stirred under vacuum at 205°C for 4h, then lowered to 165°C, continued to stir for 2h, and finally cooled to room temperature. To obtain ethylene glycol-δ-valerolactone block copolymer, dissolve the product in ethylene dichloride, precipitate with anhydrous ether, filter, and dry to obtain purified ethylene glycol-δ-valerolactone block copolymer . It can be seen from the SEM photo of Figure 3D that the synthesized hydrogel membrane material exhibits a honeycomb shape, and these penetrating holes provide a composite space for the conductive polymer.
(2)丙烯酸封端的乙二醇-δ-戊内酯嵌段共聚物的合成:(2) Synthesis of ethylene glycol-delta-valerolactone block copolymer terminated by acrylic acid:
取39g上述共聚物溶于261ml二氯甲烷,置于500mL圆底烧瓶,在冰浴中冷却至0℃,用氮气置换反应瓶三次,获得无水无氧环境,从橡皮塞用针筒加入23.4mL三乙胺和18.7mL丙烯酰氯(0.23mol),在0℃下搅拌反应14h,而后室温下搅拌反应14h。过滤除掉三乙胺盐酸盐,而后在滤液中加入过量的干燥的二乙醚,得到丙烯酸基团封端的乙二醇-δ-戊内酯嵌段共聚物。用二氯甲烷溶解,己烷沉淀纯化一次。最后置于70℃真空干燥26h。Take 39g of the above-mentioned copolymer and dissolve it in 261ml of dichloromethane, put it in a 500mL round bottom flask, cool it to 0°C in an ice bath, replace the reaction bottle with nitrogen three times to obtain an anhydrous and oxygen-free environment, and add 23.4 mL of triethylamine and 18.7 mL of acryloyl chloride (0.23 mol) were stirred at 0° C. for 14 h, and then at room temperature for 14 h. Remove triethylamine hydrochloride by filtration, and then add excess dry diethyl ether to the filtrate to obtain an acrylic acid group-terminated ethylene glycol-δ-valerolactone block copolymer. It was dissolved in dichloromethane and purified once by hexane precipitation. Finally, it was dried under vacuum at 70°C for 26 hours.
(3)交联凝胶体系的合成:取100ml上述嵌段共聚物25%的水溶液,加入0.2ml 0.3g/mL的2,2-二甲基-2-二苯基苯乙酮N-乙烯基吡咯烷酮溶液。至于一玻璃培养皿中,用氩离子紫外激光灯辐照60s引发交联。加入过量乙醇迅速脱水,再经两次水溶涨-乙醇脱水循环,除掉杂质。置于70℃真空干燥16h。(3) Synthesis of cross-linked gel system: Take 100ml of 25% aqueous solution of the above-mentioned block copolymer, add 0.2ml of 0.3g/mL 2,2-dimethyl-2-diphenylacetophenone N-ethylene base pyrrolidone solution. As for a glass Petri dish, cross-linking was initiated by irradiation with an argon ion UV laser lamp for 60 s. Add excess ethanol to quickly dehydrate, and then go through two water swelling-ethanol dehydration cycles to remove impurities. Placed at 70°C for 16 hours in vacuum.
(4)吡咯原位聚合(4) In situ polymerization of pyrrole
裁取8g上述干凝胶,室温浸泡在30mmol/L的吡咯水溶液中40min,用HCl调节pH为6.5,然后将溶涨的凝胶置于45mmol/L三氯化铁水溶液中,室温下磁力搅拌14h。最后经过滤、水洗、干燥,再经一次去离子水溶胀-脱水循环,除去剩余杂质,干燥后得到乙二醇-δ-戊内酯嵌段共聚物与聚吡咯的纳米复合材料。其各项理化性能测试结果见表1。Cut 8g of the above dry gel, soak it in 30mmol/L pyrrole aqueous solution at room temperature for 40min, adjust the pH to 6.5 with HCl, then place the swollen gel in 45mmol/L ferric chloride aqueous solution, and stir magnetically at room temperature 14h. Finally, it is filtered, washed with water, dried, and then subjected to a deionized water swelling-dehydration cycle to remove remaining impurities, and after drying, a nanocomposite material of ethylene glycol-δ-valerolactone block copolymer and polypyrrole is obtained. The test results of its physical and chemical properties are shown in Table 1.
