CN101257303A - Clock Control Circuit of Sigma-Delta Modulator in Sigma-Delta Fractional Frequency Synthesizer - Google Patents
Clock Control Circuit of Sigma-Delta Modulator in Sigma-Delta Fractional Frequency Synthesizer Download PDFInfo
- Publication number
- CN101257303A CN101257303A CN 200810052703 CN200810052703A CN101257303A CN 101257303 A CN101257303 A CN 101257303A CN 200810052703 CN200810052703 CN 200810052703 CN 200810052703 A CN200810052703 A CN 200810052703A CN 101257303 A CN101257303 A CN 101257303A
- Authority
- CN
- China
- Prior art keywords
- modulator
- signal
- frequency divider
- frequency
- sigma
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000003111 delayed effect Effects 0.000 description 5
- 238000000034 method Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000009825 accumulation Methods 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 230000001960 triggered effect Effects 0.000 description 1
Images
Landscapes
- Stabilization Of Oscillater, Synchronisation, Frequency Synthesizers (AREA)
Abstract
一种∑-Δ小数频率合成器中∑-Δ调制器时钟控制电路,包括有∑-Δ调制器,接收与外部连接的压控振荡器发过来的VCO信号以及接收∑-Δ调制器所发出的信号的延迟单元。延迟单元包括有分频器和延迟电路,其中,分频器的输入端接收外部压控振荡器发过来的VCO信号,分频器的输入端还与∑-Δ调制器连接收其所发出的信号;分频器的输出端分别连接外部PFD以及连接延迟电路,延迟电路向∑-Δ调制器输出∑-Δ调制器时钟信号。本发明具有广泛的适用性,无论小数型频率合成器中的分频器采用何种结构、DSM采用何种结构,都可以应用,以确保分频器读入正确的分频数,并消除数字电路开关翻转对PFD的影响,保证了相位比较的准确性,进而提高系统性能。
A sigma-delta modulator clock control circuit in a sigma-delta fractional frequency synthesizer, including a sigma-delta modulator, receiving a VCO signal from an externally connected voltage-controlled oscillator and receiving a signal from the sigma-delta modulator. The delay unit of the signal. The delay unit includes a frequency divider and a delay circuit, wherein the input terminal of the frequency divider receives the VCO signal sent by the external voltage-controlled oscillator, and the input terminal of the frequency divider is also connected with the Σ-Δ modulator to receive the signal sent by it. signal; the output end of the frequency divider is respectively connected with an external PFD and a delay circuit, and the delay circuit outputs a clock signal of the Σ-Δ modulator to the Σ-Δ modulator. The present invention has wide applicability, no matter what structure the frequency divider in the fractional frequency synthesizer adopts, and what structure the DSM adopts, it can be applied to ensure that the frequency divider reads the correct frequency division number and eliminates the digital frequency divider. The influence of circuit switch flipping on PFD ensures the accuracy of phase comparison, thereby improving system performance.
Description
技术领域 technical field
本发明涉及一种∑-Δ调制器时钟控制技术。特别是涉及一种无论小数型频率合成器中的分频器采用何种结构、DSM采用何种结构,都可以应用以确保分频器读入正确的分频数,并消除数字电路开关翻转对PFD的影响,进而提高系统性能的∑-Δ小数频率合成器中∑-Δ调制器时钟控制电路。The invention relates to a Σ-Δ modulator clock control technology. In particular, it relates to a method that can be applied regardless of the structure of the frequency divider in the fractional frequency synthesizer and the structure of the DSM, so as to ensure that the frequency divider reads the correct frequency division number and eliminate the impact of digital circuit switch flipping. The effect of PFD, which in turn improves the system performance of the sigma-delta modulator clock control circuit in the sigma-delta fractional frequency synthesizer.
