[go: up one dir, main page]

CN101259410A - A kind of method for preparing platinum catalyst by electrodeposition - Google Patents

A kind of method for preparing platinum catalyst by electrodeposition Download PDF

Info

Publication number
CN101259410A
CN101259410A CNA2008101040180A CN200810104018A CN101259410A CN 101259410 A CN101259410 A CN 101259410A CN A2008101040180 A CNA2008101040180 A CN A2008101040180A CN 200810104018 A CN200810104018 A CN 200810104018A CN 101259410 A CN101259410 A CN 101259410A
Authority
CN
China
Prior art keywords
platinum
electrodeposition
catalyst
electrode
ethanol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2008101040180A
Other languages
Chinese (zh)
Other versions
CN101259410B (en
Inventor
王新东
李晶晶
叶锋
王永亮
王同涛
苗睿瑛
薛方勤
刘芸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Science and Technology Beijing USTB
Original Assignee
University of Science and Technology Beijing USTB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Science and Technology Beijing USTB filed Critical University of Science and Technology Beijing USTB
Priority to CN2008101040180A priority Critical patent/CN101259410B/en
Publication of CN101259410A publication Critical patent/CN101259410A/en
Application granted granted Critical
Publication of CN101259410B publication Critical patent/CN101259410B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Inert Electrodes (AREA)

Abstract

本发明涉及直接甲醇燃料电池铂催化剂的制备,采用电沉积的方法,分两个阶段进行脉冲电沉积铂,即I阶段采用较大电流用于晶核形成,II阶段采用小电流用于晶核长大,通过改变施加的电信号就可以减小制得的催化剂的粒径,从而使形成的铂粒子更加分散,覆盖率更高,比表面积更大,进而降低了单位面积电极的铂担载量,提高了其利用率和活性,同时降低了催化剂的成本。应用该方法简单、可控。所制得的铂催化剂不仅可以应用于直接甲醇燃料电池,还可以应用于其它燃料电池催化剂。此外,该方法可以扩展应用到铂钌共沉积及其它多元金属共沉积。

Figure 200810104018

The invention relates to the preparation of a platinum catalyst for a direct methanol fuel cell. The electrodeposition method is used to conduct pulse electrodeposition of platinum in two stages, that is, the I stage uses a relatively large current for crystal nucleus formation, and the II stage uses a small current for crystal nucleus formation. The particle size of the prepared catalyst can be reduced by changing the applied electrical signal, so that the formed platinum particles are more dispersed, have a higher coverage rate, and a larger specific surface area, thereby reducing the platinum loading per unit area of the electrode. The amount improves its utilization rate and activity, while reducing the cost of the catalyst. The application of this method is simple and controllable. The prepared platinum catalyst can be applied not only to direct methanol fuel cells, but also to other fuel cell catalysts. In addition, this method can be extended to platinum-ruthenium co-deposition and other multi-element metal co-deposition.

Figure 200810104018

Description

一种电沉积制备铂催化剂的方法 A kind of method for preparing platinum catalyst by electrodeposition

技术领域 technical field

本发明涉及燃料电池领域和催化剂制备领域,尤其涉及以铂为基础的直接甲醇燃料电池催化剂的制备方法。The invention relates to the fields of fuel cell and catalyst preparation, in particular to a method for preparing a platinum-based direct methanol fuel cell catalyst.

