CN101275867A - a light detector - Google Patents
a light detector Download PDFInfo
- Publication number
- CN101275867A CN101275867A CNA2008101044232A CN200810104423A CN101275867A CN 101275867 A CN101275867 A CN 101275867A CN A2008101044232 A CNA2008101044232 A CN A2008101044232A CN 200810104423 A CN200810104423 A CN 200810104423A CN 101275867 A CN101275867 A CN 101275867A
- Authority
- CN
- China
- Prior art keywords
- electrode
- photodetector
- metal
- electrode lead
- light sensor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000956 alloy Substances 0.000 claims abstract description 29
- 229910052751 metal Inorganic materials 0.000 claims abstract description 29
- 239000007769 metal material Substances 0.000 claims abstract description 7
- 239000002184 metal Substances 0.000 claims description 24
- 229910045601 alloy Inorganic materials 0.000 claims description 23
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 12
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 11
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 10
- 239000010949 copper Substances 0.000 claims description 9
- 229910052802 copper Inorganic materials 0.000 claims description 8
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims description 7
- 229910052782 aluminium Inorganic materials 0.000 claims description 7
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 7
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims description 7
- 229910052737 gold Inorganic materials 0.000 claims description 7
- 239000010931 gold Substances 0.000 claims description 7
- 229910052709 silver Inorganic materials 0.000 claims description 7
- 239000004332 silver Substances 0.000 claims description 7
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims description 6
- 229910052804 chromium Inorganic materials 0.000 claims description 6
- 239000011651 chromium Substances 0.000 claims description 6
- 229910052759 nickel Inorganic materials 0.000 claims description 6
- 229910052742 iron Inorganic materials 0.000 claims description 5
- 239000000463 material Substances 0.000 claims description 5
- 239000003990 capacitor Substances 0.000 claims description 4
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 claims description 3
- 230000004298 light response Effects 0.000 claims description 2
- 230000003287 optical effect Effects 0.000 abstract description 4
- 238000010586 diagram Methods 0.000 description 5
- 239000010409 thin film Substances 0.000 description 3
- 238000001514 detection method Methods 0.000 description 2
- 239000010408 film Substances 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 230000007123 defense Effects 0.000 description 1
- HBAGRTDVSXKKDO-UHFFFAOYSA-N dioxido(dioxo)manganese lanthanum(3+) Chemical compound [La+3].[La+3].[O-][Mn]([O-])(=O)=O.[O-][Mn]([O-])(=O)=O.[O-][Mn]([O-])(=O)=O HBAGRTDVSXKKDO-UHFFFAOYSA-N 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000005065 mining Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 238000004549 pulsed laser deposition Methods 0.000 description 1
- 239000000523 sample Substances 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000007736 thin film deposition technique Methods 0.000 description 1
- 238000001771 vacuum deposition Methods 0.000 description 1
Images
Landscapes
- Photometry And Measurement Of Optical Pulse Characteristics (AREA)
Abstract
本发明提供一种光探测器,该光探测器包括:光传感器,连接所述光传感器的第一电极和第二电极;以及第一电极引线和第二电极引线,该第一电极引线和第二电极引线的一端分别与第一电极和第二电极连接,另一端作为输出端;所述光传感器由金属或合金材料制成。本发明的光探测器在紫外或红外波段下可快速响应飞秒脉宽的激光脉冲,产生电压脉冲的宽度可小于0.5纳秒,脉冲全宽度只有几个纳秒。
The present invention provides a photodetector, which includes: a photosensor connected to a first electrode and a second electrode of the photosensor; and a first electrode lead and a second electrode lead, the first electrode lead and the second electrode lead One end of the two electrode lead wires is respectively connected to the first electrode and the second electrode, and the other end is used as an output end; the optical sensor is made of metal or alloy material. The photodetector of the present invention can quickly respond to laser pulses with femtosecond pulse widths in ultraviolet or infrared bands, and the width of generated voltage pulses can be less than 0.5 nanoseconds, and the full pulse width is only a few nanoseconds.
