CN101279106A - Preparation method of gel injection molding of porous titanium-cobalt alloy medical implant - Google Patents
Preparation method of gel injection molding of porous titanium-cobalt alloy medical implant Download PDFInfo
- Publication number
- CN101279106A CN101279106A CNA2008101122138A CN200810112213A CN101279106A CN 101279106 A CN101279106 A CN 101279106A CN A2008101122138 A CNA2008101122138 A CN A2008101122138A CN 200810112213 A CN200810112213 A CN 200810112213A CN 101279106 A CN101279106 A CN 101279106A
- Authority
- CN
- China
- Prior art keywords
- titanium
- slurry
- silicone rubber
- cobalt
- porous titanium
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- NNSIWZRTNZEWMS-UHFFFAOYSA-N cobalt titanium Chemical compound [Ti].[Co] NNSIWZRTNZEWMS-UHFFFAOYSA-N 0.000 title claims abstract description 26
- 239000007943 implant Substances 0.000 title claims abstract description 23
- 238000001746 injection moulding Methods 0.000 title claims abstract description 13
- 229910000531 Co alloy Inorganic materials 0.000 title claims abstract description 12
- 238000002360 preparation method Methods 0.000 title claims abstract description 8
- 239000002002 slurry Substances 0.000 claims abstract description 24
- 238000000034 method Methods 0.000 claims abstract description 19
- 238000003756 stirring Methods 0.000 claims abstract description 19
- ROOXNKNUYICQNP-UHFFFAOYSA-N ammonium persulfate Chemical compound [NH4+].[NH4+].[O-]S(=O)(=O)OOS([O-])(=O)=O ROOXNKNUYICQNP-UHFFFAOYSA-N 0.000 claims abstract description 12
- 239000003999 initiator Substances 0.000 claims abstract description 12
- HRPVXLWXLXDGHG-UHFFFAOYSA-N Acrylamide Chemical compound NC(=O)C=C HRPVXLWXLXDGHG-UHFFFAOYSA-N 0.000 claims abstract description 11
- 239000000843 powder Substances 0.000 claims abstract description 11
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 11
- 239000003054 catalyst Substances 0.000 claims abstract description 8
- 239000003431 cross linking reagent Substances 0.000 claims abstract description 7
- 239000000178 monomer Substances 0.000 claims abstract description 7
- WRIDQFICGBMAFQ-UHFFFAOYSA-N (E)-8-Octadecenoic acid Natural products CCCCCCCCCC=CCCCCCCC(O)=O WRIDQFICGBMAFQ-UHFFFAOYSA-N 0.000 claims abstract description 6
- LQJBNNIYVWPHFW-UHFFFAOYSA-N 20:1omega9c fatty acid Natural products CCCCCCCCCCC=CCCCCCCCC(O)=O LQJBNNIYVWPHFW-UHFFFAOYSA-N 0.000 claims abstract description 6
- QSBYPNXLFMSGKH-UHFFFAOYSA-N 9-Heptadecensaeure Natural products CCCCCCCC=CCCCCCCCC(O)=O QSBYPNXLFMSGKH-UHFFFAOYSA-N 0.000 claims abstract description 6
- ZQPPMHVWECSIRJ-UHFFFAOYSA-N Oleic acid Natural products CCCCCCCCC=CCCCCCCCC(O)=O ZQPPMHVWECSIRJ-UHFFFAOYSA-N 0.000 claims abstract description 6
- 239000005642 Oleic acid Substances 0.000 claims abstract description 6
- 229910001870 ammonium persulfate Inorganic materials 0.000 claims abstract description 6
- 239000008367 deionised water Substances 0.000 claims abstract description 6
- 229910021641 deionized water Inorganic materials 0.000 claims abstract description 6
- 239000002270 dispersing agent Substances 0.000 claims abstract description 6
- QXJSBBXBKPUZAA-UHFFFAOYSA-N isooleic acid Natural products CCCCCCCC=CCCCCCCCCC(O)=O QXJSBBXBKPUZAA-UHFFFAOYSA-N 0.000 claims abstract description 6
- ZIUHHBKFKCYYJD-UHFFFAOYSA-N n,n'-methylenebisacrylamide Chemical compound C=CC(=O)NCNC(=O)C=C ZIUHHBKFKCYYJD-UHFFFAOYSA-N 0.000 claims abstract description 6
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(O)=O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 claims abstract description 6
- 229920002379 silicone rubber Polymers 0.000 claims description 22
- 239000004945 silicone rubber Substances 0.000 claims description 21
- 239000000203 mixture Substances 0.000 claims description 8
- 239000011505 plaster Substances 0.000 claims description 7
- 239000000243 solution Substances 0.000 claims description 7
- 238000001291 vacuum drying Methods 0.000 claims description 7
- 238000001035 drying Methods 0.000 claims description 6
- 238000005245 sintering Methods 0.000 claims description 6
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims description 5
- BWDBEAQIHAEVLV-UHFFFAOYSA-N 6-methylheptan-1-ol Chemical compound CC(C)CCCCCO BWDBEAQIHAEVLV-UHFFFAOYSA-N 0.000 claims description 4
- 239000003795 chemical substances by application Substances 0.000 claims description 4
- 238000002347 injection Methods 0.000 claims description 4