背景技术 Background technique

直接甲醇燃料电池(DMFC)具有能量转化效率高、无污染、无噪音、系统结构简单、比能量高和燃料携带补充方便等优点而倍受关注。DMFC的关键材料之一是电极催化剂,其活性直接影响电池的性能。目前DMFC所用的电催化剂均以铂为主要成分,但铂为贵金属,资源稀缺,由于其利用率和活性不高还达不到DMFC商用的要求。催化剂铂粒子所处的位置必须是能同时接触到反应物、电子导体和质子导体的区域,即三相反应区,因为只有在三相反应区才能保证有效的气体和水的扩散以及质子和电子从催化反应位的传出和传入。采用传统的化学合成方法制备的电极中,许多铂粒子由于不在三相反应区而成为非活性Pt。为了克服以上缺点,提高贵金属的利用率,采用电沉积制备的Pt仅沉积在同时具有电子导电性和质子导电性的区域内。这种过程可以避免活性铂位的损失,从而使所沉积的Pt均为有效催化剂,提高了贵金属利用率,即单位质量贵金属催化剂Pt的催化活性,进而降低了电极的成本。如Kyoung Hwan Choi,et.al.,Electrode fabrication for proton exchange membrane fuel cells by pulse electrodeposition,J.Power Sources 75(1998)230的报道,但采用两电极体系进行脉冲电沉积制备铂催化剂,存在着以铂作为阳极成本高,可控性不高的缺点。又如CN1947835A“一种脉冲电沉积制备直接甲醇燃料电池用催化剂的方法”的发明中,提出了将Pt直接沉积在活性炭黑/离子乳液载体上的方法,虽然有着比商品催化剂稍高的甲醇电氧化催化活性,但粒子尺度在100~300nm范围内,且分散性和覆盖率不高,要提高其催化甲醇电氧化性能,粒子尺度还有待降低,分散性和覆盖率有待提高,活性有待进一步增强。Direct methanol fuel cell (DMFC) has attracted much attention due to its advantages of high energy conversion efficiency, no pollution, no noise, simple system structure, high specific energy and convenient fuel portability. One of the key materials of DMFC is the electrode catalyst, whose activity directly affects the performance of the battery. At present, the electrocatalysts used in DMFC all use platinum as the main component, but platinum is a precious metal with scarce resources, and its utilization rate and activity are not high enough to meet the requirements of DMFC commercial use. The position of the catalyst platinum particles must be in the area that can contact the reactants, electron conductors and proton conductors at the same time, that is, the three-phase reaction zone, because only in the three-phase reaction zone can effective diffusion of gas and water and protons and electrons be guaranteed. Efferent and incoming from the catalytic reaction site. In electrodes prepared by traditional chemical synthesis methods, many platinum particles become inactive Pt because they are not in the three-phase reaction zone. In order to overcome the above disadvantages and improve the utilization rate of noble metals, Pt prepared by electrodeposition is only deposited in the region with both electron conductivity and proton conductivity. This process can avoid the loss of active platinum sites, so that the deposited Pt is an effective catalyst, which improves the utilization rate of noble metals, that is, the catalytic activity of the noble metal catalyst Pt per unit mass, thereby reducing the cost of the electrode. Such as the report of Kyoung Hwan Choi, et.al., Electrode fabrication for proton exchange membrane fuel cells by pulse electrodeposition, J.Power Sources 75 (1998) 230, but adopt two electrode system to carry out pulse electrodeposition to prepare platinum catalyst, there is Platinum has the disadvantages of high cost and low controllability as an anode. Another example is the invention of CN1947835A "a method for preparing a catalyst for direct methanol fuel cell by pulse electrodeposition", which proposes a method of directly depositing Pt on the activated carbon black/ionic emulsion carrier, although it has a slightly higher methanol electrolysis rate than the commercial catalyst. Oxidation catalytic activity, but the particle size is in the range of 100-300nm, and the dispersion and coverage rate are not high. To improve its catalytic methanol electrooxidation performance, the particle size needs to be reduced, the dispersion and coverage rate need to be improved, and the activity needs to be further enhanced. .

发明内容 Contents of the invention

本发明的目的在于弥补上述方法的不足,通过分两个阶段进行脉冲电沉积铂,即I阶段采用大电流用于晶核形成,II阶段采用小电流用于晶核长大,从而使形成的铂粒子更加分散,覆盖率更高,且尺度进一步降低,比表面积更大,进而降低单位面积电极的铂担量,提高铂的利用率和活性,同时降低催化剂的成本,应用方法简单、可控。The purpose of the present invention is to make up for the deficiency of the above method, by performing pulse electrodeposition platinum in two stages, that is, the I stage adopts a large current for crystal nucleus formation, and the II stage adopts a small current for crystal nucleus growth, so that the formed The platinum particles are more dispersed, the coverage is higher, and the size is further reduced, and the specific surface area is larger, thereby reducing the platinum load per unit area of the electrode, improving the utilization rate and activity of platinum, and reducing the cost of the catalyst. The application method is simple and controllable .

本发明包括以下实施步骤:The present invention comprises following implementation steps:

1、配置含有活性炭的乙醇与

Figure A20081010401800041
混合液,按照每毫升乙醇加入5~8毫克的比例,将经过酸化处理的活性炭Vulcan XC-72置于乙醇中,再加入
Figure A20081010401800042
溶液(5wt.%)超声分散30~60分钟,形成碳浆,保证
Figure A20081010401800043
溶液与乙醇悬浮液的质量百分比为100∶1~100∶5;1. Configure ethanol containing activated carbon and
Figure A20081010401800041
Mixed liquid, according to the ratio of 5-8 mg per ml of ethanol, put the acidified activated carbon Vulcan XC-72 in ethanol, and then add
Figure A20081010401800042
The solution (5wt.%) is ultrasonically dispersed for 30-60 minutes to form a carbon slurry, ensuring
Figure A20081010401800043
The mass percentage of solution and ethanol suspension is 100:1~100:5;

2、按照每平方厘米移取上述碳浆150~300μL滴到处理好的玻碳、石墨、碳纸、碳布等催化剂基体表面上,待乙醇蒸发完后,将电极于50℃~70℃真空干燥4~10h,制得电沉积过程中所使用的工作电极。2. Pipette 150-300 μL of the above-mentioned carbon slurry per square centimeter and drop it on the surface of the treated glassy carbon, graphite, carbon paper, carbon cloth and other catalyst substrates. Dry for 4-10 hours to prepare the working electrode used in the electrodeposition process.

