CN101256773A - Vector Quantization Method and Device for Frequency Parameters of Immittance Spectrum - Google Patents
Vector Quantization Method and Device for Frequency Parameters of Immittance Spectrum Download PDFInfo
- Publication number
- CN101256773A CN101256773A CNA2007100031936A CN200710003193A CN101256773A CN 101256773 A CN101256773 A CN 101256773A CN A2007100031936 A CNA2007100031936 A CN A2007100031936A CN 200710003193 A CN200710003193 A CN 200710003193A CN 101256773 A CN101256773 A CN 101256773A
- Authority
- CN
- China
- Prior art keywords
- vector
- current frame
- isf parameter
- frame
- isf
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Compression, Expansion, Code Conversion, And Decoders (AREA)
Abstract
本发明公开了一种导抗谱频率(ISF)参数的矢量量化方法和一种ISF参数的矢量量化装置。本发明还公开了一种ISF参数的矢量量化编码端方法、一种ISF参数的矢量量化解码端方法、一种ISF参数的矢量量化装置、一种ISF参数的矢量量化编码端装置和一种ISF参数的矢量量化解码端装置。上述方法或装置,利用各维非等系数帧间预测器的预测系数,计算ISF参数的预测矢量。应用本发明,可以在宽带语音编码解码过程中均衡有丢失帧和无丢失帧时的量化性能,提高语音合成的质量。
The invention discloses a vector quantization method of the impedance spectrum frequency (ISF) parameter and a vector quantization device of the ISF parameter. The invention also discloses an ISF parameter vector quantization encoding end method, an ISF parameter vector quantization decoding end method, an ISF parameter vector quantization device, an ISF parameter vector quantization encoding end device and an ISF Parameter vector quantization of the decoding end device. The above method or device uses the prediction coefficients of inter-frame predictors with non-equal coefficients in each dimension to calculate the prediction vector of ISF parameters. The application of the present invention can equalize the quantization performance when there are lost frames and no lost frames in the wideband speech coding and decoding process, and improve the quality of speech synthesis.
Description
技术领域 technical field
本发明涉及语音信号处理领域,特别涉及导抗谱频率(ImmittanceSpectral Frequencies,ISF)参数的矢量量化方法及装置。The invention relates to the field of speech signal processing, in particular to a vector quantization method and device for Immittance Spectral Frequencies (ISF) parameters.
背景技术 Background technique
在语音编解码领域,使用线性预测(Linear Predictive,LP)参数表征声道合成滤波器。若想获得高质量的合成语音,必须采用高效的量化技术提供给声道合成滤波器的LP系数进行量化,使由LP系数量化引起的平均谱失真小于1dB,从而实现高质量的语音编解码和语音合成系统中对LP参数的透明量化。由于LP参数的动态范围较大,通常将LP参数转换成在数学上完全等价的其他参数后再进行量化,ISF参数就是一种表达LP参数的有效方式。与LP参数的另一种等价参数线谱频率(Linear Spectral Frequencies,LSF)参数相比,ISF参数在保证了精确度的同时降低了计算复杂度。In the field of speech coding and decoding, linear prediction (Linear Predictive, LP) parameters are used to characterize the channel synthesis filter. If you want to obtain high-quality synthetic speech, you must use efficient quantization technology to provide the LP coefficients of the channel synthesis filter for quantization, so that the average spectral distortion caused by the quantization of LP coefficients is less than 1dB, so as to achieve high-quality speech codec and Transparent quantization of LP parameters in speech synthesis systems. Due to the large dynamic range of LP parameters, the LP parameters are usually converted into other parameters that are completely equivalent in mathematics before quantization. ISF parameters are an effective way to express LP parameters. Compared with another equivalent parameter of the LP parameter, the Linear Spectral Frequency (LSF) parameter, the ISF parameter reduces the computational complexity while ensuring the accuracy.