- 239000007924 injection Substances 0.000 claims description 4
- 239000011521 glass Substances 0.000 claims description 2
- OSGAYBCDTDRGGQ-UHFFFAOYSA-L calcium sulfate Chemical compound [Ca+2].[O-]S([O-])(=O)=O OSGAYBCDTDRGGQ-UHFFFAOYSA-L 0.000 claims 4
- 238000005303 weighing Methods 0.000 claims 3
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 claims 2
- 229910052791 calcium Inorganic materials 0.000 claims 2
- 239000011575 calcium Substances 0.000 claims 2
- 238000007569 slipcasting Methods 0.000 claims 2
- PKZCRWFNSBIBEW-UHFFFAOYSA-N 2-n,2-n,2-trimethylpropane-1,2-diamine Chemical compound CN(C)C(C)(C)CN PKZCRWFNSBIBEW-UHFFFAOYSA-N 0.000 claims 1
- 238000000498 ball milling Methods 0.000 claims 1
- 235000015895 biscuits Nutrition 0.000 claims 1
- 239000000758 substrate Substances 0.000 claims 1
- 238000004519 manufacturing process Methods 0.000 abstract description 7
- KWYHDKDOAIKMQN-UHFFFAOYSA-N N,N,N',N'-tetramethylethylenediamine Chemical compound CN(C)CCN(C)C KWYHDKDOAIKMQN-UHFFFAOYSA-N 0.000 abstract description 5
- 238000005238 degreasing Methods 0.000 abstract description 2
- 238000011031 large-scale manufacturing process Methods 0.000 abstract description 2
- 239000012567 medical material Substances 0.000 abstract description 2
- 238000006116 polymerization reaction Methods 0.000 abstract description 2
- 239000007787 solid Substances 0.000 abstract description 2
- 210000001981 hip bone Anatomy 0.000 description 8
- 239000000499 gel Substances 0.000 description 7
- 229910052602 gypsum Inorganic materials 0.000 description 7
- 239000010440 gypsum Substances 0.000 description 7
- 238000005516 engineering process Methods 0.000 description 5
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 239000011148 porous material Substances 0.000 description 4
- 210000001519 tissue Anatomy 0.000 description 4
- 239000007769 metal material Substances 0.000 description 3
- 150000002739 metals Chemical class 0.000 description 3
- 210000000988 bone and bone Anatomy 0.000 description 2
- 238000005187 foaming Methods 0.000 description 2
- 230000010354 integration Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000011812 mixed powder Substances 0.000 description 2
- 238000004663 powder metallurgy Methods 0.000 description 2
- 238000003825 pressing Methods 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 238000005275 alloying Methods 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 230000001054 cortical effect Effects 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 231100000252 nontoxic Toxicity 0.000 description 1
- 230000003000 nontoxic effect Effects 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Images
Landscapes
- Prostheses (AREA)
- Materials For Medical Uses (AREA)
Abstract
一种多孔钛钴合金医用植入物的凝胶注模制备方法,属于医用材料制备技术领域。将单体丙烯酰胺、交联剂N,N′-亚甲基双丙烯酰胺与去离子水配制成一定浓度的预混液,加入分散剂油酸使钛钴粉末悬浮于预混液中制成浆体,调节pH值至9.0~10.0,然后加入适量催化剂N,N,N′,N′-四甲基乙二胺和引发剂过硫酸铵搅拌均匀,经排气后注入模具中,模内的单体发生聚合反应形成网状结构将钛钴粉体包裹,成为由大分子网络定型的坯体。坯体经干燥、排胶、烧结得到产品,此外还可以通过调节固含量来改变多孔钛钴合金的孔隙率和力学性能,以满足各种医用植入物的性能要求。本发明不需要复杂设备和专门脱脂工序,工艺简单,使生产成本大幅降低,特别适合医用植入物规格繁多、规模生产的特点。
The invention discloses a gel injection molding preparation method for a porous titanium-cobalt alloy medical implant, which belongs to the technical field of medical material preparation. The monomer acrylamide, cross-linking agent N, N'-methylenebisacrylamide and deionized water are prepared into a premix of a certain concentration, and the dispersant oleic acid is added to suspend the titanium cobalt powder in the premix to make a slurry , adjust the pH value to 9.0-10.0, then add an appropriate amount of catalyst N, N, N', N'-tetramethylethylenediamine and initiator ammonium persulfate and stir evenly, and inject it into the mold after exhausting, and the single The body undergoes a polymerization reaction to form a network structure to wrap the titanium-cobalt powder and become a green body shaped by a macromolecular network. The green body is dried, degummed, and sintered to obtain the product. In addition, the porosity and mechanical properties of the porous titanium-cobalt alloy can be changed by adjusting the solid content to meet the performance requirements of various medical implants. The invention does not need complex equipment and special degreasing process, has simple process, greatly reduces production cost, and is especially suitable for the characteristics of various specifications and large-scale production of medical implants.