3、由工作电极、对电极、参比电极组成三电极体系,其中工作电极为步骤2制得的电极,对电极为铂电极,参比电极为饱和甘汞电极(SCE),电解液为含有0~10-3mM添加剂的0.5mol·L-1H2SO4与0.5~2mmol·L-1H2PtCl6的混合溶液,脉冲电沉积分两个阶段进行脉冲电沉积铂,I阶段在较大峰值电流密度12~36mA·cm-2下沉积30~120s,II阶段采用小的峰值电流密度4~10mA·cm-2。电流的通断时间比toff/ton为1.5~6∶1,总的沉积电量为1~2.5C·cm-2。电沉积温度为20~60℃。电沉积过程中向溶液中通入氩气。3. A three-electrode system is composed of a working electrode, a counter electrode and a reference electrode, wherein the working electrode is the electrode prepared in step 2, the counter electrode is a platinum electrode, the reference electrode is a saturated calomel electrode (SCE), and the electrolyte contains The mixed solution of 0.5mol·L -1 H 2 SO 4 and 0.5~2mmol·L -1 H 2 PtCl 6 with 0~10 -3 mM additives, the pulse electrodeposition is carried out in two stages for pulse electrodeposition of platinum, the first stage is in Deposition is performed for 30-120s at a larger peak current density of 12-36mA·cm -2 , and a smaller peak current density of 4-10mA·cm -2 is used in the second stage. The current on-off time ratio t off /t on is 1.5-6:1, and the total deposition electricity is 1-2.5 C·cm -2 . The electrodeposition temperature is 20-60°C. During the electrodeposition process, argon was introduced into the solution.

添加剂的最优选择为10-5~10-3mM,其中添加剂选自聚乙二醇(PEG)、醋酸铅(LA)、聚乙烯吡咯烷酮(PVP)、柠檬酸中的一种。The optimal choice of the additive is 10 -5 ~ 10 -3 mM, wherein the additive is selected from one of polyethylene glycol (PEG), lead acetate (LA), polyvinylpyrrolidone (PVP) and citric acid.

本发明的优点在于无需改变工艺方法,只要通过改变施加的电信号就可以减小制得的催化剂的晶粒,从而使形成的铂粒子更加分散,覆盖率更高,比表面积更大,进而降低了单位面积电极的铂担量,提高了其利用率和活性,同时降低了催化剂的成本,应用方法非常简单。所制得的铂催化剂不仅可以应用于直接甲醇燃料电池,还可以应用于其它燃料电池催化剂。此外,该方法可以扩展到铂钌共沉积及其它多元金属共沉积。The advantage of the present invention is that there is no need to change the process method, only by changing the applied electrical signal, the crystal grains of the prepared catalyst can be reduced, so that the formed platinum particles are more dispersed, the coverage rate is higher, and the specific surface area is larger, thereby reducing The platinum load per unit area of the electrode is increased, its utilization rate and activity are improved, and the cost of the catalyst is reduced at the same time, and the application method is very simple. The prepared platinum catalyst can be applied not only to direct methanol fuel cells, but also to other fuel cell catalysts. In addition, this method can be extended to platinum-ruthenium co-deposition and other multi-element metal co-deposition.

附图说明 Description of drawings

图1为实例2合成的催化剂放大5万倍的扫描电镜形貌图。Fig. 1 is the 50,000 times magnified scanning electron microscope morphology of the catalyst synthesized in Example 2.

图2为实例3合成的催化剂放大5万倍的扫描电镜形貌图。Fig. 2 is the 50,000 times magnified scanning electron microscope morphology of the catalyst synthesized in Example 3.

图3为实例1合成的催化剂的甲醇催化电氧化的循环伏安曲线。Fig. 3 is the cyclic voltammetry curve of the methanol catalytic electro-oxidation of the catalyst synthesized in Example 1.

图4为实例2合成的催化剂的甲醇催化电氧化的循环伏安曲线。Fig. 4 is the cyclic voltammetry curve of the methanol catalytic electro-oxidation of the catalyst synthesized in Example 2.

图5为实例3合成的催化剂的甲醇催化电氧化的循环伏安曲线。Fig. 5 is the cyclic voltammetry curve of the methanol catalytic electro-oxidation of the catalyst synthesized in Example 3.

图6为没有分段电沉积,峰值电流密度恒定为6mA·cm-2条件下脉冲电沉积合成铂催化剂的甲醇催化电氧化的循环伏安曲线。Fig. 6 is the cyclic voltammetry curve of methanol catalytic electrooxidation of platinum catalyst synthesized by pulse electrodeposition under the condition of no segmental electrodeposition and constant peak current density of 6 mA·cm -2 .