随着无线通信系统中高速率数据服务的发展,宽带语音(50-7000Hz)编码已经越来越广泛的被采纳,对宽带LP参数量化方面的研究也越来越深入。对于宽带语音通常需要16阶LP参数才能较好的表征语音的谱包络,因此将LP参数转化为ISF参数进行矢量量化时造成较大的计算复杂度和存储复杂度,并且需要消耗较多的比特数才能在无丢失帧时达到透明量化的效果。针对这一问题,出现了一步插值预测矢量量化方法和国际电信联盟远程通信标准化组(ITU-T)G.722.2使用的各维等系数滑动平均(MovingAverage,MA)预测矢量量化方法。其中,一步插值预测矢量量化方法可以在无丢失帧的情况下实现透明量化,但在发生丢失帧的情况下往往会影响到译码过程中ISF参数的正确性,进而直接影响合成语音的质量。ITU-TG.722.2使用的MA预测矢量量化方法可以在有丢失帧的情况下较好的恢复出ISF参数,并且错误繁殖较小,但是在无丢失帧的情况下需要更多的比特数,才能达到和一步插值预测矢量量化在无丢失帧情况下相同的透明量化效果,计算复杂度提高。可见,现有的一步插值预测矢量量化和ITU-TG.722.2使用的MA预测矢量量化,都不能同时兼顾有丢失帧和无丢失帧两种情况,取得很好的ISF参数量化效果,进而保证合成语音的质量。With the development of high-speed data services in wireless communication systems, wideband speech (50-7000Hz) coding has been more and more widely adopted, and research on wideband LP parameter quantization has become more and more in-depth. For broadband speech, 16th-order LP parameters are usually required to better represent the spectral envelope of speech. Therefore, converting LP parameters into ISF parameters for vector quantization results in greater computational complexity and storage complexity, and consumes more The number of bits can achieve the effect of transparent quantization without losing frames. To solve this problem, a one-step interpolation predictive vector quantization method and a moving average (MA) predictive vector quantization method with equal coefficients in each dimension used by the International Telecommunication Union Telecommunication Standardization Group (ITU-T) G.722.2 have emerged. Among them, the one-step interpolation predictive vector quantization method can realize transparent quantization without missing frames, but in the case of missing frames, it often affects the correctness of ISF parameters in the decoding process, and directly affects the quality of synthesized speech. The MA predictive vector quantization method used in ITU-TG.722.2 can recover the ISF parameters better in the case of lost frames, and the error propagation is small, but it needs more bits in the case of no lost frames. It achieves the same transparent quantization effect as the one-step interpolation predictive vector quantization in the case of no frame loss, and the computational complexity is increased. It can be seen that neither the existing one-step interpolation predictive vector quantization nor the MA predictive vector quantization used in ITU-TG. Voice quality.
发明内容 Contents of the invention
为了解决上述问题,本发明实施例提供一种ISF参数的矢量量化方法。In order to solve the above problems, an embodiment of the present invention provides a vector quantization method for ISF parameters.
本发明实施例还提供一种ISF参数的矢量量化编码端方法。The embodiment of the present invention also provides a vector quantization coding end method of ISF parameters.
本发明实施例还提供一种ISF参数的矢量量化解码端方法。The embodiment of the present invention also provides a decoding end method for vector quantization of ISF parameters.
本发明实施例还提供一种ISF参数的矢量量化装置。The embodiment of the present invention also provides a vector quantization device for ISF parameters.
本发明实施例还提供一种ISF参数的矢量量化编码端装置。The embodiment of the present invention also provides an ISF parameter vector quantization coding end device.
本发明实施例还提供一种ISF参数的矢量量化解码端装置。The embodiment of the present invention also provides a vector quantization decoding end device for ISF parameters.