实施例5:乙二醇-γ-丁内酯嵌段共聚物凝胶与聚苯胺纳米复合材料的合成:Embodiment 5: Synthesis of ethylene glycol-γ-butyrolactone block copolymer gel and polyaniline nanocomposite material:
(1)乙二醇-γ-丁内酯嵌段共聚物的合成:(1) Synthesis of ethylene glycol-γ-butyrolactone block copolymer:
在氮气保护下取50g PEG(数均分子量1000)与68.8gγ-丁内酯(0.8mol,M86),60mg的辛酸锡加入100ml的三颈圆底烧瓶中。反应混合物在真空,200℃下搅拌反应4h,而后降至160℃,继续搅拌反应2h,最后冷却至室温。得到乙二醇-γ-丁内酯嵌段共聚物,将产物溶于二氯乙烷,用无水乙醚沉淀,过滤,干燥,得到纯化的乙二醇-γ-丁内酯嵌段共聚物。从图3E的SEM照片中可以看到,所合成的水凝胶膜材料表现出蜂窝状,这些贯穿的孔洞为导电聚合物提供复合空间。Under nitrogen protection, take 50g PEG (number average molecular weight 1000) and 68.8g gamma-butyrolactone (0.8mol, M86), and add 60mg of tin octoate into a 100ml three-neck round bottom flask. The reaction mixture was stirred under vacuum at 200°C for 4h, then lowered to 160°C, stirred for 2h, and finally cooled to room temperature. Obtain ethylene glycol-γ-butyrolactone block copolymer, dissolve the product in ethylene dichloride, precipitate with anhydrous ether, filter, and dry to obtain purified ethylene glycol-γ-butyrolactone block copolymer . From the SEM photo of Figure 3E, it can be seen that the synthesized hydrogel membrane material exhibits a honeycomb shape, and these penetrating holes provide a composite space for the conductive polymer.
(2)丙烯酸封端的乙二醇-γ-丁内酯嵌段共聚物的合成:(2) Synthesis of ethylene glycol-γ-butyrolactone block copolymer terminated by acrylic acid:
取42g上述共聚物溶于258ml二氯甲烷,置于500mL圆底烧瓶,在冰浴中冷却至4℃,用氮气置换反应瓶三次,获得无水无氧环境,从橡皮塞用针筒加入27.8mL三乙胺和14.6mL丙烯酰氯(0.18mol),在0℃下搅拌反应16h,而后室温下搅拌反应16h。过滤除掉三乙胺盐酸盐,而后在滤液中加入过量的干燥的二乙醚,得到丙烯酸基团封端的乙二醇-γ-丁内酯嵌段共聚物。用二氯甲烷溶解,己烷沉淀纯化一次。最后置于75℃真空干燥24h。Take 42g of the above-mentioned copolymer and dissolve it in 258ml of dichloromethane, put it in a 500mL round bottom flask, cool it to 4°C in an ice bath, replace the reaction bottle with nitrogen three times to obtain an anhydrous and oxygen-free environment, and add 27.8 mL of triethylamine and 14.6 mL of acryloyl chloride (0.18 mol) were stirred at 0° C. for 16 h, and then at room temperature for 16 h. The triethylamine hydrochloride was removed by filtration, and then an excess of dry diethyl ether was added to the filtrate to obtain an acrylic acid group-terminated ethylene glycol-γ-butyrolactone block copolymer. It was dissolved in dichloromethane and purified once by hexane precipitation. Finally, it was dried under vacuum at 75°C for 24 hours.
(3)交联凝胶体系的合成:取100ml上述嵌段共聚物18%的水溶液,加入0.4ml 0.3g/mL的2,2-二甲基-2-二苯基苯乙酮N-乙烯基吡咯烷酮溶液。至于一玻璃培养皿中,用氩离子紫外激光灯辐照40s引发交联。加入过量乙醇迅速脱水,再经两次水溶涨-乙醇脱水循环,除掉杂质,置于65℃真空干燥20h。(3) Synthesis of cross-linked gel system: Take 100ml of the 18% aqueous solution of the above-mentioned block copolymer, add 0.4ml of 0.3g/mL 2,2-dimethyl-2-diphenylacetophenone N-ethylene base pyrrolidone solution. As for a glass Petri dish, cross-linking was initiated by irradiation with an argon-ion UV laser for 40 s. Add excess ethanol to quickly dehydrate, and then go through two cycles of water swelling-ethanol dehydration to remove impurities, and then vacuum-dry at 65°C for 20h.