具体实施方式Detailed ways

在0.5mol·L-1H2SO4+1.0mol·L-1CH3OH溶液中,电位0到0.75V之间,扫速10mV·s-1进行循环伏安测试。进行循环伏安实验前向电解液中通20min的氩气以消除溶液中溶解氧的影响。取连续三周曲线重合以后的循环伏安曲线。测试温度为30℃。通过比较相同电位下的不同电极对应的电流来比较不同条件下电沉积制备的电极的电化学性能。In 0.5mol·L -1 H 2 SO 4 +1.0mol·L -1 CH 3 OH solution, the potential is between 0 and 0.75V, and the sweep rate is 10mV·s -1 for cyclic voltammetry. Argon was passed through the electrolyte for 20 min before the cyclic voltammetry experiment to eliminate the influence of dissolved oxygen in the solution. Take the cyclic voltammetry curve after three consecutive weeks of curve overlap. The test temperature is 30°C. The electrochemical performance of electrodes prepared by electrodeposition under different conditions was compared by comparing the currents corresponding to different electrodes at the same potential.

实施例1:Example 1:

称量50mg经酸化处理的Vulcan XC-72置于10mL乙醇中,加入100μL的溶液(5wt.%,密度为45mgNafion/mL)超声分散60分钟,混合均匀,形成碳浆,

Figure A20081010401800052
溶液与乙醇悬浮液的质量百分比为100∶1;取75μL滴到处理好的玻碳电极(面积0.28cm2)表面上;待乙醇蒸发完后,将电极50℃真空干燥7h,制得电沉积过程中所使用的工作电极,对电极为铂电极,参比电极为饱和甘汞电极(SCE),以下所述电位均相对于SCE。电解液为0.5mol·L-1H2SO4+2.0mmol·L-1H2PtCl6。脉冲电沉积分两个阶段进行脉冲电沉积铂,I阶段在峰值电流密度12mA·cm-2下沉积120s,II阶段的峰值电流密度为8mA·cm-2,总的沉积电量为1.2C·cm-2,电流的通断时间比toff/ton为300ms∶100ms,电沉积温度为20℃。电沉积过程中向溶液中通入氩气。Weigh 50 mg of acidified Vulcan XC-72 into 10 mL of ethanol, add 100 μL of Solution (5wt.%, density 45mgNafion/mL) was ultrasonically dispersed for 60 minutes, mixed evenly to form a carbon slurry,
Figure A20081010401800052
The mass percentage of solution and ethanol suspension is 100:1; take 75 μL and drop it on the surface of the treated glassy carbon electrode (area 0.28cm 2 ); after the ethanol is evaporated, dry the electrode in vacuum at 50°C for 7 hours to obtain electrodeposition The working electrode used in the process, the counter electrode is a platinum electrode, and the reference electrode is a saturated calomel electrode (SCE). The potentials described below are all relative to SCE. The electrolyte solution is 0.5mol·L -1 H 2 SO 4 +2.0mmol·L -1 H 2 PtCl 6 . The pulse electrodeposition is divided into two stages for pulse electrodeposition of platinum. In the first stage, the peak current density is 12mA·cm -2 for 120s. In the second stage, the peak current density is 8mA·cm -2 , and the total deposition electricity is 1.2C·cm -2 , the current on-off time ratio t off /t on is 300ms:100ms, and the electrodeposition temperature is 20°C. During the electrodeposition process, argon was introduced into the solution.

实施例2:Example 2:

称量40mg经酸化处理的Vulcan XC-72置于5mL乙醇中,加入200μL的

Figure A20081010401800053
溶液(5wt.%,密度为45mgNafion/mL)超声分散40分钟,混合均匀,形成碳浆,
Figure A20081010401800054
溶液与乙醇悬浮液的质量百分比为100∶4;取75μL滴到处理好的石墨电极(面积0.5cm2)表面上;待乙醇蒸发完后,将电极60℃真空干燥5h,制得电沉积过程中所使用的工作电极,对电极为铂电极,参比电极为饱和甘汞电极(SCE)。电解液为0.5mol·L-1H2SO4+0.5mmol·L-1H2PtCl6。脉冲电沉积分两个阶段进行脉冲电沉积铂,I阶段在峰值电流密度36mA·cm-2下沉积60s,II阶段的峰值电流密度为6mA·cm-2,总的沉积电量为1.2C·cm-2,电流的通断时间比toff/ton为4s∶1s,电沉积温度为50℃。电沉积过程中向溶液中通入氩气。制得高分散的纳米级铂催化剂,如图1所示。直径约100nm左右的块状Pt粒子,比表面积很大,覆盖率高。Weigh 40 mg of acidified Vulcan XC-72 into 5 mL of ethanol, add 200 μL of
Figure A20081010401800053
Solution (5wt.%, density 45mgNafion/mL) was ultrasonically dispersed for 40 minutes, mixed uniformly to form a carbon slurry,
Figure A20081010401800054
The mass percentage of the solution and the ethanol suspension is 100:4; take 75 μL and drop it on the surface of the treated graphite electrode (area 0.5 cm 2 ); after the ethanol is evaporated, the electrode is vacuum-dried at 60°C for 5 hours to obtain the electrodeposition process The working electrode, the counter electrode is a platinum electrode, and the reference electrode is a saturated calomel electrode (SCE). The electrolyte solution is 0.5mol·L -1 H 2 SO 4 +0.5mmol·L -1 H 2 PtCl 6 . The pulse electrodeposition is divided into two stages for pulse electrodeposition of platinum. In the first stage, the peak current density is 36mA·cm -2 for 60s. In the second stage, the peak current density is 6mA·cm -2 , and the total deposition electricity is 1.2C·cm -2 , the current on-off time ratio t off /t on is 4s:1s, and the electrodeposition temperature is 50°C. During the electrodeposition process, argon was introduced into the solution. A highly dispersed nanoscale platinum catalyst was prepared, as shown in Figure 1. Blocky Pt particles with a diameter of about 100nm have a large specific surface area and a high coverage.

