CN101268281A - 包括变速马达的多级压缩系统 - Google Patents
包括变速马达的多级压缩系统 Download PDFInfo
- Publication number
- CN101268281A CN101268281A CNA2006800343556A CN200680034355A CN101268281A CN 101268281 A CN101268281 A CN 101268281A CN A2006800343556 A CNA2006800343556 A CN A2006800343556A CN 200680034355 A CN200680034355 A CN 200680034355A CN 101268281 A CN101268281 A CN 101268281A
- Authority
- CN
- China
- Prior art keywords
- centrifugal compressor
- speed
- compression system
- stage
- motor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D25/00—Pumping installations or systems
- F04D25/02—Units comprising pumps and their driving means
- F04D25/06—Units comprising pumps and their driving means the pump being electrically driven
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D17/00—Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
- F04D17/08—Centrifugal pumps
- F04D17/10—Centrifugal pumps for compressing or evacuating
- F04D17/12—Multi-stage pumps
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D25/00—Pumping installations or systems
- F04D25/16—Combinations of two or more pumps ; Producing two or more separate gas flows
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D27/00—Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids
- F04D27/02—Surge control
- F04D27/0261—Surge control by varying driving speed
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D27/00—Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids
- F04D27/02—Surge control
- F04D27/0269—Surge control by changing flow path between different stages or between a plurality of compressors; load distribution between compressors
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B30/00—Energy efficient heating, ventilation or air conditioning [HVAC]
- Y02B30/70—Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Structures Of Non-Positive Displacement Pumps (AREA)
- Control Of Positive-Displacement Air Blowers (AREA)
Abstract
多级流体压缩系统包括带有第一入口和第一出口的第一离心式压缩机级以及带有第二入口和第二出口的第二离心式压缩机级。第二入口接收来自第一出口的压缩流体流。第一变速马达联接到第一离心式压缩机级,并可操作以便以第一速度驱动第一离心式压缩机级。第二变速马达联接到第二离心式压缩机级,并可操作以便以第二速度驱动第二离心式压缩机级。第一速度和第二速度是各自独立的变量。
Description
相关申请的交叉引用
本申请基于35U.S.C.sec.119要求2005年9月19日提交的临时专利申请号为60/718389的优先权,在此全文引用。
背景技术
本发明涉及一种包括两个或更多压缩级的离心式压缩机系统。更特别的是,本发明涉及一种离心式压缩机系统,其包括由直接连接的高速变速马达独立驱动的多个压缩级,优选该马达装备有主动磁轴承。
多级压缩机组已经用来提供比用单个压缩机组可能提供的压力更高的压力。这些组通常由单个驱动装置驱动,这样所有的马达以匀速或等速比运行。
单个驱动马达的使用使得相对其他级来改变一级的运行变得困难。例如,第一级可能在一定条件下以最理想的速度运行。然而,这个速度对于其他级来说可能不是理想的。如果这些级由公用的驱动装置驱动,在其他级的速度不变化时一个级的速度也不能变化。
发明内容