Description
技术领域 technical field
本发明涉及激光探测器件,具体地涉及一种红外或紫外光探测器。The invention relates to a laser detection device, in particular to an infrared or ultraviolet light detector.
背景技术 Background technique
对于激光能量、功率、脉宽和波形的探测,不仅对激光器件和基础研究非常重要,而且在军事、国防、农业、资源开采、交通等方面也具有非常广泛的用途。激光探测器元件主要采用对激光有一定响应特性的半导体材料、常规化合物材料以及高分子复合材料等等支撑,其结构和原理也多种多样。目前,人们已经研究发展了诸如热电、光电、热释电等各种类型的激光探测器,例如,申请号为200410074668、200410069052的中国专利申请分别公开了光响应层为生长在衬底上的掺杂锰酸盐薄膜及掺杂锰酸镧薄膜层的光电探测器,文献[1]P.X.Zhang,W.K.Lee,G.Y.Zhang.“Time dependence of laser-induced thermo-electric voltages in La1-xCaxMnO3 and YBa2Cu3O7-δthin films.”Appl.Phys.Lett.,2002,81(21):4026~4028中公开了以La1-xCaxMnO3为光相应层的热电型激光探测器,但这种热电型激光探测器的光生伏特信号起源于热梯度导致的热电效应,限制了其作为激光探测器的响应速度。因此热电型探测器虽然响应范围宽,但响应时间比较慢,多为毫秒或微秒级。因此对快响应、高灵敏度的新型紫外光探测器探索仍是研究的热点之一,迄今为止还未见到将金属或合金直接用于光探测器的报道。The detection of laser energy, power, pulse width and waveform is not only very important for laser devices and basic research, but also has a very wide range of uses in military, national defense, agriculture, resource mining, transportation, etc. Laser detector components are mainly supported by semiconductor materials, conventional compound materials, and polymer composite materials that have certain response characteristics to laser light, and their structures and principles are also varied. At present, people have researched and developed various types of laser detectors such as pyroelectric, photoelectric, and pyroelectric. Heteromanganate film and photodetector doped lanthanum manganate film layer, literature [1] PXZhang, WKLee, GYZhang. "Time dependence of laser-induced thermo-electric voltages in La 1-x Ca x MnO 3 and YBa 2 Cu 3 O 7-δ thin films.” Appl. Phys. Lett., 2002, 81(21): 4026-4028 discloses a pyroelectric laser detector with La 1-x Ca x MnO 3 as the photoresponse layer , but the photovoltaic signal of this pyroelectric laser detector originates from the pyroelectric effect caused by the thermal gradient, which limits its response speed as a laser detector. Therefore, although the pyroelectric detector has a wide response range, the response time is relatively slow, mostly on the order of milliseconds or microseconds. Therefore, the exploration of fast-response and high-sensitivity new ultraviolet photodetectors is still one of the research hotspots. Up to now, there have been no reports of using metals or alloys directly in photodetectors.
发明内容 Contents of the invention
本发明的目的在于提供一种激光探测器,其采用金属或合金作为光传感器(即光响应芯片),不需要辅助电源和电子电路,激光照射后就能够直接产生光电信号。The object of the present invention is to provide a laser detector, which uses metal or alloy as the photosensor (ie photoresponse chip), does not need auxiliary power supply and electronic circuit, and can directly generate photoelectric signal after laser irradiation.
为了实现上述目的,本发明实施例提供的光探测器包括:In order to achieve the above purpose, the photodetector provided by the embodiment of the present invention includes:
光传感器;light sensor;
连接所述光传感器的第一电极和第二电极;以及connecting the first electrode and the second electrode of the light sensor; and
第一电极引线和第二电极引线,该第一电极引线和第二电极引线的一端分别与第一电极和第二电极连接,另一端作为输出端;a first electrode lead and a second electrode lead, one end of the first electrode lead and the second electrode lead are respectively connected to the first electrode and the second electrode, and the other end is used as an output end;
所述光传感器由金属或合金材料制成。The light sensor is made of metal or alloy material.