背景技术 Background technique
如图1所示,基于锁相环结构的频率合成器包括:鉴频鉴相器(PFD)、电荷泵、滤波器、压控振荡器(VCO)和分频器等基本单元。鉴频鉴相器输入一个基准参考频率,同时压控振荡器的输出频率通过分频器分频后也输入到鉴频鉴相器,鉴频鉴相器通过比较这两个输入频率相位的差异,进而控制压控振荡器改变输出频率,从而使输出频率达到目标频率值——基准参考频率乘以分频倍数。在上述锁相环结构的基础上,∑-Δ小数频率合成器实现了小数分频,即分频倍数可以是小数值,而不只限于整数。这种小数分频是通过不断改变分频器的整数分频值使其平均值达到期望小数的方法实现的,分频模数的变化通过∑-Δ调制器(DSM)控制完成。电路中,DSM需要一个时钟信号触发,在每个触发沿DSM的量化输出改变,分频数随之改变。通常,DSM的时钟信号是参考时钟Tref或是压控振荡器输出经分频后的信号,也就是鉴频鉴相器(PFD)的一路输入比较信号Tdiv。但上述两种方案在实际应用中都存在一定问题,导致频率合成器的性能变差,甚至无法锁定。As shown in Figure 1, a frequency synthesizer based on a phase-locked loop structure includes basic units such as a phase-frequency detector (PFD), a charge pump, a filter, a voltage-controlled oscillator (VCO), and a frequency divider. The frequency and phase detector inputs a reference frequency, and the output frequency of the voltage-controlled oscillator is also input to the frequency and phase detector after being divided by the frequency divider. The frequency and phase detector compares the difference between the two input frequency phases , and then control the voltage-controlled oscillator to change the output frequency, so that the output frequency reaches the target frequency value—the base reference frequency multiplied by the frequency division multiple. On the basis of the above phase-locked loop structure, the Σ-Δ fractional frequency synthesizer realizes fractional frequency division, that is, the frequency division multiple can be a fractional value, not limited to an integer. This fractional frequency division is realized by continuously changing the integer frequency division value of the frequency divider so that the average value reaches the desired decimal. The change of the frequency division modulus is controlled by a Σ-Δ modulator (DSM). In the circuit, DSM needs a clock signal to trigger, and the quantized output of DSM changes on each trigger edge, and the frequency division number changes accordingly. Usually, the clock signal of the DSM is the reference clock Tref or the frequency-divided signal output by the voltage-controlled oscillator, that is, an input comparison signal Tdiv of a phase frequency detector (PFD). However, there are certain problems in the above two solutions in practical applications, which lead to the deterioration of the performance of the frequency synthesizer, or even the failure to lock it.
由于小数频率合成器的分频数是不断变化的,因此分频器中的计数单元要在每一个完整的分频周期结束后读入下一个分频数,通常采用计数单元的溢出信号控制下一个分频数的读入。如果DSM的时钟信号由参考时钟Tref提供就会产生如下问题:若某一个分频后的周期信号超前于参考时钟信号,也就是说在一个完整分频周期后DSM还没有输出新的分频数,分频计数器读入的仍是上一周期的分频数,从而导致平均小数分频值错误。通常分频数越小,这种影响越明显。如果分频数很小,这种偏差将导致输出频率大幅摆动,环路无法锁定。Since the frequency division number of the fractional frequency synthesizer is constantly changing, the counting unit in the frequency divider needs to read the next frequency division number after each complete frequency division cycle ends, usually under the control of the overflow signal of the counting unit Read in of a frequency divider. If the clock signal of the DSM is provided by the reference clock Tref, the following problems will arise: If a period signal after frequency division is ahead of the reference clock signal, that is to say, the DSM has not output a new frequency division number after a complete frequency division period. , what the frequency division counter reads is still the frequency division number of the previous cycle, resulting in an error in the average fractional frequency division value. Usually the smaller the frequency division, the more obvious this effect. If the division number is small, this deviation will cause the output frequency to swing wildly and the loop will not lock.
选择分频后的信号Tdiv作为DSM的时钟信号可以避免上面的问题。但DSM属于数字电路,时钟沿触发后,其内部将有大量MOS管发生开关翻转,而此时也正是PFD进行相位比较的时刻,在系统达到锁定状态后,PFD所比较的信号先后相差极短,如果这种数字开关翻转通过电源或者衬底耦合到PFD上,将使PFD比较出现误差,引起额外的相位偏差,系统的整体噪声性能也将因此而降低。当然对于前一种DSM时钟由参考频率提供的情况,除前述读入分频数错误的问题存在外,由于环路达到锁定时鉴频鉴相器两路输入相位差不大,也会存在DSM数字开关翻转影响PFD相位比较的问题。Selecting the frequency-divided signal Tdiv as the DSM clock signal can avoid the above problems. However, DSM is a digital circuit. When the clock edge is triggered, a large number of MOS tubes will be flipped inside. At this time, it is also the time for PFD to perform phase comparison. After the system reaches the locked state, the signals compared by PFD are very different. Short, if this digital switch flip is coupled to the PFD through the power supply or the substrate, it will cause errors in the PFD comparison, cause additional phase deviation, and degrade the overall noise performance of the system. Of course, for the former case where the DSM clock is provided by the reference frequency, in addition to the above-mentioned problem of reading in the wrong frequency division, there will also be DSM because the phase difference between the two inputs of the frequency detector and phase detector is not large when the loop is locked. Issue with digital switch flipping affecting PFD phase comparison.