在一个实施例中,本发明提供了一种多级流体压缩系统,它包括带第一入口和第一出口的第一离心式压缩机级和带第二入口和第二出口的第二离心式压缩机级。第二入口接收来自第一出口的压缩流体流。第一变速马达与第一离心压缩机级相联,并可操作以便以第一速度驱动第一离心式压缩机级。第二变速马达与第二离心压缩机级相联,并可操作以便以第二速度驱动第二离心式压缩机级。第一速度和第二速度是各自独立的变量。
在另一实施例中,本发明提供了一种包括多个离心式压缩机组的多级压缩系统。每个压缩机组具有入口和出口。第一压缩机组以第一压力吸入流体,最后的压缩机组以第二压力排出流体。压缩系统还包括多个变速马达。每个马达直接驱动多个压缩组中的一个。每个马达独立于其他马达以介于最小马达速度和最大马达速度之间的速度运行。控制系统是可操作的以便根据第二压力至少部分独立的改变每个马达的速度。
通过考虑具体实施方式和附图,本发明的其他方面变得明显。
附图说明
图1示出压缩模块的横截面。
图2是图1中压缩模块的压缩机入口横截面视图。
图3示出水平位置的压缩模块的透视图。
图4是压缩模块在垂直位置的透视图。
图5是从压缩机的一级和热交换器到另一级的连接关系和流动情况的说明。
图6是压缩系统的实施方式的示意图。
图7是两个马达的示意图,其中一个马达驱动一个压缩机,另一个马达驱动两个压缩机。
具体实施方式
在详细解释本发明的任何实施方式之前,必须理解本发明并未将其应用限于在下面说明书中阐明的或附图中示出的构造和元件的布置的详细情况。本发明能够适用于其他实施方式并且可以以各种方式试验或实现。同时,可以理解的是,这里用词语和专业术语目的是为了说明,而不应该作为限制。这里用“包括”、“包含”、“带有”及它们的变型是指包含其后列举的元件及其等效物以及其他元件。除非详细说明或另外限制,术语“安装”、“连接”、“支承”、“联接”及其变型都是广义使用,其包括直接和间接安装、连接、支承、联接。另外,“连接”和“联接”不限于物理或机械连接或联接。
图1示出流动压缩模块10(有时被称作压缩级或压缩组)包括原动机,如与压缩机20联接的马达、并可操作来产生压缩流体的马达15。在示出的结构中,马达15用来做原动机。然而,另一结构可能用其他的原动机,例如但不限于内燃机、柴油机、燃气轮机等。
马达15包括转子25和限定出定子孔35的定子30。转子25可旋转地支承在轴40上,其大体上位于定子孔35内。图示的转子25包括永久磁铁45,永久磁铁45与定子30产生的磁场互相作用从而引起转子25和轴40的旋转。在优选结构中,转子以超过50000RPM的速度操作,更快或更慢的速度也是可能的。可以改变定子30的磁场来改变轴40的转速。当然,如果需要的话,其他结构可以采用其他类型的马达马达(如同步、电感、电刷直流马达等)。
马达15位于为马达15提供支承和保护的壳体50的内部。轴承55位于壳体50的任意一端并由壳体50直接或间接的支承。轴承55依次支承轴40旋转。在示出的结构中,采用磁轴承55,其他轴承(如滚柱、滚珠、滚针等)也适用。在图1示出结构中,采用第二轴承60来在一个或两个磁轴承55都失效的情况下提供轴支承。
在一些结构中,外部套管65包围壳体50的一部分并在它们之间限定出冷却通道70。液体(如乙二醇、冷冻剂等)或气体(如空气、二氧化碳等)冷却剂流经冷却通道70以在工作期间冷却马达15。
电柜75可以位于壳体50的一端以封闭各种元件如马达控制器、断路器、开关等等。示出的实施方式包括控制器76。马达轴40伸出超过壳体50的另一端以允许将轴联接到压缩机20。
压缩机20包括入口壳体或入口环80、叶轮85、扩压器90和涡卷95。涡卷95包括第一部分100和第二部分105。第一部分100附接到壳体50以使压缩机20的固定部分联接到马达15的固定部分。第二部分105附接到第一部分100来限定入口通道110和集流通道115。第二部分105还限定出包括泄流通道125的泄流部分120,泄流通道125与集流通道115流体连通以从压缩机20中泄出压缩流体。
在示出的结构中,涡卷95的第一部分100包括为压缩机20和马达15提供支承的支脚130。在其他结构中,使用其他元件在水平位置上支承压缩机20和马达15。在另外一些结构中,采用一个或多个支脚,或者其他装置在垂直方向或其他需要的方向支承马达15和压缩机20。
扩压器90径向位于集流通道115的内部,这样来自叶轮85的流体在进入涡卷95之前必须经过扩压器90。如图2所示,扩压器90包括空气动力面135(如叶刃、叶片、叶鳍等),该表面设置为当流体经过扩压器90时降低流速并增加流体压力。
叶轮85联接到转子轴40,这样叶轮85与马达转子25一起旋转。在示出的结构中,杆140螺接到轴40,螺母145螺接到杆140上以将叶轮85固定附接到轴40上。叶轮85伸出支承马达轴40的轴承55外,就如以悬臂的方式被支承。其他结构可能采用其他附接方式将叶轮85附接到轴40上,采用其他支承方式支承叶轮85。同样的,本发明不应该限于图1中示出的结构。此外,虽然示出的结构包括直接连接到叶轮85的马达15,其他结构可能用增速器,如变速箱以允许马达15以低于叶轮85的速度运行。
叶轮85包括多个设置为限定出入口导流部分155和出口导流部分160的空气动力面或叶片150。入口导流部分155位于叶轮85的第一端,其可操作的在大致轴向方向上将流体吸入叶轮85。叶片150使流体加速并将流体导向位于叶轮85另一端附近的出口导流部分160。流体在沿叶轮85周围延伸360度方向至少部分径向方向上从出口导流部分160泄出。
叶轮85配合固定密封环162形成密封。密封是为了降低作用于叶轮85背面部分的轴向力,从而减小朝向叶片150的总的轴向推力。这种推力降低到一定水平才会允许使用主动磁推力轴承163而不是更常用的推力轴承。磁推力轴承163包括推力盘164,该推力盘164有一个与没有上述密封系统时所需的直径相比更小的直径。