所述光传感器的光响应频段为红外和/或紫外光频段。The light response frequency band of the light sensor is infrared and/or ultraviolet light frequency band.
本发明直接利用金属或合金制作的光探测器,可以探测激光的能量、功率及脉冲波形等,在紫外或红外波段下可快速响应飞秒脉宽的激光脉冲,产生电压脉冲的宽度可小于0.5纳秒,脉冲全宽度只有几个纳秒。The invention directly utilizes the photodetector made of metal or alloy, which can detect the energy, power and pulse waveform of the laser, and can quickly respond to the laser pulse with femtosecond pulse width in the ultraviolet or infrared band, and the width of the generated voltage pulse can be less than 0.5 nanoseconds, the full width of the pulse is only a few nanoseconds.
附图说明 Description of drawings
此处所说明的附图用来提供对本发明的进一步理解,构成本申请的一部分,并不构成对本发明的限定。在附图中:The drawings described here are used to provide further understanding of the present invention, constitute a part of the application, and do not limit the present invention. In the attached picture:
图1为本发明一实施例的采用金属或合金线制作的光探测器结构示意图;1 is a schematic structural view of a photodetector made of metal or alloy wires according to an embodiment of the present invention;
图2为图1中金属或合金线为螺旋形状时的光探测器结构示意图;Fig. 2 is a schematic diagram of the photodetector structure when the metal or alloy wire in Fig. 1 is in a spiral shape;
图3为图1中金属或合金线为锯齿形状时的光探测器结构示意图;Fig. 3 is a schematic diagram of the photodetector structure when the metal or alloy wire in Fig. 1 is in a zigzag shape;
图4为本发明另一实施例的光探测器结构示意图;4 is a schematic structural diagram of a photodetector according to another embodiment of the present invention;
图5为本发明一实施例的光探测器产生的光伏特信号图。FIG. 5 is a diagram of the photovoltaic characteristic signal generated by the photodetector according to an embodiment of the present invention.
具体实施方式 Detailed ways
为使本发明的目的、技术方案和优点更加清楚,下面结合附图对本发明的具体实施例进行详细说明。在此,本发明的示意性实施例及其说明用于解释本发明,但并不作为对本发明的限定。In order to make the object, technical solution and advantages of the present invention clearer, specific embodiments of the present invention will be described in detail below in conjunction with the accompanying drawings. Here, the exemplary embodiments and descriptions of the present invention are used to explain the present invention, but not to limit the present invention.
实施例1Example 1
参照图1,本实施例的光探测器包括:外壳(图中未示出),光传感器(或称光响应芯片)1,第一电极2,第二电极3,第一电极引线4以及第二电极引线5。其中,所述的光传感器1由金属或合金制作,光传感器的两连接端各连接第一电极2和第二电极3;第一电极引线4和第二电极引线5的一端分别连接第一电极2和第二电极3,第一电极引线4和第二电极引线5的另一端是信号输出端;所述光传感器1、第一电极2、第二电极3、第一电极引线4及第二电极引线5设置于所述外壳内,并利用同轴电缆接头从所述外壳引出所述输出端,此输出端可连接放大电路(以放大光传感器产生的光伏特信号);该输出端还可以连接电压测试设备6,以探测所述传感器产生的光伏特信号。Referring to Fig. 1, the photodetector of the present embodiment comprises: housing (not shown in the figure), photosensor (or claim photoresponse chip) 1,