Description
技术领域technical field
本发明属于医用材料制备技术领域,特别是提供了一种凝胶注模制备生物相容性优良、形状复杂的多孔医用植入物的方法。The invention belongs to the technical field of medical material preparation, and in particular provides a method for preparing a porous medical implant with excellent biocompatibility and complex shape by gel injection molding.
背景技术Background technique
钛基合金的生物相容性好,密度低,接近于人体骨组织,弹性模量较低,而强度明显高于其它金属,且耐蚀性能良好,其各方面特性较其它金属更接近皮质骨,适于用作生物医用植入材料。多孔钛钴合金具有多孔三维支架的结构优势,三维贯通的孔隙和合适的表面微孔结构为周围组织的长入提供了支架,使组织与植入物获得牢固的生理性固定;同时又兼备钛金属优良的化学、力学性能和生物相容性。多孔钛钴合金在医用植入物方面具有非常广阔的前景。Titanium-based alloy has good biocompatibility, low density, close to human bone tissue, low elastic modulus, and significantly higher strength than other metals, and good corrosion resistance. Its various characteristics are closer to cortical bone than other metals. , suitable for use as a biomedical implant material. Porous titanium-cobalt alloy has the structural advantages of a porous three-dimensional scaffold. The three-dimensional through pores and the appropriate surface microporous structure provide a scaffold for the growth of surrounding tissues, so that the tissues and implants can be firmly fixed physiologically; Metals have excellent chemical and mechanical properties and biocompatibility. Porous titanium-cobalt alloys hold great promise in medical implants.
通常,多孔金属材料的成形方法主要包括粉末冶金压制法、浆料发泡法等。其中,粉末冶金压制法制备多孔金属材料的生产工艺简单、成本低并且能够得到组织结构均匀的多孔金属材料,但是孔隙度较低,也难以满足医用植入物复杂形状的要求,并且模具成本较高、小规模生产成本高;浆料发泡法可获得较高孔隙度,缺点是难于控制气泡大小,故难以获得孔径分布均匀的多孔材料,并且难以获得复杂形状。Usually, the forming methods of porous metal materials mainly include powder metallurgy pressing method, slurry foaming method and so on. Among them, the production process of porous metal materials prepared by powder metallurgy pressing is simple, low in cost, and can obtain porous metal materials with uniform structure, but the porosity is low, and it is difficult to meet the requirements of complex shapes of medical implants, and the mold cost is relatively high. High, small-scale production costs are high; the slurry foaming method can obtain higher porosity, but the disadvantage is that it is difficult to control the size of the bubbles, so it is difficult to obtain porous materials with uniform pore size distribution, and it is difficult to obtain complex shapes.
在本发明中,采用水基丙烯酰胺体系凝胶注模成形技术实现生物相容性优良、形状复杂、空隙与力学性能可调的多孔钛钴合金医用植入物的制备;一方面采用凝胶注模成形技术解决了复杂形状成形困难的问题,又达到了医用植入物的多孔性要求,这就大大简化了生产工序,此外凝胶注模成型技术模具成本很低,解决了医用植入物小规模生产成本高的问题;更重要的是引入了无毒副作用的金属钴作为合金元素,提高了其植入物的强度,增强了医用植入物的安全性。In the present invention, the water-based acrylamide system gel injection molding technology is used to realize the preparation of porous titanium-cobalt alloy medical implants with excellent biocompatibility, complex shape, adjustable voids and mechanical properties; Injection molding technology solves the problem of difficulty in forming complex shapes, and meets the porosity requirements of medical implants, which greatly simplifies the production process. In addition, the mold cost of gel injection molding technology is very low, which solves the problem of medical implants. The problem of high cost of small-scale production; more importantly, the introduction of non-toxic and side-effect metal cobalt as an alloying element improves the strength of its implants and enhances the safety of medical implants.