入口壳体80,有时称为入口环,连接到涡卷95并包括通向叶轮85的流动通道165。待压缩的流体通过叶轮85吸入流动通道165并流入叶轮85的入口导流部分155。流动通道165包括位于叶轮85的叶片150附近来降低叶片150顶部流体的泄漏的叶轮接触部分170。由此,叶轮85和入口壳体80共同限定出多个大致封闭的流动通道175。
在图示的结构中,入口壳体80还包括方便管或其他导流件或保持件的连接的凸缘180。例如,过滤器组件可以连接到凸缘180并用来在进入叶轮85之前过滤这些待压缩的流体。管将流体从过滤器组件导向凸缘180并在过滤器之后充分的密封系统和阻止不需要的流体或污染物进入。
转到图2,叶轮85被更为详细的示出。入口导流部分155基本上呈环形并沿入口通道185将流体吸入叶轮85。流体以大致轴向方向流入并流经限定在相邻的叶片150之间的通道175进入出口导流部分160。
图3以透视方式示出图1和2中的压缩系统或模块10。凸缘180连接到过滤器或其他清洁流体源以接收待压缩气体。此外,第二凸缘190可连接到管、接收器或其他流体保持装置以从压缩模块10接收压缩流体。如果示出的模块10是三级压缩系统中的第二级,第一级的出口将连接到凸缘180以传送部分压缩的流体。经过进一步的压缩后,流体将从第二凸缘190泄出并将流向第三级的入口。
图4示出在变换方向上的另一压缩模块195。尤其是,图4中的压缩模块195在垂直方向上被支承,其除了支承结构以外与图3中的结构类似。图4的结构包括支承压缩模块195的三个支脚200。当然其他结构可能包括其他支承系统,并且可能在不同的方向上支承压缩系统195,如果需要的话。
图5示出设置为限定多级压缩机205的一系列压缩模块10a、10b、10c。图5示出每个压缩模块10a、10b、10c与图1-3中的压缩模块10类似。然而,其他结构可能使用图4中的压缩模块195,可能混合使用图3和4中的压缩模块10、195或者全部使用不同的模块。
为了方便描述,使用气体作为待压缩流体来描述图5。当然本领域普通技术人员将了解利用本系统可以压缩许多其他流体。第一模块10a吸入处于未压缩状态的气流210并泄出部分压缩的气流215。离开第一模块10a的气体的压力由入口压力和模块10a的压力比决定。例如,如果气体以一个大气压进入第一模块10a,压缩机以2.5压力比工作,气体将会以大约2.5个大气压的压力离开第一模块10a。
被部分压缩的气体215流向用来冷却被部分压缩的气体215以提高整个压缩系统效率的中间级热交换器220。示出的结构中,冷却流体225(如冷却气体,水,乙二醇,冷却剂等)流经热交换器220以冷却气体215。
冷却过的被部分压缩的气体230流入多级压缩系统205的第二级10b的入口。第二级压缩模块10b进一步压缩气体并泄出第二被部分压缩的气流235。再一次,泄出压力基本上是入口压力和第二模块10b的压力比的函数。继续上述的例子,如果气体以2.5个大气压进入第二模块10b,并且第二模块10b的压力比为2,泄出压力将是大约5个大气压。
第二被部分压缩的气流235流经第二中间级热交换器240,在这里气体被流经热交换器240的冷却剂245再一次冷却。经过第二中间级热交换器240后,被部分压缩的气体250继续流向压缩系统的第三级10c。
第三级模块10c在入口部分接收被部分压缩的气体250并可操作的进一步将气体压缩至最终期望的出口压力。气体255从第三级模块10c以期望的出口压力泄出。和前两级10a、10b一样,出口压力是压力比和入口压力的函数。由此,完成上述例子,如果气体以5个大气压进入第三模块10c并且最后的压缩机的压力比为4,最终压力将会是大约20个大气压。
可能在压缩系统的最后一级之后采用最后的中间级冷却器260来在气体被引入其它系统(如过滤器,干燥机等)或应用点之前冷却气体。同其他热交换器220、240一样,在气体作为压缩气流270的终端流泄出之前用冷却剂流265冷却气体。虽然图5示出在每一级使用单个压缩机的三级系统205,本系统同样适用于采用多于两级或更多级的系统。另外,一些装置可能在一级或多级中包括多个压缩机以增加系统的功率。在给定级中的多个压缩机可以独立工作或者如果需要的话可以联合工作。同样的,本发明不应该限于在每一级使用一个压缩机的三级系统。
正如本领域普通技术人员所了解的,图5中的三级系统205的压力比大于任一级10a、10b、10c中的压力比。在上面的例子中,三级压缩系统205的压力比大约是20比1,当然,取决于所希望的应用或待压缩流体应用,其他系统将具有不同的压力比。
图6是适合于与图5示出的多级系统205使用的一个可能的控制装置275的示意图。每个马达15a、15b、15c包括直接控制所附接的马达15a、15b、15c的速度的马达控制器275a、275b、275c。系统控制器280连接到每个马达控制器275a、275b、275c并为每个马达控制器275a、275b、275c提供控制信号285来控制马达15a、15b、15c的速度。配置第一传感器290用来测量多级系统205的输出压力并提供指示控制器280的压力的控制信号295。虽然没有图示,其他传感器也可能用来发送数据到控制器280。这些数据可能用来控制马达15a、15b、15c或者只是监测。
图6中示出的控制原理图275允许单独控制每个马达15a、15b、15c的速度。这样,每个马达15a、15b、15c可以以适合压缩机20a、20b、20c的速度工作,同时仍以期望的压力和体积流速提供流体。在运转工况不理想的工作阶段,每个马达15a、15b、15c可以调节到以在压缩机20a、20b、20c产生合适流速和压力比的速度运行,同时为输出流体提供期望的条件。
有利的是允许马达速度有所不同,以提高工作效率,也确定单个压缩机20a、20b、20c什么时候不工作,这时它应该和可能需要替换。