实施例3:Example 3:

称量50mg经酸化处理的Vulcan XC-72置于10mL乙醇中,加入200μL的

Figure A20081010401800055
溶液(5wt.%,密度为45mgNafion/mL)超声分散30分钟,混合均匀,形成碳浆,
Figure A20081010401800056
溶液与乙醇悬浮液的质量百分比为100∶2;取100μL滴到处理好的石墨电极表面上;待乙醇蒸发完后,将电极60℃真空干燥5h,制得电沉积过程中所使用的工作电极,对电极为铂电极,参比电极为饱和甘汞电极(SCE)。电解液为0.5mol·L-1H2SO4+1.0mmol·L-1H2PtCl6+10-5mmol·L-1PEG(分子量为400)。脉冲电沉积分两个阶段进行脉冲电沉积铂,I阶段在峰值电流密度24mA·cm-2下沉积90s,II阶段的峰值电流密度为10mA·cm-2,总的沉积电量为12C·cm-2,电流的通断时间比toff/ton为5s∶1s,电沉积温度为30℃。电沉积过程中向溶液中通入氩气。制得高分散、高覆盖率的纳米级铂催化剂,如图2所示。Pt粒子的形貌为直径约从20至100nm的块状,块上还有小的阶梯,比表面积非常大。Weigh 50 mg of acidified Vulcan XC-72 into 10 mL of ethanol, add 200 μL of
Figure A20081010401800055
Solution (5wt.%, density 45mgNafion/mL) was ultrasonically dispersed for 30 minutes, mixed evenly to form a carbon slurry,
Figure A20081010401800056
The mass percentage of the solution and the ethanol suspension is 100:2; take 100 μL and drop it on the surface of the treated graphite electrode; after the ethanol is evaporated, the electrode is vacuum-dried at 60°C for 5 hours to obtain the working electrode used in the electrodeposition process , the counter electrode is a platinum electrode, and the reference electrode is a saturated calomel electrode (SCE). The electrolyte solution is 0.5mol·L -1 H 2 SO 4 +1.0mmol·L -1 H 2 PtCl 6 +10 -5 mmol·L -1 PEG (400 molecular weight). The pulse electrodeposition is divided into two stages for pulse electrodeposition of platinum. In the first stage, the peak current density is 24mA·cm -2 for 90s. In the second stage, the peak current density is 10mA·cm -2 , and the total deposition capacity is 12C·cm -2 2. The current on-off time ratio t off /t on is 5s:1s, and the electrodeposition temperature is 30°C. During the electrodeposition process, argon was introduced into the solution. A nanoscale platinum catalyst with high dispersion and high coverage was prepared, as shown in Figure 2. The morphology of Pt particles is a block with a diameter of about 20 to 100 nm, and there are small steps on the block, and the specific surface area is very large.

对以上实施例1-3所合成的催化剂在甲醇溶液中进行循环伏安测试,测试结果分别如图3、图4、图5所示,并与没有分段电沉积,峰值电流密度恒定为6mA·cm-2,沉积电量为1.2C·cm-2、电流的通断时间比toff/ton为4s∶1s制得的的铂催化剂(如图6所示)进行比较。可见,与没有分段电沉积相比,采用分段电沉积制得的铂催化剂有着更高的甲醇氧化峰峰值电流密度,对甲醇电氧化有着更高的催化活性。Carry out cyclic voltammetry test to the catalyst synthesized in the above examples 1-3 in methanol solution, the test results are shown in Figure 3, Figure 4, and Figure 5 respectively, and without segmental electrodeposition, the peak current density is constant at 6mA · cm -2 , a platinum catalyst (as shown in Figure 6 ) prepared with a deposition charge of 1.2C·cm -2 and a current on-off time ratio t off /t on of 4s:1s (as shown in Figure 6 ) was compared. It can be seen that compared with no segmented electrodeposition, the platinum catalyst prepared by segmented electrodeposition has a higher peak current density of methanol oxidation, and has a higher catalytic activity for methanol electrooxidation.