一种导抗谱频率参数的矢量量化方法,该方法包括:A method for vector quantization of frequency parameters of the immittance spectrum, the method comprising:
编码过程:Encoding process:
将当前帧ISF参数矢量减去ISF参数均值矢量,得到当前帧无偏ISF参数矢量;Subtract the ISF parameter mean value vector from the ISF parameter vector of the current frame to obtain the unbiased ISF parameter vector of the current frame;
将各维非等系数帧间预测器的预测系数与上一帧量化后的无偏ISF参数矢量相乘,得到当前帧ISF参数的预测矢量;Multiply the prediction coefficients of the non-equal coefficient inter-frame predictors of each dimension with the unbiased ISF parameter vector after quantization of the previous frame to obtain the prediction vector of the ISF parameter of the current frame;
将当前帧无偏ISF参数矢量与当前帧ISF参数的预测矢量相减,得到当前帧ISF参数预测残差矢量;Subtract the unbiased ISF parameter vector of the current frame from the predicted vector of the ISF parameter of the current frame to obtain the predicted residual vector of the ISF parameter of the current frame;
对当前帧ISF参数预测残差矢量进行矢量量化,得到当前帧量化后的ISF参数预测残差矢量及其码书索引值,并将码书索引值写入码流;Carry out vector quantization to the current frame ISF parameter prediction residual vector, obtain the current frame quantized ISF parameter prediction residual vector and its codebook index value, and write the codebook index value into the code stream;
将当前帧量化后的ISF参数预测残差矢量与当前帧ISF参数的预测矢量相加,得到当前帧量化后的无偏ISF参数矢量,用作下一帧ISF参数的预测矢量的计算;Adding the ISF parameter prediction residual vector after the current frame quantization to the prediction vector of the current frame ISF parameter to obtain the unbiased ISF parameter vector after the current frame quantization is used as the calculation of the prediction vector of the next frame ISF parameter;
将当前帧量化后的无偏ISF参数矢量与ISF参数均值矢量相加,得到当前帧量化后的ISF参数矢量;Adding the unbiased ISF parameter vector after the quantization of the current frame and the ISF parameter mean vector to obtain the ISF parameter vector after the quantization of the current frame;
解码过程:Decoding process:
根据从码流中解析出的码书索引值,在残差码书中查询对应的当前帧量化后的ISF参数预测残差矢量;According to the codebook index value parsed from the code stream, query the corresponding current frame quantized ISF parameter prediction residual vector in the residual codebook;
将各维非等系数帧间预测器的预测系数与上一帧量化后的无偏ISF参数矢量相乘,得到当前帧ISF参数的预测矢量;Multiply the prediction coefficients of the non-equal coefficient inter-frame predictors of each dimension with the unbiased ISF parameter vector after quantization of the previous frame to obtain the prediction vector of the ISF parameter of the current frame;
将量化后的当前帧ISF预测残差矢量和当前帧ISF参数的预测矢量相加,得到当前帧量化后的无偏ISF参数矢量,用作下一帧ISF参数的预测矢量的计算;Adding the quantized current frame ISF prediction residual vector and the prediction vector of the current frame ISF parameter to obtain the unbiased ISF parameter vector after the current frame quantization is used as the calculation of the prediction vector of the next frame ISF parameter;
将当前帧量化后的无偏ISF参数矢量与ISF参数均值矢量相加,得到当前帧量化后的ISF参数矢量。The quantized unbiased ISF parameter vector of the current frame is added to the ISF parameter mean value vector to obtain the quantized ISF parameter vector of the current frame.
一种导抗谱频率参数的矢量量化编码端方法,该方法包括:A vector quantization coding end method of an immittance spectrum frequency parameter, the method comprising:
使用各维非等系数帧间预测器的预测系数,计算当前帧ISF参数的预测矢量;Using the prediction coefficients of the inter-frame predictors with non-equal coefficients in each dimension, calculate the prediction vector of the ISF parameter of the current frame;
将当前帧无偏ISF参数矢量与当前帧ISF参数的预测矢量相减,计算当前帧ISF参数预测残差矢量;Subtract the unbiased ISF parameter vector of the current frame from the predicted vector of the ISF parameter of the current frame, and calculate the predicted residual vector of the ISF parameter of the current frame;
对当前帧ISF参数预测残差矢量进行分裂矢量量化。Perform split vector quantization on the ISF parameter prediction residual vector of the current frame.
一种导抗谱频率参数的矢量量化解码端方法,该方法包括:A vector quantization decoding end method of an immittance spectrum frequency parameter, the method comprising:
使用残差码书得到当前帧量化后的ISF参数预测残差矢量;Using the residual codebook to obtain the ISF parameter prediction residual vector after quantization of the current frame;
使用各维非等系数帧间预测器的预测系数,计算当前帧ISF参数的预测矢量;Using the prediction coefficients of the inter-frame predictors with non-equal coefficients in each dimension, calculate the prediction vector of the ISF parameter of the current frame;
将当前帧量化后的ISF预测残差矢量与当前帧ISF参数的预测矢量相加,计算当前帧量化后的无偏ISF参数。The quantized ISF prediction residual vector of the current frame is added to the prediction vector of the ISF parameter of the current frame to calculate the unbiased ISF parameter of the current frame after quantization.