所述光传感器为由金属或合金材料制成。所述金属例如可为铜、金、银、铝、镍、铬、铁等,但并不限于此。所述合金例如可为包括上述金属中的一种或多种材料的合金。本实施例中,作为光传感器1的金属或合金的形状并无特别的限定,可以为金属或合金片,也可以为金属或合金线。例如,当传感器为采用金属或合金线时,该金属或合金线既可以是直线形状,也可以弯曲成其他形状,如矩形、螺旋形、锯齿形等,并且该金属或合金线既可以是一根,也可以是多根并联,本发明并不限定于此。图2和图3分别为具有螺旋形状和锯齿形状传感器的光探测器的结构示意图。The light sensor is made of metal or alloy material. The metal may be, for example, copper, gold, silver, aluminum, nickel, chromium, iron, etc., but is not limited thereto. The alloy may, for example, be an alloy comprising one or more of the aforementioned metals. In this embodiment, the shape of the metal or alloy used as the
本发明实施粒中,所述第一电极2以及第二电极3可以是金属(如金、银、铂、铟、铝等)或合金,也可以是其他导电性材料。本发明实施例中,优选地采用金属薄膜作为电极,所需的电极薄膜可以用化学气相沉积、脉冲激光沉积、溅射、真空镀膜或其他的薄膜沉积方法制备,生长在金属或合金光传感器的连接端。In the embodiment of the present invention, the
所述第一电极引线4和第二电极引线5可以采用常规的金属电极引线(如Φ0.2mm的铜丝,但并不限于此),所述第一电极引线4和第二电极引线5的一端可分别焊接在第一电极2和第二电极3上,另一端作为输出端。The
本发明实施例中,所述外壳为金属或合金外壳,以对外界的电磁干扰起屏蔽作用。In the embodiment of the present invention, the shell is a metal or alloy shell to shield external electromagnetic interference.
采用如图1所示的光探测器,就可以探测激光能量、激光功率、激光脉冲波形等多种激光参数,光传感器响应的波段为紫外或红外波段。Using the photodetector as shown in Figure 1, various laser parameters such as laser energy, laser power, and laser pulse waveform can be detected, and the response band of the photosensor is the ultraviolet or infrared band.
例如,在一般常用的直的铜线(直径例如可为0.1mm~1mm,但并不限定于此)上生长金属材料电极,再制作出如图1所示的结构的紫外或红外光探测器。然后选用350MHZ示波器,连接该光探测器的两输出端,以测量紫外或红外脉冲激光。若以波长为1064nm的红外飞秒脉宽脉冲激光做探测光,激光单脉冲的能量为5毫焦,光束的面积一个平方厘米,避开电极照在铜线上,则如图5所示,用示波器测量得到大约3.5mV的直接电压输出,即输出光生伏特信号达到了~3.5毫伏,另光生伏特信号上升时间为<1ns,半高宽为~1ns。同时应注意的是其光生伏特信号的上升和半高宽均达到示波器的极限,如选用更快速的示波器测量,其上升时间会更短,表明此探测器具有快响应的特性。For example, metal material electrodes are grown on commonly used straight copper wires (diameter, for example, 0.1 mm to 1 mm, but not limited thereto), and then an ultraviolet or infrared photodetector with the structure shown in Figure 1 is produced . Then select a 350MHZ oscilloscope to connect the two output terminals of the light detector to measure ultraviolet or infrared pulsed laser light. If the infrared femtosecond pulse width pulse laser with a wavelength of 1064nm is used as the probe light, the energy of the single laser pulse is 5 millijoules, the area of the beam is one square centimeter, and the electrode is avoided to shine on the copper wire, as shown in Figure 5. A direct voltage output of about 3.5mV was obtained by measuring with an oscilloscope, that is, the output photovoltaic signal reached ~3.5 millivolts, and the rise time of the photovoltaic signal was <1ns, and the full width at half maximum was ~1ns. At the same time, it should be noted that the rise and half-height width of the photovoltaic signal reach the limit of the oscilloscope. If a faster oscilloscope is used for measurement, the rise time will be shorter, indicating that this detector has the characteristics of fast response.