(4)吡咯原位聚合(4) In situ polymerization of pyrrole
裁取10g上述干凝胶,室温浸泡在50mmol/L的吡咯水溶液中60min,用HCl调节pH为7,然后将溶涨的凝胶置于50mmol/L过硫酸铵水溶液中,室温下磁力搅拌16h。最后经过滤、水洗、干燥,再经一次去离子水溶胀-脱水循环,除去剩余杂质,干燥后得到乙二醇-γ-丁内酯嵌段共聚物与聚吡咯的纳米复合材料。其各项理化性能测试结果见表1。Cut 10g of the above dry gel, soak it in 50mmol/L pyrrole aqueous solution at room temperature for 60min, adjust the pH to 7 with HCl, then place the swollen gel in 50mmol/L ammonium persulfate aqueous solution, and stir magnetically at room temperature for 16h . Finally, it is filtered, washed with water, dried, and then subjected to a deionized water swelling-dehydration cycle to remove remaining impurities, and after drying, a nanocomposite material of ethylene glycol-γ-butyrolactone block copolymer and polypyrrole is obtained. The test results of its physical and chemical properties are shown in Table 1.
表1 理化性能测试结果Table 1 Physical and chemical performance test results
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNA2008100711417A CN101280094A (en) | 2008-05-27 | 2008-05-27 | Bioactive hydrogel-conductive polymer nanocomposite material and its synthesis method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNA2008100711417A CN101280094A (en) | 2008-05-27 | 2008-05-27 | Bioactive hydrogel-conductive polymer nanocomposite material and its synthesis method |
Publications (1)
Publication Number | Publication Date |
---|---|
CN101280094A true CN101280094A (en) | 2008-10-08 |
Family
ID=40012777
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNA2008100711417A Pending CN101280094A (en) | 2008-05-27 | 2008-05-27 | Bioactive hydrogel-conductive polymer nanocomposite material and its synthesis method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101280094A (en) |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101812176A (en) * | 2010-04-13 | 2010-08-25 | 无锡中美亿芯生物科技有限公司 | Conductive polyaniline with bioactivity, preparation thereof and use thereof |
CN101402737B (en) * | 2008-11-19 | 2011-01-12 | 武汉理工大学 | Degradable conductive biomedical polymer materials |
CN102206342A (en) * | 2011-03-31 | 2011-10-05 | 南京大学 | Electric conduction polymer and synthesis method thereof and electroactive electrode with surface covered with electric conduction polymer |
EP2462898A1 (en) * | 2010-12-09 | 2012-06-13 | Université de Liège | Composite comprising nanoparticles and method for making nanoparticles |
CN102573944A (en) * | 2009-07-02 | 2012-07-11 | 亚洲大学校产学协力团 | In situ forming hydrogel and biomedical use thereof |
CN104931651A (en) * | 2015-05-27 | 2015-09-23 | 东华大学 | Formaldehyde-gas sensitive membrane doped with multiamino material |
CN105489264A (en) * | 2015-12-08 | 2016-04-13 | 苏州鑫德杰电子有限公司 | Composite polyaniline conductive material and preparation method thereof |
CN106009000A (en) * | 2016-05-16 | 2016-10-12 | 西南交通大学 | Preparation method of conductive hydrogel capable of controlling drug release |
CN106008850A (en) * | 2016-06-08 | 2016-10-12 | 暨南大学 | Modified hydrogel material used for 3D printing and application of same to drug loading |
CN107840955A (en) * | 2016-09-21 | 2018-03-27 | 天津大学 | Electroconductive binder and preparation method thereof |
CN107840966A (en) * | 2016-09-21 | 2018-03-27 | 天津大学 | Pentaerythritol triacrylate dopamine azole polymer and its application |
CN108250415A (en) * | 2018-02-09 | 2018-07-06 | 青岛科技大学 | A kind of poly- (gamma-butyrolacton)-b- polylactic-acid block copolymers and preparation method thereof |
CN108424645A (en) * | 2018-04-04 | 2018-08-21 | 温州市赢创新材料技术有限公司 | A kind of fire prevention battery conductive material and preparation method thereof |
WO2019149086A1 (en) * | 2018-02-05 | 2019-08-08 | 青岛科技大学 | POLYETHER-B-POLY (γ-BUTYROLACTONE) BLOCK COPOLYMER AND PREPARATION METHOD THEREFOR |
CN113214500A (en) * | 2020-01-21 | 2021-08-06 | 浙江荷清柔性电子技术有限公司 | Electrically conductive hydrogel and method for producing same |