发明内容 Contents of the invention
本发明所要解决的技术问题是,提供一种无论小数型频率合成器中的分频器采用何种结构、DSM采用何种结构,都可以应用以确保分频器读入正确的分频数,并消除数字电路开关翻转对PFD的影响,进而提高系统性能的∑-Δ小数频率合成器中∑-Δ调制器时钟控制电路。The technical problem to be solved by the present invention is to provide a kind of structure that can be applied to ensure that the frequency divider reads the correct frequency division number regardless of the structure of the frequency divider in the decimal frequency synthesizer or the structure of the DSM. And eliminate the impact of digital circuit switch flipping on PFD, and then improve the system performance of the Σ-Δ modulator clock control circuit in the Σ-Δ fractional frequency synthesizer.
本发明所采用的技术方案是:一种∑-Δ小数频率合成器中∑-Δ调制器时钟控制电路,包括有∑-Δ调制器,接收与外部连接的压控振荡器发过来的VCO信号以及接收∑-Δ调制器所发出的信号的延迟单元。The technical solution adopted in the present invention is: a Σ-Δ modulator clock control circuit in a Σ-Δ fractional frequency synthesizer, including a Σ-Δ modulator, which receives the VCO signal sent by an externally connected voltage-controlled oscillator And a delay unit receiving the signal sent by the sigma-delta modulator.
所述的延迟单元包括有分频器和延迟电路,其中,分频器的输入端接收外部压控振荡器发过来的VCO信号,分频器的输入端还与∑-Δ调制器连接收其所发出的信号;分频器的输出端分别连接外部PFD以及连接延迟电路,延迟电路向∑-Δ调制器输出∑-Δ调制器时钟信号。The delay unit includes a frequency divider and a delay circuit, wherein the input terminal of the frequency divider receives the VCO signal sent by the external voltage-controlled oscillator, and the input terminal of the frequency divider is also connected with the Σ-Δ modulator to receive the signal. The signal sent out; the output end of the frequency divider is respectively connected to an external PFD and a delay circuit, and the delay circuit outputs a clock signal of the Σ-Δ modulator to the Σ-Δ modulator.
所述的延迟电路是由多个非门F组成的倒相器链构成。The delay circuit is composed of an inverter chain composed of a plurality of NOT gates F.
所述的∑-Δ调制器为MASH1-1-1结构的∑-Δ调制器。The Σ-Δ modulator is a Σ-Δ modulator with a MASH1-1-1 structure.
所述的分频器包括有n/n+1预分频器和与n/n+1预分频器相连并接收其信号的P-S编程计数器,所述的延迟电路采用TSPC-D触发器,其中,n/n+1预分频器的输入端接收压控振荡器发过来的VCO信号,n/n+1预分频器向TSPC-D触发器发出时钟信号,TSPC-D触发器向∑-Δ调制器输出∑-Δ调制器时钟信号,∑-Δ调制器的输出与P-S编程计数器相连;所述的P-S编程计数器的输出端分别至外部PFD以及TSPC-D触发器。Described frequency divider comprises n/n+1 prescaler and the P-S programming counter that is connected with n/n+1 prescaler and receives its signal, and described delay circuit adopts TSPC-D flip-flop, Among them, the input terminal of the n/n+1 prescaler receives the VCO signal sent by the voltage controlled oscillator, the n/n+1 prescaler sends a clock signal to the TSPC-D flip-flop, and the TSPC-D flip-flop sends a clock signal to the The Σ-Δ modulator outputs a Σ-Δ modulator clock signal, and the output of the Σ-Δ modulator is connected to the P-S programming counter; the output terminals of the P-S programming counter are respectively connected to the external PFD and TSPC-D flip-flops.