图7示意性示出多个压缩模块295a、295b,包括多个变速马达300a、300b。第一压缩模块295a包括驱动两个压缩机305a、305b的第一马达300a,而第二压缩模块295b包括第二马达300b和由第二马达300b驱动的单个压缩机305c。第一压缩模块295a的两个压缩机305a、305b可能如图7所示串联布置或者可能布置成并联形式以增加第一压缩级的功率。
工作中,每个马达15由电柜75和带动转子25和轴40转动并最终引起叶轮空气动力面150转动的控制器76提供动力。通过入口通道185在大气压下将流体吸进第一压缩机20并在更高的压力下从泄出部分120流出。在多级实施方式中,压缩流体被驱使通过热交换器220、240、260,热交换器220、240、260移除一些由压缩流体产生的热量。之后这些冷却过的流体被吸入第二压缩机20并流向任何数量的期望的其他级以获得适于应用的流体的不同压力,或者取得比单个压缩机正常情况下可能取得的更大的压力。
控制器280包括以下信息:压缩气体的温度和压力,阀位,压缩机20a、20b、20c的稳定边际,压缩机20a、20b、20c的上游系统的需求和辅助系统的性能参数。根据期望的输出压力,外界温度和压力,流体温度和其他可能需要的相关变量,由控制器280来控制和改变每个马达15a、15b、15c的速度。例如,一种结构在每个压缩级的出口包括压力传感器和速度传感器。压力和速度用来确定每级的体积流速,并且压力用来确定压力比。然后这些数值连同压缩机的速度用于压缩机特性图,来确定压缩机是否有充足的喘振边界和扼流边界(chokemargin)。每一压缩级都最优化以使其有效率的运行,有充足的边界,并在允许具有期望的特性(如压力,流速等)压缩流体输出的速度下运行。
利用直接连接到离心压缩机20a、20b、20c的高速马达15a、15b、15c省略了非直接连接系统中需要的齿轮和相应的润滑油要求。近些年,高速马达技术,如应用于无油气体离心式压缩机的,有相当大的进展。使轴浮动在空气中的主动磁轴承是常用于高速马达的轴承系统,因为它们带来了与使用传统流体-薄膜式液体动压轴承相比有重大意义的功率损耗的优点。
由于压缩级10a、10b、10c之间的速度,位置和工作模式的分离,带独立的被直接驱动的压缩模块10a、10b、10c的工业多级离心式压缩机系统205的发展是有益的。此外,高速同步马达15a、15b、15c可操作的改变压缩级10a、10b、10c的转速并能在整体压缩机稳定性和全部能量消耗方面满足后继工序的需求。
主动件的分离,以及因此的各级的速度,位置和运行也不再需要传统的入口阀,并且不再需要放泄阀和其他一般用来避免在喘振极限附近运行一级或更多级的流量控制系统。省去这些零件降低了成本和系统的复杂度并提高了总效率。
同样应该注意的是叶轮85以及轴40和主动磁轴承55的设计是这样的以便在所有的正常工况时以低于它的第一临界速度运行转动组件。亚临界工况通过提供一个轻但硬的转动组件而得到。为了达到上述目的,叶轮85就其尺寸来说是紧凑的并且用轻但高强度的材料(如钛合金,铝等)制成。
本发明的各特征和优点在下列权利要求中阐述。
Claims (20)
1.一种多级流体压缩系统,包括:
第一离心式压缩机级,带有第一入口和第一出口;
第二离心式压缩机级,带有第二入口和第二出口,第二入口接收来自第一出口的压缩流体流;
第一变速马达,连接到第一离心式压缩机级,并可操作以便以第一速度驱动第一离心式压缩机级;以及
第二变速马达,连接到第二离心式压缩机级,并可操作以便以第二速度驱动第二离心式压缩机级,该第一速度和该第二速度是各自独立的变量。
2.如权利要求1所述的多级流体压缩系统,其特征在于,第一离心式压缩机级和第二离心式压缩机级中的一个包括支承第一叶轮和第二叶轮的第一轴,以及第一离心式压缩机级和第二离心式压缩机级中的另一个包括支承单个第三叶轮的第二轴。
3.如权利要求1所述的多级流体压缩系统,其特征在于,第一离心式压缩机级包括支承第一叶轮和第二叶轮的第一轴,以及第二离心式压缩机级包括支承第三叶轮和第四叶轮的第二轴。
4.如权利要求1所述的多级流体压缩系统,其特征在于,还包括配置成接收来自第一出口的压缩流体流并将该流体流输送到第二入口的热交换器。
5.如权利要求1所述的多级流体压缩系统,其特征在于,还包括可操作以便独立控制每个马达的速度的控制系统。
6.如权利要求5所述的多级流体压缩系统,其特征在于,还包括至少一个与第一离心式压缩机级相关联的传感器以及至少一个与第二离心式压缩机级相关联的传感器,该控制系统可操作以便至少部分根据传感器测得的数据来确定第一离心式压缩机级和第二离心式压缩机级的输出流速和输出压力。
7.如权利要求6所述的多级流体压缩系统,其特征在于,至少一个传感器测量压力以及至少一个传感器测量速度。
8.如权利要求1所述的多级流体压缩系统,其特征在于,还包括可操作以便控制第一马达的速度的第一马达控制器以及可操作以便控制第二马达的速度的第二马达控制器。
9.如权利要求1所述的多级流体压缩系统,其特征在于,还包括联接到第一离心式压缩机并可操作以便支承第一式离心压缩机的轴向负荷的主动磁推力轴承。
10.如权利要求1所述的多级压缩系统,其特征在于,每个马达包括以大于或等于大约50,000RPM的速度转动的轴。
11.一种多级压缩系统,包括:
多个离心式压缩机组,每个压缩机组具有入口和出口,第一压缩机组在第一压力下吸入流体以及最后一个压缩机组在第二压力下泄出流体;
多个变速马达,每个马达直接驱动多个压缩机组中的一个,每个马达独立于其他马达以马达最小速度和马达最大速度之间的速度运转;以及
控制系统,可操作以便至少部分独立改变每个马达的速度,以响应于第二压力。
12.如权利要求11所述的多级压缩系统,其特征在于,多个离心式压缩机组中的每一个包括支承第一叶轮转动的轴,以及至少一个轴支承除第一叶轮之外的第二叶轮。
13.如权利要求11所述的多级流体压缩系统,其特征在于,还包括多个热交换器,每个热交换器配置在相邻的离心式压缩机组的出口和入口之间。