发明内容Contents of the invention
本发明的目的在于提供一种低成本制备生物相容性和组织结合性优良、形状复杂、力学性能可调的多孔钛钴合金医用植入物的方法,改善性能并降低成本。The purpose of the present invention is to provide a low-cost method for preparing a porous titanium-cobalt alloy medical implant with excellent biocompatibility and tissue integration, complex shape and adjustable mechanical properties, so as to improve performance and reduce cost.
本发明原理如下:采用水基丙烯酰胺体系凝胶注模成形。丙烯酰胺溶液能聚合成为高强度的、横向连接的聚合物-溶剂的凝胶。将单体丙烯酰胺、交联剂N,N′-亚甲基双丙烯酰胺与去离子水配制成一定浓度的预混液,加入分散剂油酸使钛钴粉末悬浮于预混液中制成浆体,调节pH值至9.0~10.0,然后加入适量催化剂N,N,N′,N′-四甲基乙二胺和引发剂过硫酸铵搅拌均匀,经排气后注入模具中,模内的单体发生聚合反应形成网状结构将钛钴粉体包裹,成为由大分子网络定型的坯体。坯体经干燥、排胶、烧结得到产品,如图1。此外还可以通过调节固含量来改变多孔钛钴合金的孔隙率和力学性能,以满足各种医用植入物的性能要求。The principle of the invention is as follows: the water-based acrylamide system is used for gel injection molding. Acrylamide solutions can polymerize into high-strength, laterally linked polymer-solvent gels. The monomer acrylamide, cross-linking agent N, N'-methylenebisacrylamide and deionized water are prepared into a premix of a certain concentration, and the dispersant oleic acid is added to suspend the titanium cobalt powder in the premix to make a slurry , adjust the pH value to 9.0-10.0, then add an appropriate amount of catalyst N, N, N', N'-tetramethylethylenediamine and initiator ammonium persulfate and stir evenly, and inject it into the mold after exhausting, and the single The body undergoes a polymerization reaction to form a network structure that wraps the titanium-cobalt powder and becomes a green body shaped by a macromolecular network. The green body is dried, degummed and sintered to obtain the product, as shown in Figure 1. In addition, the porosity and mechanical properties of the porous titanium-cobalt alloy can be changed by adjusting the solid content to meet the performance requirements of various medical implants.
一种多孔钛钴合金医用植入物的凝胶注模制备方法,具体工艺如下:A gel injection molding preparation method of a porous titanium-cobalt alloy medical implant, the specific process is as follows:
1、分别称取钛钴粉,其中钴粉为钛钴混合物的2%~40%,球磨1~4小时使其混合均匀。1. Weigh titanium-cobalt powder respectively, wherein the cobalt powder is 2%-40% of the titanium-cobalt mixture, and ball mill it for 1-4 hours to make it evenly mixed.