一种导抗谱频率参数的矢量量化装置,该装置包括:编码端单元和解码端单元;A vector quantization device for frequency parameters of immittance spectrum, the device includes: an encoding end unit and a decoding end unit;
所述编码端单元,存储各维非等系数帧间预测器的预测系数、残差码书和ISF参数均值矢量;计算当前帧的无偏ISF参数矢量;将各维非等系数帧间预测器的预测系数与上一帧量化后的无偏ISF参数矢量相乘,计算当前帧ISF参数的预测矢量;将当前帧无偏ISF参数矢量与当前帧ISF参数预测矢量相减,得到当前帧ISF参数预测残差矢量;对当前帧ISF预测残差矢量进行矢量量化,得到当前帧量化后的ISF参数预测残差矢量及其码书索引值,将码书索引值写入码流送入译码端单元;将当前帧量化后的ISF参数预测残差矢量与当前帧ISF参数的预测矢量相加,得到当前帧量化后的无偏ISF参数矢量,用作下一帧ISF参数的预测矢量的计算;将当前帧量化后的无偏ISF参数矢量与ISF参数均值矢量相加,得到当前帧量化后的ISF参数矢量;The encoding end unit stores the prediction coefficients, residual codebook and ISF parameter mean value vector of each dimension non-equal coefficient inter-frame predictor; calculates the unbiased ISF parameter vector of the current frame; converts each dimension non-equal coefficient inter-frame predictor The prediction coefficient of the previous frame is multiplied by the unbiased ISF parameter vector after quantization of the previous frame to calculate the prediction vector of the ISF parameter of the current frame; the unbiased ISF parameter vector of the current frame is subtracted from the ISF parameter prediction vector of the current frame to obtain the ISF parameter of the current frame Prediction residual vector: Carry out vector quantization on the ISF prediction residual vector of the current frame, obtain the ISF parameter prediction residual vector and its codebook index value after quantization of the current frame, write the codebook index value into the code stream and send it to the decoding end Unit; the ISF parameter prediction residual vector after current frame quantization is added with the prediction vector of current frame ISF parameter, obtains the unbiased ISF parameter vector after current frame quantization, is used as the calculation of the prediction vector of next frame ISF parameter; Adding the unbiased ISF parameter vector after the quantization of the current frame and the ISF parameter mean vector to obtain the ISF parameter vector after the quantization of the current frame;
所述解码端单元,存储各维非等系数帧间预测器的预测系数、残差码书和ISF参数均值矢量,从编码端单元送入的码流中解析当前帧的码书索引值;使用当前帧码书索引值在残差码书中查询对应的当前帧量化后的ISF预测残差矢量;使用各维非等系数帧间预测器的预测系数与上一帧量化后的无偏ISF参数矢量相乘,计算当前帧ISF参数的预测矢量;使用当前帧量化后的ISF预测残差矢量与当前帧ISF参数预测矢量相加,计算当前帧量化后的无偏ISF参数矢量,用作下一帧ISF参数的预测矢量的计算;使用当前帧量化后的无偏ISF参数矢量与ISF参数均值矢量相加,计算当前帧的ISF参数矢量。The decoding end unit stores the prediction coefficients, residual codebook and ISF parameter mean value vector of each dimension non-equal coefficient inter-frame predictor, and parses the codebook index value of the current frame from the code stream sent by the encoding end unit; using The current frame codebook index value queries the corresponding current frame quantized ISF prediction residual vector in the residual codebook; use the prediction coefficient of each dimension non-equal coefficient inter-frame predictor and the unbiased ISF parameter after quantization of the previous frame Multiply vectors to calculate the predicted vector of ISF parameters of the current frame; use the quantized ISF prediction residual vector of the current frame to add the predicted vector of ISF parameters of the current frame to calculate the unbiased ISF parameter vector of the current frame after quantization, which is used as the next Calculation of the predicted vector of the ISF parameter of the frame; the ISF parameter vector of the current frame is calculated by adding the quantized unbiased ISF parameter vector of the current frame and the mean value vector of the ISF parameter.