14.如权利要求11所述的多级流体压缩系统,其特征在于,还包括可操作以便独立控制每个马达速度的控制系统。
15.如权利要求14所述的多级流体压缩系统,其特征在于,还包括多个传感器,每个传感器与至少一个离心式压缩机组相关联,该控制系统可操作以便至少部分根据传感器测得的数据来确定每个离心式压缩机组的输出流速和输出压力。
16.如权利要求15所述的多级流体压缩系统,其特征在于,与每个压缩机组相关联的传感器中的至少一个对压力进行测量,以及与每个压缩机组相关联的传感器中的至少一个对速度进行测量。
17.如权利要求11所述的多级流体压缩系统,其特征在于,还包括多个马达控制器,每个马达控制器可操作以便控制多个马达中的一个的速度。
18.如权利要求11所述的多级流体压缩系统,其特征在于,还包括多个主动磁推力轴承,每个磁推力轴承联接到多个离心式压缩机组中的一个,并可操作以便支承相关联的离心式压缩机组的轴向负载。
19.如权利要求11所述的多级流体压缩系统,其特征在于,每个马达包括以大于或等于大约50,000RPM的速度转动的轴。
20.如权利要求19所述的多级流体压缩系统,其特征在于,还包括多个叶轮,每个叶轮联接到一个轴,每个轴由至少两个主动磁轴承支承转动。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US71838905P | 2005-09-19 | 2005-09-19 | |
US60/718,389 | 2005-09-19 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN101268281A true CN101268281A (zh) | 2008-09-17 |
Family
ID=37776898
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNA2006800343556A Pending CN101268281A (zh) | 2005-09-19 | 2006-09-19 | 包括变速马达的多级压缩系统 |
Country Status (4)
Country | Link |
---|---|
US (1) | US20070065300A1 (zh) |
EP (1) | EP1926914A2 (zh) |
CN (1) | CN101268281A (zh) |
WO (1) | WO2007035700A2 (zh) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103306994A (zh) * | 2012-03-15 | 2013-09-18 | 株式会社神户制钢所 | 离心压缩装置及其组装方法 |
CN104246394A (zh) * | 2012-03-08 | 2014-12-24 | 丹佛斯特波科尔压缩机有限公司 | 高压力比多级离心压缩机 |
CN107304786A (zh) * | 2016-04-22 | 2017-10-31 | 英格索尔-兰德公司 | 主动磁轴承控制器 |
CN107810330A (zh) * | 2015-06-29 | 2018-03-16 | 大金应用美国股份有限公司 | 使用R1233zd产生制冷的方法 |
CN108139146A (zh) * | 2015-10-15 | 2018-06-08 | 普莱克斯技术有限公司 | 用于压缩低温空气分离设备中的进料空气流的方法 |
CN108139147A (zh) * | 2015-10-15 | 2018-06-08 | 普莱克斯技术有限公司 | 用于压缩并冷却低温空气分离设备中的进料空气流的系统和装置 |
CN108139145A (zh) * | 2015-10-15 | 2018-06-08 | 普莱克斯技术有限公司 | 用于压缩低温空气分离设备中的进料空气流的方法 |
CN112963977A (zh) * | 2021-04-06 | 2021-06-15 | 青岛腾远设计事务所有限公司 | 一种离心式压缩机和冷水机组 |
Families Citing this family (29)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102006058955B4 (de) * | 2006-12-12 | 2014-07-24 | DüRR DENTAL AG | Saugvorrichtung für dentale, medizinische und industrielle Zwecke |
US8047809B2 (en) * | 2007-04-30 | 2011-11-01 | General Electric Company | Modular air compression apparatus with separate platform arrangement |
GB0716329D0 (en) * | 2007-08-21 | 2007-10-03 | Compair Uk Ltd | Improvements in compressors control |
FR2923085A1 (fr) * | 2007-10-25 | 2009-05-01 | Airtechnologies | Appareil d'alimentation en gaz pour pile a combustible, notamment pour vehicule automobile |
US8037713B2 (en) | 2008-02-20 | 2011-10-18 | Trane International, Inc. | Centrifugal compressor assembly and method |