2、将单体丙烯酰胺及单体交联剂N,N′-亚甲基双丙烯酰胺以质量比(1~250)∶1混合,并将丙烯酰胺及交联剂的混合物溶于去离子水制成质量分数为1~55%的均匀稳定的溶液;2. Mix monomeric acrylamide and monomeric cross-linking agent N, N'-methylenebisacrylamide in a mass ratio (1-250): 1, and dissolve the mixture of acrylamide and cross-linking agent in deionized Water is made into a uniform and stable solution with a mass fraction of 1-55%;
3、量取钛钴粉体积0.01%~3%的分散剂油酸加入2溶液中,调节pH值至9.0~10.0,搅拌均匀,制成浆料;3. Measure 0.01% to 3% of the volume of titanium cobalt powder and add oleic acid as a dispersant to the 2 solution, adjust the pH value to 9.0 to 10.0, stir evenly, and make a slurry;
4、将浆料放入高真空环境中排气5~40分钟;4. Put the slurry into a high vacuum environment to exhaust for 5 to 40 minutes;
5、在模具内壁涂薄薄一层脱模剂异辛醇;量取单体质量0.01%~1%的催化剂N,N,N′,N′-四甲基乙二胺和单体质量0.01%~2%引发剂过硫酸铵,加入排气后的浆料中,搅拌均匀;5. Coat a thin layer of release agent isooctyl alcohol on the inner wall of the mold; measure the catalyst N, N, N', N'-tetramethylethylenediamine and the monomer mass of 0.01% to 1% %~2% initiator ammonium persulfate, add to the slurry after exhausting, stir evenly;
6、将含有催化剂和引发剂的浆料缓缓注入模具,注入过程中,用细玻璃棒上下移动以避免浆料注入过程不产生气泡;6. Slowly inject the slurry containing the catalyst and initiator into the mold. During the injection process, use a thin glass rod to move up and down to avoid bubbles during the injection process of the slurry;
7、注浆完毕后,将注浆模具放入20℃~65℃的真空干燥箱内干燥;7. After the grouting is completed, put the grouting mold in a vacuum oven at 20°C to 65°C to dry;
8、干燥20~60分钟后,脱模,修坯,再放入20℃~65℃的真空干燥箱内干燥30~60小时;8. After drying for 20-60 minutes, remove the mold, trim the blank, and then put it in a vacuum drying oven at 20-65°C for 30-60 hours;
9、将干燥过的坯体在高真空下烧结,即可得到多孔钛钴医用植入物。9. Sintering the dried body under high vacuum to obtain a porous titanium-cobalt medical implant.
模具制作:Mold making:
1、称取适量的硅橡胶,加入0.8%~2%的固化引发剂,搅拌均匀;1. Weigh an appropriate amount of silicone rubber, add 0.8% to 2% curing initiator, and stir evenly;
2、在部件表面上均匀地涂上一层薄薄的硅橡胶,过程中要避免产生气泡,静置1~2小时;隔1~2小时再涂一层硅橡胶,共需三层,然后静置12小时。2. Apply a thin layer of silicone rubber evenly on the surface of the component, avoid air bubbles during the process, and let it stand for 1 to 2 hours; apply a layer of silicone rubber every 1 to 2 hours, a total of three layers are required, and then Let stand for 12 hours.
3、称取适量的石膏粉,加入5%~35%水,搅拌均匀,倒入尺寸大于部件的纸盒中,然后将包裹硅橡胶的部件的一半浸入纸盒石膏浆中,10~30分钟后,在纸盒中石膏截面处铺三层软质纸,再倒入石膏浆至没过部件1~4厘米,静置6~12小时,制成石膏靠模;3. Weigh an appropriate amount of gypsum powder, add 5% to 35% water, stir evenly, pour it into a carton whose size is larger than the parts, and then immerse half of the parts wrapped in silicone rubber in the carton gypsum slurry for 10 to 30 minutes Finally, lay three layers of soft paper on the gypsum cross section in the carton, then pour the gypsum slurry to cover the parts by 1 to 4 cm, and let it stand for 6 to 12 hours to make a gypsum master model;
4、取出包裹硅橡胶的部件,选一简单侧面,用剪刀剪开,将外层硅橡胶套取出,放入石膏靠模,至此制成硅橡胶模具。4. Take out the parts wrapped with silicone rubber, choose a simple side, cut it with scissors, take out the outer layer of silicone rubber sleeve, put it into a plaster mold, and make a silicone rubber mold.
本发明的优点在于:The advantages of the present invention are:
1、从生产上提供了一种制备生物相容性和组织结合性优良、形状复杂、孔隙与力学性能可调的多孔钛钴合金医用植入物的新技术,此材料的强度相对于纯钛有明显的提高;1. In terms of production, it provides a new technology for preparing porous titanium-cobalt alloy medical implants with excellent biocompatibility and tissue integration, complex shape, adjustable pores and mechanical properties. The strength of this material is comparable to that of pure titanium There is a significant improvement;
2、该技术不需要复杂设备、不需专门脱脂工序,工艺简单,使生产成本大幅降低,特别适合医用植入物规格繁多、规模生产的特点。2. This technology does not require complex equipment or a special degreasing process. The process is simple and the production cost is greatly reduced. It is especially suitable for the characteristics of various specifications and large-scale production of medical implants.