实施例4:Example 4:

与实施例3过程类似,但电解液为0.5mol·L-1H2SO4+1.0mmol·L-1H2PtCl6+10-4mmol·L-1LA。脉冲电沉积分两个阶段进行脉冲电沉积铂,I阶段在峰值电流密度24mA·cm-2下沉积90s,II阶段的峰值电流密度为6mA·cm-2,总的沉积电量为1.08C·cm-2,电流的通断时间比toff/ton为5s∶1s制得高分散、高覆盖率的纳米级铂催化剂。The process is similar to Example 3, but the electrolyte is 0.5mol·L -1 H 2 SO 4 +1.0mmol·L -1 H 2 PtCl 6 +10 -4 mmol·L -1 LA. The pulse electrodeposition is divided into two stages for pulse electrodeposition of platinum. The first stage is deposited at a peak current density of 24mA·cm -2 for 90s, the peak current density of the second stage is 6mA·cm -2 , and the total deposition electricity is 1.08C·cm -2 , the current on-off time ratio t off /t on is 5s: 1s to prepare a nanoscale platinum catalyst with high dispersion and high coverage.

实施例5:Example 5:

与实施例3过程类似,但基底为碳纸,电解液为0.5mol·L-1H2SO4+10mmol·L-1H2PtCl6+10-4mmol·L-1PVP(分子量为60000)。脉冲电沉积分两个阶段进行脉冲电沉积铂,I阶段在峰值电流密度24mA·cm-2下沉积120s,II阶段的峰值电流密度为4mA·cm-2,总的沉积电量为2.4C·cm-2,电流的通断时间比toff/ton为5s∶1s制得高分散、高覆盖率的纳米级铂催化剂。The process is similar to Example 3, but the substrate is carbon paper, and the electrolyte is 0.5mol·L -1 H 2 SO 4 +10mmol·L -1 H 2 PtCl 6 +10 -4 mmol·L -1 PVP (molecular weight is 60000 ). The pulse electrodeposition is divided into two stages for pulse electrodeposition of platinum. The first stage is deposited at a peak current density of 24mA·cm -2 for 120s, the peak current density of the second stage is 4mA·cm -2 , and the total deposition electricity is 2.4C·cm -2 , the current on-off time ratio t off /t on is 5s: 1s to prepare a nanoscale platinum catalyst with high dispersion and high coverage.

Claims (5)

1、一种电沉积制备铂催化剂的方法,其特征在于,由工作电极、对电极、参比电极组成三电极体系,在电解液为含有0~10-3mM添加剂的0.5mol·L-1H2SO4与0.5~2mmol·L-1H2PtCl6的混合溶液中分两个阶段进行脉冲电沉积铂,先采用峰值电流密度12~36mA·cm-2,沉积时间为30~120s,其后,采用峰值电流密度4~10mA·cm-2,总的沉积电量为1~2.5C·cm-2,电流的通断时间比toff/ton为1.5~6∶1,电沉积温度为20~60℃。1. A method for preparing a platinum catalyst by electrodeposition, characterized in that a three-electrode system is composed of a working electrode, a counter electrode and a reference electrode, and the electrolyte is 0.5mol L -1 containing 0-10 -3 mM additive In the mixed solution of H 2 SO 4 and 0.5~2mmol·L -1 H 2 PtCl 6 , the pulse electrodeposition of platinum was carried out in two stages. Thereafter, the peak current density is 4-10mA·cm -2 , the total deposition electricity is 1-2.5C·cm- 2 , the current on-off time ratio t off /t on is 1.5-6:1, and the electrodeposition temperature It is 20-60°C. 2、如权利要求1所述的方法,其特征在于,所述添加剂为10-5~10-3mM,选自聚乙二醇、醋酸铅、聚乙烯吡咯烷酮、柠檬酸中的一种。2. The method according to claim 1, wherein the additive is 10 -5 ~ 10 -3 mM, one selected from polyethylene glycol, lead acetate, polyvinylpyrrolidone, and citric acid. 3、如权利要求1所述的方法,其特征在于,所述工作电极是先配置含有活性炭的乙醇与
Figure A20081010401800021
混合液,按照每毫升乙醇加入5~8毫克的比例,将经过酸化处理的活性炭Vulcan XC-72置于乙醇中,再加入溶液(5wt.%)超声分散30~60分钟,形成碳浆;再按照每平方厘米移取上述碳浆150~300μL滴到催化剂基体表面上,待乙醇蒸发完后,将电极于50℃~70℃真空干燥4~10h,制得电沉积过程中所使用的工作电极。
3. The method according to claim 1, characterized in that the working electrode is first configured with ethanol containing activated carbon and
Figure A20081010401800021
Mixed liquid, according to the ratio of 5-8 mg per ml of ethanol, put the acidified activated carbon Vulcan XC-72 in ethanol, and then add The solution (5wt.%) was ultrasonically dispersed for 30-60 minutes to form a carbon slurry; then pipette 150-300 μL of the above-mentioned carbon slurry per square centimeter and drop it on the surface of the catalyst substrate. °C for 4-10 hours in vacuum to prepare the working electrode used in the electrodeposition process.
4、如权利要求3所述的方法,其特征在于,
Figure A20081010401800023
溶液与乙醇悬浮液的质量百分比为100∶1~100∶5。
4. The method of claim 3, wherein:
Figure A20081010401800023
The mass percentage of the solution and the ethanol suspension is 100:1-100:5.
5、如权利要求3所述的方法,其特征在于,所述催化剂基体为玻碳、石墨、碳纸、碳布中的一种。5. The method according to claim 3, wherein the catalyst substrate is one of glassy carbon, graphite, carbon paper, and carbon cloth.
CN2008101040180A 2008-04-14 2008-04-14 Method for preparing platinum catalyst by electrodeposition Expired - Fee Related CN101259410B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2008101040180A CN101259410B (en) 2008-04-14 2008-04-14 Method for preparing platinum catalyst by electrodeposition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2008101040180A CN101259410B (en) 2008-04-14 2008-04-14 Method for preparing platinum catalyst by electrodeposition