US9353765B2 (en) * | 2008-02-20 | 2016-05-31 | Trane International Inc. | Centrifugal compressor assembly and method |
US7975506B2 (en) | 2008-02-20 | 2011-07-12 | Trane International, Inc. | Coaxial economizer assembly and method |
US7856834B2 (en) * | 2008-02-20 | 2010-12-28 | Trane International Inc. | Centrifugal compressor assembly and method |
GB2469015B (en) * | 2009-01-30 | 2011-09-28 | Compair Uk Ltd | Improvements in multi-stage centrifugal compressors |
US8353684B2 (en) * | 2009-02-05 | 2013-01-15 | Grant Peacock | Phase change compressor |
US8376718B2 (en) * | 2009-06-24 | 2013-02-19 | Praxair Technology, Inc. | Multistage compressor installation |
WO2011017783A2 (en) * | 2009-08-11 | 2011-02-17 | Atlas Copco Airpower, Naamloze Vennootschap | High-pressure multistage centrifugal compressor |
BE1019254A3 (nl) * | 2009-08-11 | 2012-05-08 | Atlas Copco Airpower Nv | Hogedruk meertraps-centrifugaalcompressor. |
GB0919771D0 (en) * | 2009-11-12 | 2009-12-30 | Rolls Royce Plc | Gas compression |
GB2480270A (en) * | 2010-05-11 | 2011-11-16 | Rolls Royce Plc | Waste gas compressor train |
KR101331770B1 (ko) * | 2010-11-17 | 2013-11-21 | 한밭대학교 산학협력단 | 터보팬을 이용한 수증기 압축장치 및 그 방법 |
US9017893B2 (en) * | 2011-06-24 | 2015-04-28 | Watt Fuel Cell Corp. | Fuel cell system with centrifugal blower system for providing a flow of gaseous medium thereto |
KR101318800B1 (ko) * | 2012-05-25 | 2013-10-17 | 한국터보기계(주) | 3단 터보압축기 |
US20160053764A1 (en) * | 2012-10-03 | 2016-02-25 | Ahmed F. Abdelwahab | Method for controlling the compression of an incoming feed air stream to a cryogenic air separation plant |
US10443603B2 (en) * | 2012-10-03 | 2019-10-15 | Praxair Technology, Inc. | Method for compressing an incoming feed air stream in a cryogenic air separation plant |
US20150211539A1 (en) * | 2014-01-24 | 2015-07-30 | Air Products And Chemicals, Inc. | Systems and methods for compressing air |
FR3018010B1 (fr) * | 2014-02-21 | 2016-03-11 | Skf Magnetic Mechatronics | Ensemble modulaire de moteur et paliers magnetiques et procede de fabrication |
US20160187893A1 (en) * | 2014-12-31 | 2016-06-30 | Ingersoll-Rand Company | System and method using parallel compressor units |
US20180163736A1 (en) * | 2016-12-09 | 2018-06-14 | General Electric Company | Systems and methods for operating a compression system |
EP3601818A1 (en) * | 2017-03-24 | 2020-02-05 | Johnson Controls Technology Company | Pressure dam bearing |
TWI703267B (zh) * | 2017-03-24 | 2020-09-01 | 美商江森自控技術公司 | 冷卻器組件的感應馬達及其蒸氣壓縮系統 |