一种导抗谱频率参数的矢量量化编码端装置,该装置包括:加法器、各维非等系数帧间预测器和矢量量化模块;A vector quantization encoding end device for immittance spectrum frequency parameters, the device includes: an adder, an inter-frame predictor with non-equal coefficients in each dimension, and a vector quantization module;
所述加法器,用于将当前帧无偏ISF参数矢量与各维非等系数帧间预测器提供的当前帧ISF参数的预测矢量相减,计算当前帧ISF预测残差矢量提供给矢量量化模块;The adder is used to subtract the unbiased ISF parameter vector of the current frame from the predicted vector of the ISF parameter of the current frame provided by the non-equal coefficient inter-frame predictor of each dimension, and calculate the ISF prediction residual vector of the current frame and provide it to the vector quantization module ;
所述各维非等系数帧间预测器,用于存储各维非等系数帧间预测器的预测系数;使用各维非等系数帧间预测器的预测系数,计算当前帧ISF参数的预测矢量并提供给加法器;The inter-frame predictors with unequal coefficients in each dimension are used to store the prediction coefficients of the inter-frame predictors with unequal coefficients in each dimension; and calculate the prediction vector of the ISF parameter of the current frame using the prediction coefficients of the inter-frame predictors with unequal coefficients in each dimension and provided to the adder;
所述矢量量化模块,用于将加法器提供的当前帧ISF参数预测残差矢量进行分裂矢量量化。The vector quantization module is configured to perform split vector quantization on the ISF parameter prediction residual vector of the current frame provided by the adder.
一种导抗谱频率参数的矢量量化解码端装置,该装置包括:各维非等系数帧间预测器、矢量量化解码模块和无偏ISF参数矢量重构模块;A device for vector quantization and decoding of immittance spectrum frequency parameters, the device includes: inter-frame predictors with non-equal coefficients in each dimension, a vector quantization decoding module and an unbiased ISF parameter vector reconstruction module;
所述矢量量化解码模块,根据码流解析当前帧量化后的ISF参数预测残差矢量提供给无偏ISF参数矢量重构模块;The vector quantization decoding module provides the unbiased ISF parameter vector reconstruction module by analyzing the quantized ISF parameter prediction residual vector of the current frame according to the code stream;
所述各维非等系数帧间预测器,存储各维非等系数帧间预测器的预测系数;使用各维非等系数帧间预测器的预测系数,计算当前帧ISF参数的预测矢量提供给无偏ISF参数矢量重构模块;The inter-frame predictors with non-equal coefficients in each dimension store the prediction coefficients of the inter-frame predictors with non-equal coefficients in each dimension; use the prediction coefficients of the inter-frame predictors with non-equal coefficients in each dimension to calculate the prediction vector of the current frame ISF parameter and provide it to Unbiased ISF parameter vector reconstruction module;
所述无偏ISF参数矢量重构模块,将矢量量化解码模块提供的量化后的当前帧ISF参数预测残差矢量与各维非等帧间系数预测器提供的当前帧ISF参数的预测矢量相加,计算当前帧量化后的无偏ISF参数矢量。The unbiased ISF parameter vector reconstruction module adds the quantized current frame ISF parameter prediction residual vector provided by the vector quantization decoding module to the current frame ISF parameter prediction vector provided by each dimension non-equal inter-frame coefficient predictor , to calculate the unbiased ISF parameter vector after quantization of the current frame.
上述ISF参数的矢量量化方法及装置,使用各维非等系数帧间预测器的预测系数计算每一帧ISF参数的预测矢量,通过使用各维非等系数帧间预测器的预测系数,更好的消除ISF参数的帧间相关性,减小ISF参数的动态范围,平衡了有丢失帧和无丢失帧情况下的量化性能,在有丢失帧和无丢失帧的情况下均能保证合成语音的质量。The above vector quantization method and device for ISF parameters use the prediction coefficients of the inter-frame predictors with non-equal coefficients in each dimension to calculate the prediction vector of ISF parameters in each frame. By using the prediction coefficients of the inter-frame predictors with non-equal coefficients in each dimension, better Eliminate the inter-frame correlation of ISF parameters, reduce the dynamic range of ISF parameters, balance the quantization performance in the case of missing frames and no missing frames, and ensure the quality of synthesized speech in both cases of missing frames and no missing frames quality.
附图说明 Description of drawings
图1为本发明实施例提供的ISF参数矢量量化方法的编码过程流程图;Fig. 1 is the flow chart of the encoding process of the ISF parameter vector quantization method provided by the embodiment of the present invention;
图2为本发明实施例提供的ISF参数矢量量化方法的解码过程流程图;Fig. 2 is the flow chart of the decoding process of the ISF parameter vector quantization method provided by the embodiment of the present invention;
图3为本发明实施例提供的ISF参数矢量量化装置结构示意图;FIG. 3 is a schematic structural diagram of an ISF parameter vector quantization device provided by an embodiment of the present invention;
图4为本发明实施例提供的ISF参数矢量量化编码端装置结构示意图;FIG. 4 is a schematic structural diagram of an ISF parameter vector quantization encoding end device provided by an embodiment of the present invention;
图5为本发明实施例提供的ISF参数矢量量化解码端装置结构示意图。FIG. 5 is a schematic structural diagram of an ISF parameter vector quantization decoding end device provided by an embodiment of the present invention.