若本发明采用金、银、铝、镍、铬、铁等材料的直的线代替直的铜线作为光传感器,则制备出的光探测器同样可以探测激光的能量、功率、脉冲波形等,在紫外或红外波段下可响应飞秒脉宽的激光脉冲,产生电压脉冲的宽度可小于0.5纳秒,脉冲全宽度只有几个纳秒。If the present invention adopts straight wires of materials such as gold, silver, aluminum, nickel, chromium, iron, etc. instead of straight copper wires as optical sensors, the prepared optical detectors can also detect the energy, power, pulse waveform, etc. of laser light, It can respond to laser pulses with femtosecond pulse width in the ultraviolet or infrared band, and the width of the generated voltage pulse can be less than 0.5 nanoseconds, and the full pulse width is only a few nanoseconds.
若本发明采用铜、金、银、铝、镍、铬、铁等材料的其他形状的线,例如矩形、螺旋形或锯齿形的线,采用铜、金、银、铝、镍、铬、铁等材料的金属片,来代替直的铜线制备光探测器,同样可以探测激光的能量、功率、脉冲波形等,在紫外或红外波段下可响应飞秒脉宽的激光脉冲,产生电压脉冲的宽度可小于0.5纳秒,脉冲全宽度只有几个纳秒。If the present invention adopts wires of other shapes such as copper, gold, silver, aluminum, nickel, chromium, iron, etc., such as rectangular, spiral or zigzag wires, copper, gold, silver, aluminum, nickel, chromium, iron Metal sheets of other materials are used to replace straight copper wires to prepare photodetectors, which can also detect laser energy, power, pulse waveforms, etc., and can respond to laser pulses with femtosecond pulse widths in the ultraviolet or infrared bands to generate voltage pulses. The width can be less than 0.5 nanoseconds, and the full pulse width is only a few nanoseconds.
若本发明采用合金材料代替所述金属材料制备光探测器,同样可以探测激光的能量、功率、脉冲波形等,在紫外或红外波段下可响应飞秒脉宽的激光脉冲,产生电压脉冲的宽度可小于0.5纳秒,脉冲全宽度只有几个纳秒。If the present invention uses alloy materials instead of the metal material to prepare photodetectors, it can also detect the energy, power, pulse waveform, etc. of the laser, and can respond to laser pulses with femtosecond pulse widths in the ultraviolet or infrared bands to generate voltage pulses with the width of It can be less than 0.5 nanoseconds, and the full pulse width is only a few nanoseconds.
实施例2Example 2
本实施例仍按实施例1的结构制作,区别在于在第一电极引线4和第二电极引线5之间并联一电容7,请参照图4所示。该电容的作用在于调节光探测器的RC常数,从而可进一步提高该光探测器的响应速度。本实施例中,电容的大小优选地为0.01pF~10pF,但并不限定于此。This embodiment is still manufactured according to the structure of
如上所述的采用金属或合金材料制作的光探测器,结构简单,响应波段为紫外和红外波段,可响应飞秒脉宽的激光脉冲,响应时间在1纳秒以下,产生电压脉冲的半高宽约1纳秒,具有良好的快速响应的特性。As mentioned above, the photodetector made of metal or alloy materials has a simple structure, and the response bands are ultraviolet and infrared bands. It can respond to laser pulses with a femtosecond pulse width, and the response time is less than 1 nanosecond, and the half-height of the voltage pulse is generated. It is about 1 nanosecond wide and has good fast response characteristics.