所述的∑-Δ调制器为Single-loop四位三阶调制器。The Σ-Δ modulator is a Single-loop four-bit third-order modulator.
本发明的∑-Δ小数频率合成器中∑-Δ调制器时钟控制电路,采用延迟技术和相应电路结构,解决了现有∑-Δ小数型频率合成器中存在的问题,确保分频器读入正确的分频数,并可有效避免数字电路开关翻转对PFD相位比较的影响,保证了相位比较的准确性。本发明具有广泛的适用性,无论小数型频率合成器中的分频器采用何种结构、DSM采用何种结构,都可以应用,以确保分频器读入正确的分频数,并消除数字电路开关翻转对PFD的影响,进而提高系统性能。The Σ-Δ modulator clock control circuit in the Σ-Δ fractional frequency synthesizer of the present invention adopts delay technology and corresponding circuit structure, solves the problems existing in the existing Σ-Δ fractional frequency synthesizer, and ensures that the frequency divider reads Enter the correct frequency division number, and can effectively avoid the influence of digital circuit switch flipping on PFD phase comparison, ensuring the accuracy of phase comparison. The present invention has wide applicability, no matter what structure the frequency divider in the fractional frequency synthesizer adopts, and what structure the DSM adopts, it can be applied to ensure that the frequency divider reads the correct frequency division number and eliminates the digital frequency divider. The impact of circuit switch flipping on PFD, thereby improving system performance.
附图说明 Description of drawings
图1是现有技术的基于锁相环结构的∑-Δ小数型频率合成器结构原理图;Fig. 1 is the structural principle diagram of the sigma-delta fractional frequency synthesizer based on the PLL structure of the prior art;
图2是本发明的电路原理图;Fig. 2 is a schematic circuit diagram of the present invention;
图3是图2的一种实施例的电路原理图;Fig. 3 is a schematic circuit diagram of an embodiment of Fig. 2;
图4是图2另一实施例的电路原理图。FIG. 4 is a schematic circuit diagram of another embodiment of FIG. 2 .
1:延迟单元 2:分频器1: delay unit 2: frequency divider
3:延迟电路 4:∑-Δ调制器3: Delay circuit 4: Σ-Δ modulator
5:7/8预分频器 6:P-S编程计数器5: 7/8 prescaler 6: P-S programming counter
7:TSPC-D触发器7: TSPC-D trigger
具体实施方式 Detailed ways
下面结合实施例的附图对本发明的∑-Δ小数频率合成器中∑-Δ调制器时钟控制电路做出详细说明。The clock control circuit of the sigma-delta modulator in the sigma-delta fractional frequency synthesizer of the present invention will be described in detail below with reference to the drawings of the embodiments.
本发明的∑-Δ小数频率合成器中∑-Δ调制器时钟控制电路,包括有∑-Δ调制器4(DSM),接收与外部连接的压控振荡器发过来的VCO信号以及接收∑-Δ调制器4The Σ-Δ modulator clock control circuit in the Σ-Δ fractional frequency synthesizer of the present invention includes a Σ-Δ modulator 4 (DSM), which receives the VCO signal sent by the voltage-controlled oscillator connected to the outside and receives the Σ-Δ modulator 4 (DSM). Delta Modulator 4