具体实施方式 Detailed ways
为使本发明实施例的目的、技术方案和优点更加清楚明白,下面结合附图,对本发明实施例作进一步详细说明。In order to make the purpose, technical solutions and advantages of the embodiments of the present invention clearer, the embodiments of the present invention will be further described in detail below in conjunction with the accompanying drawings.
首先设置本发明实施例的描述中需要用到的各个参量。本发明实施例中的ISF参数的矢量量化,是以帧为单位进行量化的。设第n帧无偏ISF参数矢量为z(n),量化后的第n帧无偏ISF参数矢量为第n帧z(n)的预测矢量为p(n),第n帧ISF参数预测残差矢量为r(n),第n帧量化后的ISF参数预测残差矢量为第n帧量化后的五个ISF残差码书的码矢量索引值为k1(n)、k2(n)、k3(n)、k4(n)和k5(n)。下面结合上述设置参量进行详细描述。Firstly, various parameters that need to be used in the description of the embodiment of the present invention are set. The vector quantization of ISF parameters in the embodiment of the present invention is performed in units of frames. Let the unbiased ISF parameter vector of the nth frame be z(n), and the unbiased ISF parameter vector of the nth frame after quantization is The prediction vector of the nth frame z(n) is p(n), the ISF parameter prediction residual vector of the nth frame is r(n), and the quantized ISF parameter prediction residual vector of the nth frame is The code vector index values of the five ISF residual codebooks quantized in the nth frame are k 1 (n), k 2 (n), k 3 (n), k 4 (n) and k 5 (n). The following describes in detail in conjunction with the above setting parameters.
图1示出了本发明实施例提供的ISF参数矢量量化方法中的编码端流程,在每一帧对ISF参数的矢量量化中,该流程包括:Fig. 1 shows the encoding end process in the ISF parameter vector quantization method provided by the embodiment of the present invention, in the vector quantization of ISF parameters in each frame, the process includes:
步骤100:计算当前帧无偏ISF参数矢量。Step 100: Calculate the current frame unbiased ISF parameter vector.
本步骤中,无偏ISF参数矢量由若干个分量组成,ISF参数矢量的维数与ISF参数的阶数相等,具体计算方法如下:In this step, the unbiased ISF parameter vector is composed of several components, and the dimension of the ISF parameter vector is equal to the order of the ISF parameter. The specific calculation method is as follows:
设第n帧ISF参数矢量的第i个分量为ωi(n),i=0,1,……,m-1,其中m表示ISF参数的阶数。为了减少计算和量化的动态范围,设第i个ISF参数矢量的平均值ωi,i=0,1,……,m-1,该平均值可以通过预先训练得到,具体训练方法为本领域技术人员公知的内容。将ωi从ωi(n)中减去得到第n帧无偏ISF参数矢量的第i个分量为:Let the i-th component of the ISF parameter vector of the nth frame be ω i (n), i=0, 1, ..., m-1, where m represents the order of the ISF parameter. In order to reduce the dynamic range of calculation and quantization, set the mean value ω i of the i-th ISF parameter vector, i=0, 1, ..., m-1, the mean value can be obtained through pre-training, the specific training method is in this field Known to the skilled person. Subtract ω i from ω i (n) to obtain the i-th component of the unbiased ISF parameter vector of the nth frame as:
zi(n)=ωi(n)-ωi,i=0,1,……,m-1z i (n)=ω i (n)-ω i , i=0, 1,..., m-1
计算当前帧无偏ISF参数矢量的每一个分量,得到当前帧无偏ISF参数矢量。Each component of the unbiased ISF parameter vector of the current frame is calculated to obtain the unbiased ISF parameter vector of the current frame.
步骤101:计算当前帧ISF参数的预测矢量。Step 101: Calculate the predictive vector of ISF parameters of the current frame.