CN114773766A (en) * | 2022-05-25 | 2022-07-22 | 深圳华宝协同创新技术研究院有限公司 | Gel material, preparation method thereof, tobacco material and cigarette without burning after heating |
-
2008
- 2008-05-27 CN CNA2008100711417A patent/CN101280094A/en active Pending
Cited By (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101402737B (en) * | 2008-11-19 | 2011-01-12 | 武汉理工大学 | Degradable conductive biomedical polymer materials |
CN102573944A (en) * | 2009-07-02 | 2012-07-11 | 亚洲大学校产学协力团 | In situ forming hydrogel and biomedical use thereof |
CN102573944B (en) * | 2009-07-02 | 2014-09-03 | 亚洲大学校产学协力团 | In situ forming hydrogel and biomedical use thereof |
CN101812176A (en) * | 2010-04-13 | 2010-08-25 | 无锡中美亿芯生物科技有限公司 | Conductive polyaniline with bioactivity, preparation thereof and use thereof |
EP2462898A1 (en) * | 2010-12-09 | 2012-06-13 | Université de Liège | Composite comprising nanoparticles and method for making nanoparticles |
WO2012076288A1 (en) | 2010-12-09 | 2012-06-14 | Universite De Liege | Composite comprising nanoparticles and method of making nanoparticles |
CN102206342A (en) * | 2011-03-31 | 2011-10-05 | 南京大学 | Electric conduction polymer and synthesis method thereof and electroactive electrode with surface covered with electric conduction polymer |
CN102206342B (en) * | 2011-03-31 | 2012-10-17 | 南京大学 | Conductive polymer and its synthesis method, electroactive electrode whose surface is covered with said conductive polymer |
CN104931651B (en) * | 2015-05-27 | 2016-11-09 | 东华大学 | A formaldehyde gas sensitive film doped with polyamino materials |
CN104931651A (en) * | 2015-05-27 | 2015-09-23 | 东华大学 | Formaldehyde-gas sensitive membrane doped with multiamino material |
CN105489264A (en) * | 2015-12-08 | 2016-04-13 | 苏州鑫德杰电子有限公司 | Composite polyaniline conductive material and preparation method thereof |
CN106009000A (en) * | 2016-05-16 | 2016-10-12 | 西南交通大学 | Preparation method of conductive hydrogel capable of controlling drug release |
CN106009000B (en) * | 2016-05-16 | 2018-08-17 | 西南交通大学 | A kind of preparation method of the conductive hydrogel of controllable drug release |
CN106008850A (en) * | 2016-06-08 | 2016-10-12 | 暨南大学 | Modified hydrogel material used for 3D printing and application of same to drug loading |
CN107840955A (en) * | 2016-09-21 | 2018-03-27 | 天津大学 | Electroconductive binder and preparation method thereof |
CN107840966A (en) * | 2016-09-21 | 2018-03-27 | 天津大学 | Pentaerythritol triacrylate dopamine azole polymer and its application |
CN110117359B (en) * | 2018-02-05 | 2021-12-21 | 青岛博远高分子材料研究院有限公司 | Polyether-b-poly (gamma-butyrolactone) block copolymer and preparation method thereof |
WO2019149086A1 (en) * | 2018-02-05 | 2019-08-08 | 青岛科技大学 | POLYETHER-B-POLY (γ-BUTYROLACTONE) BLOCK COPOLYMER AND PREPARATION METHOD THEREFOR |
CN110117359A (en) * | 2018-02-05 | 2019-08-13 | 青岛科技大学 | Poly- (gamma-butyrolacton) block copolymer of polyethers-b- and preparation method thereof |
CN108250415A (en) * | 2018-02-09 | 2018-07-06 | 青岛科技大学 | A kind of poly- (gamma-butyrolacton)-b- polylactic-acid block copolymers and preparation method thereof |
CN108250415B (en) * | 2018-02-09 | 2020-09-04 | 青岛科技大学 | Poly (gamma-butyrolactone) -b-polylactic acid block copolymer and preparation method thereof |
CN108424645A (en) * | 2018-04-04 | 2018-08-21 | 温州市赢创新材料技术有限公司 | A kind of fire prevention battery conductive material and preparation method thereof |
CN113214500A (en) * | 2020-01-21 | 2021-08-06 | 浙江荷清柔性电子技术有限公司 | Electrically conductive hydrogel and method for producing same |
CN114773766A (en) * | 2022-05-25 | 2022-07-22 | 深圳华宝协同创新技术研究院有限公司 | Gel material, preparation method thereof, tobacco material and cigarette without burning after heating |