US12270404B2 (en) | 2017-08-28 | 2025-04-08 | Mark J. Maynard | Gas-driven generator system comprising an elongate gravitational distribution conduit coupled with a gas injection system |
US12049899B2 (en) | 2017-08-28 | 2024-07-30 | Mark J. Maynard | Systems and methods for improving the performance of air-driven generators using solar thermal heating |
WO2019143835A1 (en) * | 2018-01-18 | 2019-07-25 | Maynard Mark J | Gaseous fluid compression with alternating refrigeration and mechanical compression |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DD136876A1 (de) * | 1978-06-28 | 1979-08-01 | Hans Spengler | Ein-oder mehrstufiges radiales kreisverdichteraggregat |
DE2909675C3 (de) * | 1979-03-12 | 1981-11-19 | M.A.N. Maschinenfabrik Augsburg-Nürnberg AG, 4200 Oberhausen | Verfahren zur kondensatfreien Zwischenkühlung verdichteter Gase |
DE3937152A1 (de) * | 1989-11-08 | 1991-05-16 | Gutehoffnungshuette Man | Verfahren zum optimierten betreiben zweier oder mehrerer kompressoren im parallel- oder reihenbetrieb |
US5347467A (en) * | 1992-06-22 | 1994-09-13 | Compressor Controls Corporation | Load sharing method and apparatus for controlling a main gas parameter of a compressor station with multiple dynamic compressors |
JP3331749B2 (ja) * | 1994-06-27 | 2002-10-07 | 松下電器産業株式会社 | 真空ポンプ |
US5743715A (en) * | 1995-10-20 | 1998-04-28 | Compressor Controls Corporation | Method and apparatus for load balancing among multiple compressors |
US5743714A (en) * | 1996-04-03 | 1998-04-28 | Dmitry Drob | Method and apparatus for minimum work control optimization of multicompressor stations |
JP3767052B2 (ja) * | 1996-11-30 | 2006-04-19 | アイシン精機株式会社 | 多段式真空ポンプ |
US6193473B1 (en) * | 1999-03-31 | 2001-02-27 | Cooper Turbocompressor, Inc. | Direct drive compressor assembly with switched reluctance motor drive |
BE1012944A3 (nl) * | 1999-10-26 | 2001-06-05 | Atlas Copco Airpower Nv | Meertraps-compressoreenheid en werkwijze voor het regelen van een der gelijke meertraps-compressoreenheid. |
BE1013692A3 (nl) * | 2000-09-19 | 2002-06-04 | Atlas Copco Airpower Nv | Hogedruk, meertraps-centrifugaalcompressor. |
US6616421B2 (en) * | 2000-12-15 | 2003-09-09 | Cooper Cameron Corporation | Direct drive compressor assembly |
JP3751208B2 (ja) * | 2001-02-23 | 2006-03-01 | 株式会社神戸製鋼所 | 多段可変速圧縮機の制御方法 |
EP1390618B1 (en) * | 2001-04-23 | 2011-05-25 | Earnest Pacific Limited | Multi-stage centrifugal compressor driven by integral high speed motor |