本步骤中,设当前帧为第n帧,设第n帧的ISF参数预测矢量中第i个分量为pi(n),该分量值的计算公式为:In this step, the current frame is assumed to be the nth frame, and the i-th component in the ISF parameter prediction vector of the nth frame is set to p i (n), the calculation formula of this component value is:
其中,为第n-1帧量化后的无偏ISF参数矢量中的第i分量,如果n=1即当前帧为第一帧,则使用预置的初始值0来计算。上述公式中的αi为各维非等系数帧间预测器的预测系数,可以通过平方预测误差之和最小的方法,从训练语音序列中估计出来,并在确定之后保持恒定,这里所说的训练语音序列为从LP参数转化为ISF参数形成的序列,具体转化的方法为本领域技术人员公知的内容。αi具体的确定方法为:in, It is the i-th component in the unbiased ISF parameter vector after the quantization of the n-1th frame. If n=1, that is, the current frame is the first frame, use the preset The initial value of 0 to calculate. α i in the above formula is the prediction coefficient of the inter-frame predictor with non-equal coefficients in each dimension, which can be estimated from the training speech sequence by the method of minimizing the sum of the squared prediction errors, and remains constant after being determined. Here, The training speech sequence is a sequence formed by converting LP parameters into ISF parameters, and the specific conversion method is well known to those skilled in the art. The specific determination method of α i is:
设ISF参数预测残差矢量中的第i个分量的平方预测误差之和为:Let the sum of the squared prediction errors of the i-th component in the ISF parameter prediction residual vector be:
其中,Nf为训练序列的总帧数,ri(n)为当前帧ISF参数预测残差矢量的第i个分量值,该参量及其相关公式为本发明实施例提出,在本流程后续步骤将进行详细描述,这里是使用ri(n)相关公式ri(n)=zi(n)-pi(n)得出αi的训练公式。Wherein, N f is the total number of frames of the training sequence, r i (n) is the i-th component value of the ISF parameter prediction residual vector of the current frame, this parameter and its related formula are proposed by the embodiment of the present invention, and will be followed in this process The steps will be described in detail, here is the training formula for α i obtained by using the r i (n) correlation formula r i (n)=z i (n)−p i (n).
按照误差最小的方法,令δEi/δαi=0得到:According to the method of minimum error, set δE i /δα i = 0 to get:
计算时为了方便起见,在计算过程中使用zi(n-1)代替其中zi(n-1)为第n-1帧无偏ISF参数矢量的第i个分量。For the sake of convenience during calculation, z i (n-1) is used instead of Where z i (n-1) is the i-th component of the unbiased ISF parameter vector of frame n-1.
根据经验值,为了平衡ISF参数在无丢失帧和有丢失帧时的量化性能,本步骤中对训练出的各维非等系数帧间预测器的预测系数原始数值作一定的处理,具体的做法是将原始数值乘以0.5作为流程中使用的各维非等系数帧间预测器的预测系数。According to empirical values, in order to balance the quantization performance of ISF parameters when there are no missing frames and when there are missing frames, in this step, some processing is performed on the original values of the prediction coefficients of the trained inter-frame predictors with non-equal coefficients in each dimension. The specific method is to multiply the original value by 0.5 as the prediction coefficient of the inter-frame predictor with non-equal coefficients in each dimension used in the process.
计算当前帧ISF参数预测矢量中的每个分量,得到当前帧ISF参数的预测矢量。Each component in the ISF parameter prediction vector of the current frame is calculated to obtain the ISF parameter prediction vector of the current frame.
步骤102:将当前帧无偏ISF参数矢量与当前帧ISF参数的预测矢量相减,得到当前帧ISF参数预测残差矢量。Step 102: Subtract the current frame unbiased ISF parameter vector from the current frame ISF parameter prediction vector to obtain the current frame ISF parameter prediction residual vector.
本步骤中,根据步骤100中得到的当前帧无偏ISF参数矢量,及其步骤101中的到的当前帧ISF参数预测矢量,计算当前帧ISF参数预测残差矢量。设当前帧为第n帧,当前帧的ISF参数预测残差矢量的第i个分量为ri(n),计算公式为ri(n)=zi(n)-pi(n)。In this step, according to the current frame unbiased ISF parameter vector obtained in
计算当前帧ISF预测参差矢量的每个分量,得到当前帧ISF参数的预测残差矢量。Each component of the current frame ISF prediction stagger vector is calculated to obtain the prediction residual vector of the current frame ISF parameters.
步骤103:将当前帧ISF参数预测残差矢量进行分裂矢量量化。Step 103: Perform split vector quantization on the ISF parameter prediction residual vector of the current frame.