附图说明Description of drawings
图1为凝胶注模成形硬质合金零件工艺流程图Figure 1 is the process flow chart of gel injection molding cemented carbide parts
具体实施方式Detailed ways
成形烧结:Forming and sintering:
实施实例1:Implementation example 1:
1、称取1920g的钛粉、80g钴粉,在行星球磨机中混粉2小时;1. Weigh 1920g of titanium powder and 80g of cobalt powder, and mix them in a planetary ball mill for 2 hours;
2、称取的159.7g单体丙烯酰胺、0.13g交联剂N,N′-亚甲基双丙烯酰胺溶于807ml去离子水中,并加入1中混合粉,搅拌均匀;2. Dissolve 159.7g monomeric acrylamide and 0.13g cross-linking agent N,N′-methylenebisacrylamide in 807ml deionized water, add the mixed powder in 1, and stir evenly;
3、量取4.35ml的分散剂油酸加入2溶液中,搅拌均匀,制成浆料;3. Measure 4.35ml of dispersant oleic acid and add it to the 2 solution, stir evenly to make a slurry;
4、将3浆料放入高真空环境中排气15分钟;4. Put the 3 slurry into a high vacuum environment to exhaust for 15 minutes;
5、在模具内壁涂薄薄一层脱模剂异辛醇;量取4ml催化剂N,N,N′,N′-四甲基乙二胺和4ml引发剂过硫酸铵(保证有足够注模时间),加入4浆料中,搅拌均匀;5. Apply a thin layer of release agent isooctyl alcohol on the inner wall of the mold; measure 4ml of catalyst N, N, N', N'-tetramethylethylenediamine and 4ml of initiator ammonium persulfate (to ensure enough injection molding time), add in 4 slurry, stir evenly;
6、注浆完毕后,将其放入60℃恒温的真空干燥箱内干燥;6. After the grouting is completed, put it in a vacuum drying oven with a constant temperature of 60°C to dry;
7、干燥30分钟后,脱模,修坯,再放入60℃恒温的真空干燥箱内干燥48小时;7. After drying for 30 minutes, remove the mold, trim the blank, and then put it in a vacuum drying oven with a constant temperature of 60 ° C for 48 hours;
8、将干燥过的坯体在高真空下烧结,即可得到人造多孔钛钴髋骨替换物。8. Sintering the dried green body under high vacuum to obtain the artificial porous titanium-cobalt hip bone replacement.
实施实例2:Implementation example 2:
1、称取1600g的钛粉、50g钴粉,在行星球磨机中混粉2小时;1. Weigh 1600g of titanium powder and 50g of cobalt powder, and mix them in a planetary ball mill for 2 hours;
2、称取的135g单体丙烯酰胺、0.1g交联剂N,N′-亚甲基双丙烯酰胺溶于750ml去离子水中,并加入1中混合粉,搅拌均匀;2. Dissolve 135g of monomeric acrylamide and 0.1g of cross-linking agent N,N'-methylenebisacrylamide in 750ml of deionized water, add the mixed powder in 1, and stir evenly;
3、量取3.5ml的分散剂油酸加入2溶液中,搅拌均匀,制成浆料;3. Take 3.5ml of dispersant oleic acid and add it to the 2 solution, stir evenly to make a slurry;
4、将3浆料放入高真空环境中排气15分钟;4. Put the 3 slurry into a high vacuum environment to exhaust for 15 minutes;
5、在模具内壁涂薄薄一层脱模剂异辛醇;量取3.5ml催化剂N,N,N′,N′-四甲基乙二胺和3.5ml引发剂过硫酸铵(保证有足够注模时间),加入4浆料中,搅拌均匀;5. Apply a thin layer of release agent isooctyl alcohol on the inner wall of the mold; measure 3.5ml of catalyst N, N, N', N'-tetramethylethylenediamine and 3.5ml of initiator ammonium persulfate (ensure that there is enough Injection molding time), add in 4 slurry, stir evenly;
6、注浆完毕后,将其放入60℃恒温的真空干燥箱内干燥;6. After the grouting is completed, put it in a vacuum drying oven with a constant temperature of 60°C to dry;
7、干燥30分钟后,脱模,修坯,再放入60℃恒温的真空干燥箱内干燥48小时;7. After drying for 30 minutes, remove the mold, trim the blank, and then put it in a vacuum drying oven with a constant temperature of 60 ° C for 48 hours;
8、将干燥过的坯体在高真空下烧结,即可得到人造多孔钛钴髋骨替换物。8. Sintering the dried green body under high vacuum to obtain the artificial porous titanium-cobalt hip bone replacement.