CN114773766B (en) * | 2022-05-25 | 2023-11-03 | 深圳华宝协同创新技术研究院有限公司 | Gel material and preparation method thereof, tobacco material and heating non-burning cigarette |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101280094A (en) | Bioactive hydrogel-conductive polymer nanocomposite material and its synthesis method | |
Ma et al. | Synthesis and characterization of injectable self-healing hydrogels based on oxidized alginate-hybrid-hydroxyapatite nanoparticles and carboxymethyl chitosan | |
Shao et al. | A self-healing cellulose nanocrystal-poly (ethylene glycol) nanocomposite hydrogel via Diels–Alder click reaction | |
Zulkifli et al. | In vitro degradation study of novel HEC/PVA/collagen nanofibrous scaffold for skin tissue engineering applications | |
Chen et al. | Preparation and evaluation of thermo-reversible copolymer hydrogels containing chitosan and hyaluronic acid as injectable cell carriers | |
Zhou et al. | A super-stretchable, self-healing and injectable supramolecular hydrogel constructed by a host–guest crosslinker | |
Massoumi et al. | Electrically conductive nanofibrous scaffold composed of poly (ethylene glycol)-modified polypyrrole and poly (ε-caprolactone) for tissue engineering applications | |
CN106947020A (en) | A kind of preparation method of the chitosan-based hydrogel of high intensity | |
Petrov et al. | Novel electrically conducting 2-hydroxyethylcellulose/polyaniline nanocomposite cryogels: Synthesis and application in tissue engineering | |
Pan et al. | A fast on-demand preparation of injectable self-healing nanocomposite hydrogels for efficient osteoinduction | |
Li et al. | In-situ forming biodegradable glycol chitosan-based hydrogels: synthesis, characterization, and chondrocyte culture | |
CN100519511C (en) | Aniline oligomer, its aliphatic polyester copolymer and their prepn | |
Nair et al. | Electrospun biodegradable calcium containing poly (ester‐urethane) urea: Synthesis, fabrication, in vitro degradation, and biocompatibility evaluation | |
CN112812329B (en) | Hydrogel of sulfhydryl modified high molecular compound, preparation method and application thereof | |
Paknia et al. | Fabrication and characterization of electroconductive/osteoconductive hydrogel nanocomposite based on poly (dopamine-co-aniline) containing calcium phosphate nanoparticles | |
Su et al. | Synthesis, characterization, and cytotoxicity of PCL–PEG–PCL diacrylate and agarose interpenetrating network hydrogels for cartilage tissue engineering | |
Wang et al. | Fabrication, characterization and potential application of biodegradable polydopamine-modified scaffolds based on natural macromolecules | |
CN101864046A (en) | Glucosamine modified polyethylene glycol diacrylate hydrogel and its preparation method and application | |
Yan et al. | Conductive polyaniline particles regulating in vitro hydrolytic degradation and erosion of hydroxyapatite/poly (lactide-co-glycolide) porous scaffolds for bone tissue engineering | |
CN102964582B (en) | Segmented copolymer, preparation method thereof and hydrogel | |
Kandil et al. | Hydroxyapatite/hyperbranched polyitaconic acid/chitosan composite scaffold for bone tissue engineering | |
EP1659143A1 (en) | Temperature-responsive hydrogel | |
CN105504251B (en) | Degradable silica-based hybrid polymer biomedical elastomer and preparation method thereof | |
Vandghanooni et al. | Electroactive nanofibrous scaffold based on polythiophene for bone tissue engineering application | |
EP3908619B1 (en) | Branched-block copolymer photo-crosslinker functionalized with photoreactive groups and its use for shaping degradable photo-crosslinked elastomers suitable for medical and tissue-engineering applications |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C12 | Rejection of a patent application after its publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20081008 |