US6872867B1 (en) * | 2003-07-17 | 2005-03-29 | Uop Llc | Start-up of a methanol-to-olefin process |
-
2006
- 2006-09-19 WO PCT/US2006/036418 patent/WO2007035700A2/en active Application Filing
- 2006-09-19 CN CNA2006800343556A patent/CN101268281A/zh active Pending
- 2006-09-19 US US11/533,249 patent/US20070065300A1/en not_active Abandoned
- 2006-09-19 EP EP06803833A patent/EP1926914A2/en not_active Withdrawn
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104246394A (zh) * | 2012-03-08 | 2014-12-24 | 丹佛斯特波科尔压缩机有限公司 | 高压力比多级离心压缩机 |
CN103306994A (zh) * | 2012-03-15 | 2013-09-18 | 株式会社神户制钢所 | 离心压缩装置及其组装方法 |
CN103306994B (zh) * | 2012-03-15 | 2016-01-20 | 株式会社神户制钢所 | 离心压缩装置及其组装方法 |
CN107810330A (zh) * | 2015-06-29 | 2018-03-16 | 大金应用美国股份有限公司 | 使用R1233zd产生制冷的方法 |
CN107810330B (zh) * | 2015-06-29 | 2020-04-07 | 大金应用美国股份有限公司 | 使用R1233zd产生制冷的方法 |
CN108139146A (zh) * | 2015-10-15 | 2018-06-08 | 普莱克斯技术有限公司 | 用于压缩低温空气分离设备中的进料空气流的方法 |
CN108139147A (zh) * | 2015-10-15 | 2018-06-08 | 普莱克斯技术有限公司 | 用于压缩并冷却低温空气分离设备中的进料空气流的系统和装置 |
CN108139145A (zh) * | 2015-10-15 | 2018-06-08 | 普莱克斯技术有限公司 | 用于压缩低温空气分离设备中的进料空气流的方法 |
CN107304786A (zh) * | 2016-04-22 | 2017-10-31 | 英格索尔-兰德公司 | 主动磁轴承控制器 |
CN112963977A (zh) * | 2021-04-06 | 2021-06-15 | 青岛腾远设计事务所有限公司 | 一种离心式压缩机和冷水机组 |
Also Published As
Publication number | Publication date |
---|---|
WO2007035700A2 (en) | 2007-03-29 |
WO2007035700A3 (en) | 2007-06-28 |
US20070065300A1 (en) | 2007-03-22 |
EP1926914A2 (en) | 2008-06-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101268281A (zh) | 包括变速马达的多级压缩系统 | |
US6997686B2 (en) | Motor driven two-stage centrifugal air-conditioning compressor | |
CN104067071B (zh) | 具有扩压器的变速多级离心式制冷压缩机 | |
KR101237972B1 (ko) | 압축 장치 | |
CN104246394B (zh) | 高压力比多级离心压缩机 | |
CN101297118B (zh) | 用于离心压缩机的静止密封环 | |
KR101704075B1 (ko) | 개선된 다단 원심 압축기 | |
CN101025310B (zh) | 压缩机冷却系统 | |
CN108223403B (zh) | 一种磁悬浮压缩机 | |
KR20170110390A (ko) | 압축기용 냉각 장치 | |
KR102052707B1 (ko) | 냉각유로를 구비하는 터보 압축기 | |
CN101287911A (zh) | 包括密封系统的离心压缩机 | |
CN102979751B (zh) | 一种单轴式加多轴式二氧化碳离心压缩机组 | |
CN202926661U (zh) | 离心压缩机 | |
KR100661702B1 (ko) | 터보압축기 | |
CN215871123U (zh) | 一种压缩机与磁悬浮电机直连的mcl压缩机系统 | |
CN103671179B (zh) | 压缩系统 | |
CN112983850B (zh) | 一种三轮离心压缩机 | |
CN206368831U (zh) | Vpsa大气量离心真空泵 | |
KR101578027B1 (ko) | 압축 장치와, 이를 이용한 에너지 절감 시스템 | |
CN202545289U (zh) | 高速悬臂多级透平真空泵 | |
CN104364530A (zh) | 涡轮压缩系统 | |
CN212875549U (zh) | 制冷循环系统 | |
CN113629965A (zh) | 一种压缩机与磁悬浮电机直连的mcl压缩机系统 | |
CN221299530U (zh) | 离心压缩机和空调系统 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20080917 |