(DSM)所发出的信号的延迟单元1。本发明加入延迟单元的技术,即确保了分频器读入正确的分频数,同时使数字电路开关翻转与PFD相位比较时间错开,从而可有效避免数字电路开关翻转对PFD相位比较的影响,保证了相位比较的准确性。延迟单元可利用不同的电路实现,例如倒相器链、触发器等,延迟时间的选择则要结合系统的工作特点确定,延迟时间要足以保证PFD完成相位比较。对于小数型频率合成器,由于分频数在不断变化,输出频率不断改变,系统永远不可能达到严格意义上的锁定状态,也就是说PFD的两路输入比较信号的相位差始终在改变,这也为延迟时间的选取带来不确定性。但是从宏观上看,PFD输入信号的相位差在经过足够长时间积累后为零。基于这一点,忽略相位差的积累和锁相环系统对相位差的调整作用,近似地认为PFD的输入相位差只与当前周期的分频数有关。由于常见∑-Δ小数频率合成器的分频数变化范围较小(例如MASH1-1-1结构输出范围为-3~4,Single-loop四位三阶结构为-1~2),因此系统达到锁定状态后,PFD两路输入信号在时间上相差不会超出几个VCO周期,延迟时间略大于这个时间即可保证分频器读入正确的分频数,同时使相位比较与数字电路开关翻转错开,从而避免数字电路开关翻转对PFD的影响。例如,期望的小数分频值为70.5,在某一比较周期内/分频器的分频比为70,则引起的相位差为0.5个VCO振荡周期,因此使DSM时钟信号延迟半个VCO周期就可以避免数字开关翻转对PFD的影响。在实际电路中考虑到其它因素的影响,可以将延迟时间设置得稍大一点。(DSM) Delay
如图2所示,所述的延迟单元1包括有分频器2和延迟电路3,其中,分频器2的输入端接收外部压控振荡器发过来的VCO信号,分频器2的输入端还与∑-Δ调制器4连接收其所发出的信号;分频器2的输出端分别连接外部PFD(鉴频鉴相器)以及连接延迟电路3,延迟电路3向∑-Δ调制器4输出∑-Δ调制器时钟信号。As shown in Figure 2, the
如图3所示,所述的延迟电路3可以是由多个非门F组成的倒相器链构成。当延迟电路3是由多个非门F组成的倒相器链构成时,所述的∑-Δ调制器4为MASH1-1-1结构的∑-Δ调制器。As shown in FIG. 3 , the
在不考虑分频器具体结构的情况下讨论上述延迟技术的实施方法。其中,DSM使用MASH1-1-1结构,延迟单元采用倒相器链实现。Implementations of the above delay techniques are discussed without considering the specific structure of the frequency divider. Among them, the DSM uses the MASH1-1-1 structure, and the delay unit is realized by an inverter chain.
VCO输出信号被分频器分频后仍然分为两路,一路直接反馈给PFD进行相位比较,另一路输入倒相器链,被延迟后作为DSM的时钟信号。倒相器链应为偶数级,保持输出与输入信号同相。After the VCO output signal is divided by the frequency divider, it is still divided into two channels, one is directly fed back to the PFD for phase comparison, and the other is input to the inverter chain, which is delayed and used as the clock signal of the DSM. The inverter chain should have an even number of stages, keeping the output in phase with the input signal.
本方案中MASH1-1-1结构的DSM输出范围为-3~4,按照上述相位差的估算方法,最差情况下实际分频值与期望值相差4,那么DSM的时钟信号至少要延迟4个VCO周期。考虑实际电路中其它因素的影响,可将延迟时间设为6个VCO周期时间。以VCO输出频率为2GHz为例,需要设计倒相器链产生约3ns的延迟。考虑所选用工艺的参数和实际电路的结构,通过调整倒相器的尺寸和倒相器链的级数控制延迟时间,可使DSM的数字电路开关翻转发生在PFD完成相位比较之后,从而保证相位比较的准确性。In this scheme, the DSM output range of the MASH1-1-1 structure is -3 to 4. According to the estimation method of the above phase difference, in the worst case, the difference between the actual frequency division value and the expected value is 4, then the clock signal of the DSM must be delayed by at least 4 VCO cycle. Considering the influence of other factors in the actual circuit, the delay time can be set to 6 VCO cycle times. Taking the VCO output frequency as 2GHz as an example, it is necessary to design the inverter chain to generate a delay of about 3ns. Considering the parameters of the selected process and the structure of the actual circuit, by adjusting the size of the inverter and the number of stages of the inverter chain to control the delay time, the digital circuit switch of the DSM can be flipped after the phase comparison is completed by the PFD, so as to ensure the phase The accuracy of the comparison.