以上实施例仅用以说明而非限制本发明的技术方案,尽管参照上述实施例对本发明进行了详细说明,本领域的普通技术人员应当理解:对本发明探测器电路或制作方法进行修改或者等同替换,而不脱离本发明的精神和范围的任何修改或局部替换,其均应涵盖在本发明的权利要求范围当中。The above embodiments are only used to illustrate and not limit the technical solutions of the present invention. Although the present invention has been described in detail with reference to the above embodiments, those of ordinary skill in the art should understand that the detector circuit or manufacturing method of the present invention is modified or equivalently replaced. , and any modification or partial replacement without departing from the spirit and scope of the present invention shall fall within the scope of the claims of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNA2008101044232A CN101275867A (en) | 2008-04-18 | 2008-04-18 | a light detector |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNA2008101044232A CN101275867A (en) | 2008-04-18 | 2008-04-18 | a light detector |
Publications (1)
Publication Number | Publication Date |
---|---|
CN101275867A true CN101275867A (en) | 2008-10-01 |
Family
ID=39995516
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNA2008101044232A Pending CN101275867A (en) | 2008-04-18 | 2008-04-18 | a light detector |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101275867A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8009284B2 (en) | 2009-03-25 | 2011-08-30 | Tsinghua University | Method for detecting electromagnetic wave |
US8334974B2 (en) | 2009-05-19 | 2012-12-18 | Tsinghua University | Method and apparatus for detecting polarizing direction of electromagnetic wave |
US9786855B2 (en) | 2014-12-30 | 2017-10-10 | Indian Institute Of Technology Bombay | Micro electro mechanical system (MEMS) based wide-band polymer photo-detector |
CN113375857A (en) * | 2021-06-09 | 2021-09-10 | 江苏创芯海微科技有限公司 | Self-verifying vacuum degree sensor |
-
2008
- 2008-04-18 CN CNA2008101044232A patent/CN101275867A/en active Pending
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8009284B2 (en) | 2009-03-25 | 2011-08-30 | Tsinghua University | Method for detecting electromagnetic wave |
US8013988B2 (en) | 2009-03-25 | 2011-09-06 | Tsinghua University | Apparatus for detecting electromagnetic wave |
CN101846549B (en) * | 2009-03-25 | 2011-12-14 | 清华大学 | Electromagnetic wave detection device and detection method |
US8334974B2 (en) | 2009-05-19 | 2012-12-18 | Tsinghua University | Method and apparatus for detecting polarizing direction of electromagnetic wave |
US9786855B2 (en) | 2014-12-30 | 2017-10-10 | Indian Institute Of Technology Bombay | Micro electro mechanical system (MEMS) based wide-band polymer photo-detector |
CN113375857A (en) * | 2021-06-09 | 2021-09-10 | 江苏创芯海微科技有限公司 | Self-verifying vacuum degree sensor |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101285705B (en) | infrared light detector | |
WO2017136585A1 (en) | Distributed nanowire sensor for single photon imaging | |
CN103344328B (en) | A Multilayer Structure Lateral Pyroelectric Photodetector | |
CN101275867A (en) | a light detector | |
CN111174908A (en) | Laser detector and corresponding laser power meter | |
CN109494293A (en) | Terahertz detector and its manufacturing method | |
CN108172663A (en) | A packaging method and packaging structure of a ZnMgO solar-blind ultraviolet detector | |
CN105044584A (en) | System used for detecting charge and electric field response of semiconductor device | |
CN102231403B (en) | Ultraviolet detector | |
CN103367625A (en) | Obliquely-tangential gallium arsenide single crystal photo-thermal detector | |
CN101261157B (en) | A fast-response infrared photodetector and its preparation method | |
CN104296879A (en) | Terahertz unit detector | |
CN112201704B (en) | Anti-interference high-sensitivity ultraviolet light detector | |
JPH0388372A (en) | Luminouse power measuring device for semiconductor light emitting device | |
CN101261158B (en) | Photodetector | |
JP2013231714A (en) | Bolometer | |
CN106997907B (en) | A kind of visible blind UV detector of high sensitivity | |
CN106783832A (en) | A kind of new gallium nitride ultraviolet detector | |
CN100458382C (en) | Quick-responding high-sensitivity ultraviolet detector made by calcium-titanium oxide monocrystal material | |
CN101363741A (en) | A Broadband Optical Position Detector | |
CN109192866A (en) | A Circularly Polarized Light Detector Based on Schottky Barrier | |
JP5290505B2 (en) | Manufacturing method of optical sensor | |
CN106997913B (en) | Solar-blind UV light detector unit and array | |
CN100573060C (en) | A kind of quick response broadband optical detector | |
CN101510572B (en) | Method for detecting pulsed laser energy using a pulsed laser energy detector |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C12 | Rejection of a patent application after its publication | ||
RJ01 | Rejection of invention patent application after publication |
Open date: 20081001 |