Publications (2)

Publication Number Publication Date
CN101259410A true CN101259410A (en) 2008-09-10
CN101259410B CN101259410B (en) 2010-12-29

Family

ID=39960224

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2008101040180A Expired - Fee Related CN101259410B (en) 2008-04-14 2008-04-14 Method for preparing platinum catalyst by electrodeposition

Country Status (1)

Country Link
CN (1) CN101259410B (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101831666A (en) * 2010-05-28 2010-09-15 上海交通大学 Preparation method of nickel-based or titanium-based catalytic electrode for electrically catalyzing ammonia oxides
CN102780011A (en) * 2012-06-29 2012-11-14 青岛科技大学 Direct methanol fuel cell anode catalyst and preparation method of direct methanol fuel cell anode catalyst
CN102925939A (en) * 2012-11-26 2013-02-13 中国南方航空工业(集团)有限公司 Hard chromium electroplating method
CN103255457A (en) * 2013-04-28 2013-08-21 北京工业大学 Method for preparing nano platinum/ruthenium modified titanium dioxide nanotube electrode by utilizing pulse electrodeposition
CN107890866A (en) * 2017-12-13 2018-04-10 黑龙江科技大学 A kind of method using hydantoin derivatives as complexant preparing platinum catalyst by electrodeposition
CN108832152A (en) * 2018-06-26 2018-11-16 李荣旭 A kind of band coating proton exchange membrane fuel cell metal flow-field plate
CN108950613A (en) * 2018-08-06 2018-12-07 首钢集团有限公司 A kind of preparation method of tin plate and the application of thus obtained tin plate
CN109100402A (en) * 2018-07-19 2018-12-28 深圳大学 A kind of monoatomic method of deposition platinum, compound and application
CN110350204A (en) * 2019-07-10 2019-10-18 广东工业大学 It is the fuel-cell catalyst and the preparation method and application thereof of shell by core, platinum of gold nano cluster
CN111841663A (en) * 2020-07-08 2020-10-30 中国工程物理研究院材料研究所 Electrochemical method for reducing size of carbon-supported metal nanoparticle electrocatalyst
CN115732709A (en) * 2022-11-14 2023-03-03 广东电网有限责任公司广州供电局 Pt/C catalyst with ultralow Pt loading capacity and preparation method thereof
CN119153713A (en) * 2024-11-13 2024-12-17 河南师范大学 Nickel-cobalt-based core-shell catalyst, preparation method thereof and application of nickel-cobalt-based core-shell catalyst in assembly of zinc-ethanol-air battery