如图4所示,所述的分频器2还可以是:包括有n/n+1预分频器5和与n/n+1预分频器5相连并接收其信号的P-S编程计数器6,所述的延迟电路3采用TSPC-D触发器7,其中,n/n+1预分频器5的输入端接收压控振荡器发过来的VCO信号,n/n+1预分频器5向TSPC-D触发器7发出时钟信号,TSPC-D触发器7向∑-Δ调制器4输出∑-Δ调制器时钟信号,∑-Δ调制器4的输出与P-S编程计数器6相连;所述的P-S编程计数器6的输出端分别至外部PFD(鉴频鉴相器)以及TSPC-D触发器7。As shown in Figure 4, described
本实施例在如图4所示的情况时,所述的∑-Δ调制器4采用四位三阶调制器,预分频器5采用7/8预分频器5。In the case of this embodiment as shown in FIG. 4 , the Σ-
上述实施例,分频器利用预分频(prescaler)和编程计数器实现,DSM采用Single-loop四位三阶结构,延迟单元采用TSPC(True Single Phase Clock,真单相时钟)结构高速D触发器实现。Above-mentioned embodiment, frequency divider utilizes prescaler (prescaler) and programming counter to realize, DSM adopts Single-loop four-bit three-stage structure, delay unit adopts TSPC (True Single Phase Clock, true single-phase clock) structure high-speed D flip-flop accomplish.
由于频率合成器的输出频率较高,一般的编程计数器很难对其直接分频,通常需要预分频得到频率较低的信号,再通过编程计数器进行分频。对于输出频率达到GHz的频率合成器,经过预分频后的信号频率也在百兆赫兹量级,依然较高,D触发器应采用高速触发器结构。常用的高速触发器主要采用TSPC和CML(Current Mode Logic,电流模式逻辑)等结构,工作频率都可以达到几个GHz。由于CML结构D触发器需要差分输入信号,本方案中的延迟单元采用TSPC结构实现,只需要单相时钟。VCO输出信号被预分频器分频后分为两路,一路直接反馈给PFD进行相位比较,即Tdiv信号,另一路经TSPC-D触发器作为DSM的时钟信号。与Tdiv信号相比,DSM的时钟被延迟了一个D触发器的时钟周期,因此选取合适的D触发器时钟信号即可实现适当延迟,使DSM的开关翻转发生在PFD完成相位比较之后,从而避免了开关翻转对PFD的影响。Due to the high output frequency of the frequency synthesizer, it is difficult for the general programming counter to divide it directly. Usually, it needs to pre-scale to obtain a signal with a lower frequency, and then divide it by the programming counter. For the frequency synthesizer whose output frequency reaches GHz, the signal frequency after pre-dividing is also in the order of hundreds of megahertz, which is still high, and the D flip-flop should adopt a high-speed flip-flop structure. Commonly used high-speed flip-flops mainly adopt structures such as TSPC and CML (Current Mode Logic, current mode logic), and the working frequency can reach several GHz. Since the CML structure D flip-flop requires a differential input signal, the delay unit in this scheme is implemented with a TSPC structure and only needs a single-phase clock. The VCO output signal is divided into two channels after frequency division by the prescaler, one channel is directly fed back to the PFD for phase comparison, that is, the Tdiv signal, and the other channel is used as the clock signal of the DSM through the TSPC-D flip-flop. Compared with the Tdiv signal, the DSM clock is delayed by one D flip-flop clock cycle, so selecting a suitable D flip-flop clock signal can achieve a proper delay, so that the DSM switch flip occurs after the PFD completes the phase comparison, thereby avoiding The effect of switch flipping on PFD is shown.
本实施例中Single-loop四位三阶结构∑-Δ调制器的输出范围为-1~2。考虑到最差情况,实际分频值与期望值相差2,则DSM时钟的延迟至少为2个VCO周期,因此只要预分频器能够完成两倍或两倍以上的分频,那么由TSPC-D触发器所产生的延迟就可以保证DSM开关翻转避开PFD相位比较的时间。直接使用预分频器的输出信号作为TSPC-D触发器的时钟,其方便之处在于直接利用原电路结构中已有信号,而不需要任何额外电路,使电路结构简单、易于实现。In this embodiment, the output range of the Single-loop four-bit three-order structure Σ-Δ modulator is -1˜2. Considering the worst case, the difference between the actual frequency division value and the expected value is 2, and the delay of the DSM clock is at least 2 VCO cycles, so as long as the prescaler can complete the frequency division by two times or more, then the TSPC-D The delay generated by the flip-flops guarantees the time for the DSM switch to flip to avoid the PFD phase comparison. The convenience of directly using the output signal of the prescaler as the clock of the TSPC-D flip-flop is that the existing signal in the original circuit structure is directly used without any additional circuit, which makes the circuit structure simple and easy to implement.