模具制作:Mold making:
1、称取200g的硅橡胶,加入2.6g的固化引发剂,搅拌均匀;1. Weigh 200g of silicone rubber, add 2.6g of curing initiator, and stir evenly;
2、在髋骨模型表面上均匀地涂上一层薄薄的硅橡胶,过程中要避免产生气泡,静置1小时;再称取300g的硅橡胶,加入3.9g的固化引发剂,搅拌均匀,涂在上一层硅橡胶上,静置1小时,再重复上一步,共需三层硅橡胶,然后静置12小时。2. Evenly coat a thin layer of silicone rubber on the surface of the hip bone model, avoid air bubbles during the process, and let it stand for 1 hour; then weigh 300g of silicone rubber, add 3.9g of curing initiator, and stir well , coated on the last layer of silicone rubber, let it stand for 1 hour, and then repeat the previous step, a total of three layers of silicone rubber are required, and then let it stand for 12 hours.
3、称取2000g的石膏粉,加入200ml水,搅拌均匀,倒入尺寸大于髋骨模型的纸盒中,然后将包裹硅橡胶的髋骨模型的一半浸入纸盒石膏浆中,20分钟后,在纸盒中石膏截面处铺三层软质纸,再倒入石膏浆至没过髋骨模型2cm,静置10小时,制成石膏靠模;3. Weigh 2000g of gypsum powder, add 200ml of water, stir evenly, pour it into a paper box larger than the hip bone model, then immerse half of the hip bone model wrapped in silicone rubber into the carton gypsum slurry, after 20 minutes, Lay three layers of soft paper on the cross-section of the plaster in the carton, then pour the plaster slurry to cover the hip bone model by 2cm, and let it stand for 10 hours to make a plaster master model;
4、取出包裹硅橡胶的髋骨模型,选一简单侧面,用剪刀剪开,将外层硅橡胶套取出,放入石膏靠模,至此制成髋骨的硅橡胶模具。4. Take out the silicone rubber-wrapped hip bone model, choose a simple side, cut it with scissors, take out the outer silicone rubber sleeve, put it into a plaster model, and make a silicone rubber mold of the hip bone.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNA2008101122138A CN101279106A (en) | 2008-05-21 | 2008-05-21 | Preparation method of gel injection molding of porous titanium-cobalt alloy medical implant |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNA2008101122138A CN101279106A (en) | 2008-05-21 | 2008-05-21 | Preparation method of gel injection molding of porous titanium-cobalt alloy medical implant |
Publications (1)
Publication Number | Publication Date |
---|---|
CN101279106A true CN101279106A (en) | 2008-10-08 |
Family
ID=40011891
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNA2008101122138A Pending CN101279106A (en) | 2008-05-21 | 2008-05-21 | Preparation method of gel injection molding of porous titanium-cobalt alloy medical implant |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101279106A (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101518820B (en) * | 2009-03-31 | 2010-07-28 | 北京科技大学 | A kind of metal powder gel-extrusion forming method |
CN102242288A (en) * | 2011-06-20 | 2011-11-16 | 烟台工程职业技术学院 | Preparation method of porous titanium |
CN102407332A (en) * | 2011-12-05 | 2012-04-11 | 烟台工程职业技术学院 | Preparation method of porous titanium |
CN102554228A (en) * | 2012-01-13 | 2012-07-11 | 北京科技大学 | Method for forming ultrathin-wall porous metal pipe fitting |
CN104212993A (en) * | 2014-07-24 | 2014-12-17 | 昆明理工大学 | Preparation method of porous titanium alloy material |
WO2015154872A1 (en) * | 2014-04-11 | 2015-10-15 | Heinrich Steger | Method for the production of a molded blank from metal powder |
CN105543526A (en) * | 2015-12-31 | 2016-05-04 | 中国钢研科技集团有限公司 | Method for preparing high-compactness titanium or titanium alloy by using gel casting formation |
US9610174B2 (en) | 2013-11-29 | 2017-04-04 | Metal Industries Research & Development Centre | Intervertebral implant |
CN108372293A (en) * | 2018-03-05 | 2018-08-07 | 北京科技大学 | A kind of method of metal powder gel injection molding catalysis degumming |
CN110978500A (en) * | 2019-12-25 | 2020-04-10 | 深圳光韵达光电科技股份有限公司 | 3D printing method and device based on thermal initiator addition |
-
2008
- 2008-05-21 CN CNA2008101122138A patent/CN101279106A/en active Pending
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101518820B (en) * | 2009-03-31 | 2010-07-28 | 北京科技大学 | A kind of metal powder gel-extrusion forming method |
CN102242288A (en) * | 2011-06-20 | 2011-11-16 | 烟台工程职业技术学院 | Preparation method of porous titanium |
CN102242288B (en) * | 2011-06-20 | 2012-09-26 | 烟台工程职业技术学院 | Preparation method of porous titanium |
CN102407332A (en) * | 2011-12-05 | 2012-04-11 | 烟台工程职业技术学院 | Preparation method of porous titanium |