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101831666A (en) * 2010-05-28 2010-09-15 上海交通大学 Preparation method of nickel-based or titanium-based catalytic electrode for electrically catalyzing ammonia oxides
CN102780011A (en) * 2012-06-29 2012-11-14 青岛科技大学 Direct methanol fuel cell anode catalyst and preparation method of direct methanol fuel cell anode catalyst
CN102925939A (en) * 2012-11-26 2013-02-13 中国南方航空工业(集团)有限公司 Hard chromium electroplating method
CN102925939B (en) * 2012-11-26 2015-07-15 中国南方航空工业(集团)有限公司 Hard chromium electroplating method
CN103255457A (en) * 2013-04-28 2013-08-21 北京工业大学 Method for preparing nano platinum/ruthenium modified titanium dioxide nanotube electrode by utilizing pulse electrodeposition
CN103255457B (en) * 2013-04-28 2016-07-06 北京工业大学 A kind of pulse electrodeposition prepares the method for the TiO 2 nanotubes modified electrode of nano platinum/ruthenium
CN107890866B (en) * 2017-12-13 2020-07-31 黑龙江科技大学 A method for preparing platinum catalyst by electrodeposition using hydantoin derivative as complexing agent
CN107890866A (en) * 2017-12-13 2018-04-10 黑龙江科技大学 A kind of method using hydantoin derivatives as complexant preparing platinum catalyst by electrodeposition
CN108832152A (en) * 2018-06-26 2018-11-16 李荣旭 A kind of band coating proton exchange membrane fuel cell metal flow-field plate
CN108832152B (en) * 2018-06-26 2020-11-24 山东亚泰新材料科技有限公司 Coated metal flow field plate of proton exchange membrane fuel cell
CN109100402B (en) * 2018-07-19 2020-10-27 深圳大学 A method, composite and application for depositing platinum single atoms
CN109100402A (en) * 2018-07-19 2018-12-28 深圳大学 A kind of monoatomic method of deposition platinum, compound and application
CN108950613A (en) * 2018-08-06 2018-12-07 首钢集团有限公司 A kind of preparation method of tin plate and the application of thus obtained tin plate
CN110350204A (en) * 2019-07-10 2019-10-18 广东工业大学 It is the fuel-cell catalyst and the preparation method and application thereof of shell by core, platinum of gold nano cluster
CN111841663A (en) * 2020-07-08 2020-10-30 中国工程物理研究院材料研究所 Electrochemical method for reducing size of carbon-supported metal nanoparticle electrocatalyst
CN115732709A (en) * 2022-11-14 2023-03-03 广东电网有限责任公司广州供电局 Pt/C catalyst with ultralow Pt loading capacity and preparation method thereof
CN119153713A (en) * 2024-11-13 2024-12-17 河南师范大学 Nickel-cobalt-based core-shell catalyst, preparation method thereof and application of nickel-cobalt-based core-shell catalyst in assembly of zinc-ethanol-air battery

Also Published As

Publication number Publication date
CN101259410B (en) 2010-12-29

Similar Documents

Publication Publication Date Title
CN101259410A (en) A kind of method for preparing platinum catalyst by electrodeposition
CN111617793A (en) A kind of Fe-N-C carbon-based oxygen reduction catalyst material and preparation method and application thereof
CN106328960A (en) ZIF-67 template method for preparing cobalt-platinum core-shell particle/porous carbon composite material and catalytic application of composite material in cathode of fuel cell
CN103887531B (en) A kind of ordering gas-diffusion electrode and preparation thereof and application
CN103280583B (en) Method for preparing catalytic layer structure of proton exchange membrane fuel cell
CN106571474B (en) Preparation method of platinum-nickel alloy nanocluster and fuel cell using the same
Su et al. Development of Au promoted Pd/C electrocatalysts for methanol, ethanol and isopropanol oxidation in alkaline medium
CN107863538B (en) Electrode for ethanol catalysis and application thereof
CN103022521A (en) Palladium-cobalt/graphene nano electro-catalyst and preparation method thereof
CN104701549A (en) A carbon-free membrane electrode assembly
WO2022099793A1 (en) Orr catalyst material, preparation method therefor, and use thereof
CN101020145A (en) Simple prepn process of nanometer Pt/Polypyrrole composite material
CN112652780A (en) Fe/Fe3Preparation method of C nano-particle loaded porous nitrogen-doped carbon-based oxygen reduction catalyst
CN106345464B (en) A kind of preparation method of carbon quantum dot/graphene-supported PtM alloy catalysts
CN100474670C (en) Method for producing carbon-carrying platinum-based alloy electrode
CN101362093B (en) Carbon supported platinum composite catalyst of fuel cell and preparation method thereof
CN108110284A (en) A kind of method for directly preparing fuel cell Pt nanocrystal nucleocapsid Catalytic Layer
US8273679B2 (en) Porous catalyst for a fuel cell and method for producing the catalyst thereof
CN100418624C (en) A kind of pulse electrodeposition prepares the method for direct methanol fuel cell catalyst
Yang et al. Synthesis of high-performance low-Pt (1 1 1)-loading catalysts for ORR by interaction between solution and nonthermal plasma
CN109546166B (en) A kind of Pt/metal carbide/carbon nanomaterial catalyst and preparation method thereof
CN111129510A (en) Preparation method and application of carbon material modified graphite phase carbon nitride nanosheet loaded platinum nano electro-catalyst
CN104707603A (en) A kind of Pt-PbOx/C catalyst and preparation method thereof
CN101562250B (en) Method for preparing cathode catalyst of proton exchange membrane fuel cell
CN101306364A (en) A kind of preparation method of direct methanol fuel cell anode catalyst

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20101229

Termination date: 20130414