如以7/8预分频器为例,即DSM的时钟被延迟了7或8个VCO周期,这个延迟时间足够保证DSM的数字开关翻转不会对PFD相位比较产生影响,有效地避免了可能引起的相位误差。Take the 7/8 prescaler as an example, that is, the clock of the DSM is delayed by 7 or 8 VCO cycles. This delay time is enough to ensure that the flipping of the digital switch of the DSM will not affect the phase comparison of the PFD, effectively avoiding possible caused phase error.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 200810052703 CN101257303A (en) | 2008-04-11 | 2008-04-11 | Clock Control Circuit of Sigma-Delta Modulator in Sigma-Delta Fractional Frequency Synthesizer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 200810052703 CN101257303A (en) | 2008-04-11 | 2008-04-11 | Clock Control Circuit of Sigma-Delta Modulator in Sigma-Delta Fractional Frequency Synthesizer |
Publications (1)
Publication Number | Publication Date |
---|---|
CN101257303A true CN101257303A (en) | 2008-09-03 |
Family
ID=39891824
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN 200810052703 Pending CN101257303A (en) | 2008-04-11 | 2008-04-11 | Clock Control Circuit of Sigma-Delta Modulator in Sigma-Delta Fractional Frequency Synthesizer |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101257303A (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101635504B (en) * | 2009-08-20 | 2012-10-10 | 杭州士兰微电子股份有限公司 | Frequency dithering circuit and frequency dithering method as well as application thereof in switch power supply |
CN102811052A (en) * | 2011-05-31 | 2012-12-05 | 比亚迪股份有限公司 | Phase-locked loop circuit |
CN103051338A (en) * | 2012-11-29 | 2013-04-17 | 成都锐成芯微科技有限责任公司 | Fractional-N phase locked loop |
CN103236841A (en) * | 2013-04-15 | 2013-08-07 | 北京大学 | Switching type phase frequency detector based on periodic comparison and digital phase-locked loop |
CN103368567A (en) * | 2012-04-06 | 2013-10-23 | 联咏科技股份有限公司 | Frequency synthesizer |
CN103560785A (en) * | 2013-10-28 | 2014-02-05 | 中国电子科技集团公司第四十一研究所 | Method and device for generating phase-coherent signals |
CN103986457A (en) * | 2014-05-20 | 2014-08-13 | 硅谷数模半导体(北京)有限公司 | High-speed frequency divider |
CN105656475A (en) * | 2014-12-02 | 2016-06-08 | 联发科技股份有限公司 | Fractional division circuit and related correction method |
CN109995360A (en) * | 2018-01-02 | 2019-07-09 | 珠海全志科技股份有限公司 | The phaselocked loop of disturbance suppression |
CN110971238A (en) * | 2019-12-16 | 2020-04-07 | 电子科技大学 | A kind of external synchronization device for continuous equal interval sampling of Σ-Δ AD |
CN115150571A (en) * | 2021-03-30 | 2022-10-04 | 豪威科技股份有限公司 | Analog-to-digital converter clocking for extended analog gain and reduced noise |
-
2008
- 2008-04-11 CN CN 200810052703 patent/CN101257303A/en active Pending
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101635504B (en) * | 2009-08-20 | 2012-10-10 | 杭州士兰微电子股份有限公司 | Frequency dithering circuit and frequency dithering method as well as application thereof in switch power supply |
CN102811052B (en) * | 2011-05-31 | 2015-08-26 | 比亚迪股份有限公司 | A kind of phase-locked loop circuit |
CN102811052A (en) * | 2011-05-31 | 2012-12-05 | 比亚迪股份有限公司 | Phase-locked loop circuit |
CN103368567B (en) * | 2012-04-06 | 2016-03-30 | 联咏科技股份有限公司 | Frequency synthesizer |
CN103368567A (en) * | 2012-04-06 | 2013-10-23 | 联咏科技股份有限公司 | Frequency synthesizer |
CN103051338A (en) * | 2012-11-29 | 2013-04-17 | 成都锐成芯微科技有限责任公司 | Fractional-N phase locked loop |
CN103236841B (en) * | 2013-04-15 | 2016-06-15 | 北京大学 | Based on period ratio compared with switching regulator phase frequency detector and digital phase-locked loop |
CN103236841A (en) * | 2013-04-15 | 2013-08-07 | 北京大学 | Switching type phase frequency detector based on periodic comparison and digital phase-locked loop |