CN102554228A (en) * | 2012-01-13 | 2012-07-11 | 北京科技大学 | Method for forming ultrathin-wall porous metal pipe fitting |
CN102554228B (en) * | 2012-01-13 | 2013-11-06 | 北京科技大学 | Method for forming ultrathin-wall porous metal pipe fitting |
US9610174B2 (en) | 2013-11-29 | 2017-04-04 | Metal Industries Research & Development Centre | Intervertebral implant |
WO2015154872A1 (en) * | 2014-04-11 | 2015-10-15 | Heinrich Steger | Method for the production of a molded blank from metal powder |
CN104212993A (en) * | 2014-07-24 | 2014-12-17 | 昆明理工大学 | Preparation method of porous titanium alloy material |
CN105543526A (en) * | 2015-12-31 | 2016-05-04 | 中国钢研科技集团有限公司 | Method for preparing high-compactness titanium or titanium alloy by using gel casting formation |
CN108372293A (en) * | 2018-03-05 | 2018-08-07 | 北京科技大学 | A kind of method of metal powder gel injection molding catalysis degumming |
CN110978500A (en) * | 2019-12-25 | 2020-04-10 | 深圳光韵达光电科技股份有限公司 | 3D printing method and device based on thermal initiator addition |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101279106A (en) | Preparation method of gel injection molding of porous titanium-cobalt alloy medical implant | |
Huang et al. | Novel porous hydroxyapatite prepared by combining H2O2 foaming with PU sponge and modified with PLGA and bioactive glass | |
Sánchez-Salcedo et al. | Hydroxyapatite/β-tricalcium phosphate/agarose macroporous scaffolds for bone tissue engineering | |
JP4070951B2 (en) | Method for producing porous calcium phosphate ceramic sintered body | |
CN101956091B (en) | A method for preparing titanium alloy materials by gel injection molding-self-propagating high-temperature synthesis | |
JP2001224679A (en) | Porous ceramic body | |
KR101268408B1 (en) | Composition and Manufacturing method for porous calcium phosphate granules by physical foaming | |
Dash et al. | Gel casting of hydroxyapatite with naphthalene as pore former | |
JP4540969B2 (en) | Calcium phosphate ceramic porous body and method for producing the same | |
Liu et al. | Engineering of a NIR-activable hydrogel-coated mesoporous bioactive glass scaffold with dual-mode parathyroid hormone derivative release property for angiogenesis and bone regeneration | |
CN102335460A (en) | Magnesium alloy/biological ceramic bone bracket based on photocuring and gel casting and forming method of bone bracket | |
CN100581686C (en) | Method for shaping gel injection molding made of cemented carbide with complicated shape | |
CN111440961A (en) | Active element-doped porous titanium material, preparation method and application thereof | |
Ahn et al. | Production of highly porous triphasic calcium phosphate scaffolds with excellent in vitro bioactivity using vacuum-assisted foaming of ceramic suspension (VFC) technique | |
Yang et al. | Preparation and properties of biomedical porous titanium alloys by gelcasting | |
CN105481466A (en) | A kind of ZrO2 toughened porous calcium phosphate bioceramic material and its preparation method and application | |
Zhang et al. | Effect of different dopants on porous calcium silicate composite bone scaffolds by 3D gel-printing | |
Vásquez et al. | α-TCP cements prepared by syringe-foaming: Influence of Na2HPO4 and surfactant concentration | |
Wu et al. | Preparation and performance evaluation of silica gel/tricalcium silicate composite slurry for 3D printing | |
CN106735235A (en) | A kind of cogelled casting method of gradient porous metal | |
CN108653804B (en) | Preparation method of silicon-doped calcium phosphate bone repair material | |
KR101397043B1 (en) | Preparation Method of Porous Bone Substitutes | |
JPWO2005039544A1 (en) | Calcium phosphate ceramics porous body and method for producing the same | |
JP3837502B2 (en) | Biological porous composite, method for producing the same, and use thereof | |
JP2001198208A (en) | Calcium phosphate-based ceramic sintered body for living body and method for producing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
WD01 | Invention patent application deemed withdrawn after publication |
Open date: 20081008 |