CN103560785A (en) * | 2013-10-28 | 2014-02-05 | 中国电子科技集团公司第四十一研究所 | Method and device for generating phase-coherent signals |
CN103560785B (en) * | 2013-10-28 | 2017-05-10 | 中国电子科技集团公司第四十一研究所 | Method and device for generating phase-coherent signals |
CN103986457A (en) * | 2014-05-20 | 2014-08-13 | 硅谷数模半导体(北京)有限公司 | High-speed frequency divider |
CN103986457B (en) * | 2014-05-20 | 2016-08-24 | 硅谷数模半导体(北京)有限公司 | high-speed frequency divider |
CN105656475A (en) * | 2014-12-02 | 2016-06-08 | 联发科技股份有限公司 | Fractional division circuit and related correction method |
CN105656475B (en) * | 2014-12-02 | 2018-12-11 | 联发科技股份有限公司 | Fractional division circuit and related correction method |
CN109995360A (en) * | 2018-01-02 | 2019-07-09 | 珠海全志科技股份有限公司 | The phaselocked loop of disturbance suppression |
CN110971238A (en) * | 2019-12-16 | 2020-04-07 | 电子科技大学 | A kind of external synchronization device for continuous equal interval sampling of Σ-Δ AD |
CN115150571A (en) * | 2021-03-30 | 2022-10-04 | 豪威科技股份有限公司 | Analog-to-digital converter clocking for extended analog gain and reduced noise |
CN115150571B (en) * | 2021-03-30 | 2023-11-28 | 豪威科技股份有限公司 | Analog-to-digital converter clocking for spreading analog gain and reducing noise |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101257303A (en) | Clock Control Circuit of Sigma-Delta Modulator in Sigma-Delta Fractional Frequency Synthesizer | |
US10200188B2 (en) | Quadrature and duty cycle error correction in matrix phase lock loop | |
US8050376B2 (en) | All digital phase-locked loop with widely locked frequency | |
US6794944B2 (en) | Lock detection circuit | |
US9270280B1 (en) | Half-integer frequency dividers that support 50% duty cycle signal generation | |
CN100568735C (en) | Frequency divider | |
US8891725B2 (en) | Frequency divider with improved linearity for a fractional-N synthesizer using a multi-modulus prescaler | |
CN101908883B (en) | Programmable fractional frequency divider | |
CN101465645B (en) | A fractional/integer divider | |
US9577646B1 (en) | Fractional phase locked loop (PLL) architecture | |
KR101611814B1 (en) | Wide range multi-modulus divider in fractional-n frequency synthesizer | |
US20170005786A1 (en) | Programmable frequency divider providing a fifty-percent duty-cycle output over a range of divide factors | |
CN212231423U (en) | Phase frequency detector and phase-locked loop circuit | |
Lee et al. | Phase frequency detectors for fast frequency acquisition in zero-dead-zone CPPLLs for mobile communication systems | |
Cheng et al. | A fast-lock wide-range delay-locked loop using frequency-range selector for multiphase clock generator | |
TW202019096A (en) | Frequency divider circuit | |
CN117081591A (en) | Real-time fractional frequency-division phase-locked loop of nested delay phase-locked loop | |
CN117713813A (en) | Subsampling-based wide tuning range low-reference spurious integer frequency synthesizer | |
CN113452365B (en) | Automatic frequency correction circuit and correction method suitable for under-sampling phase-locked loop | |
CN101478307B (en) | Dual mode 4/4.5 pre-divider | |
CN110581708B (en) | Frequency Locked Loop Full Digital Frequency Synthesizer | |
US7323913B1 (en) | Multiphase divider for P-PLL based serial link receivers | |
US10700669B2 (en) | Avoiding very low duty cycles in a divided clock generated by a frequency divider | |
Hati et al. | Efficient design technique for pulse swallow based fractional-N frequency divider | |
CN212258936U (en) | Phase frequency detector, charge pump and phase-locked loop circuit |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
WD01 | Invention patent application deemed withdrawn after publication |
Open date: 20080903 |