本步骤中,将步骤102中得到的当前帧ISF参数预测残差矢量r(n)分裂为五个子矢量,设为r(1)(n)、r(2)(n)、r(3)(n)、r(4)(n)和r(5)(n)。其中r(1)(n)、r(2)(n)、r(3)(n)、r(4)(n)都是3维矢量,r(5)(n)是4维矢量,对这五个子矢量分别使用表一中的比特数进行矢量量化。In this step, the current frame ISF parameter prediction residual vector r(n) obtained in
本发明实施例中,将量化后的ISF预测残差矢量分裂为五个子矢量作为一种较佳实施方式。由于在宽带语音编码中,LP系数取为16阶时才能较好的表征语音的谱包络,因此将ISF参数的阶数设为m=16。除分裂矢量量化的方法外,也可以采用其他矢量量化方法进行量化。In the embodiment of the present invention, splitting the quantized ISF prediction residual vector into five sub-vectors is a preferred implementation manner. Since in wideband speech coding, the spectral envelope of the speech can be better represented only when the LP coefficient is set to 16th order, the order of the ISF parameter is set to m=16. In addition to the split vector quantization method, other vector quantization methods can also be used for quantization.
表一Table I
使用量化误差平方作为量化过程中的失真测度,因此量化的过程就是在残差码书中寻找使下式值最小的那个码矢量索引号。The square of the quantization error is used as the distortion measure in the quantization process, so the quantization process is to find the code vector index number that minimizes the value of the following formula in the residual codebook.
其中,m和n表示ISF参数预测残差子矢量中的第一个和最后一个元素在整个ISF预测残差矢量中的元素序号。五个子矢量的量化分别对应不同的残差码书,设按照上述公式搜索到的五个码矢量索引号分别为:k1(n)、k2(n)、k3(n)、k4(n)和k5(n)。Wherein, m and n represent the element numbers of the first and last elements in the ISF parameter prediction residual sub-vector in the entire ISF prediction residual vector. The quantization of the five sub-vectors corresponds to different residual codebooks, and the index numbers of the five code vectors searched according to the above formula are: k 1 (n), k 2 (n), k 3 (n), k 4 (n) and k 5 (n).
本步骤中五个子矢量的量化分别使用5个不同的ISF残差码书,其中残差码书1包含1024个3维码矢量,残差码书2包含1024个3维码矢量,残差码书3包含512个3维码矢量,残差码书4包含512个3维码矢量,残差码书5包含256个4维码矢量。上述残差码书的训练均可以采用传统的LBG算法得到,训练数据为包含汉语、英式英语、美式英语、芬兰语、日语和法语在内的多语种数据库,长度约为2个小时,采样率为16kHz,精度为16位线性脉冲编码调制(PCM)。残差码书的具体训练步骤如下:The quantization of the five sub-vectors in this step uses 5 different ISF residual codebooks respectively, wherein the residual codebook 1 contains 1024 3-dimensional code vectors, and the residual codebook 2 contains 1024 3-dimensional code vectors. Book 3 contains 512 3-dimensional code vectors, residual code book 4 contains 512 3-dimensional code vectors, and residual code book 5 contains 256 4-dimensional code vectors. The training of the above residual codebooks can be obtained by using the traditional LBG algorithm. The training data is a multilingual database including Chinese, British English, American English, Finnish, Japanese and French. The length is about 2 hours. The rate is 16kHz and the precision is 16-bit linear pulse code modulation (PCM). The specific training steps of the residual codebook are as follows:
第一、由ISF训练矢量ω(n),利用下式计算ISF参数的均值矢量的第i个分量:
第二、计算出所有训练矢量的无偏ISF参数矢量;Second, calculate the unbiased ISF parameter vector of all training vectors;
第三、应用步骤101中的公式计算出无偏ISF参数矢量的预测矢量p(n)。Thirdly, calculate the prediction vector p(n) of the unbiased ISF parameter vector by applying the formula in
第四、应用步骤102中的公式计算ISF参数预测残差矢量序列{ri(n)},i=0,1,…,m-1,n=1,2,…,Nf,将每一个ISF参数残差矢量分裂成五个子矢量。Fourth, apply the formula in
第五、针对分裂出的第一个子矢量的训练序列
第六、采用LBG迭代算法重新划分胞腔并求取新形心Ri (n),i=0,1,…N1-1,具体的迭代算法为本领域技术人员公知内容。Sixth, the LBG iterative algorithm is used to re-divide the cell and obtain the new centroid R i (n) , i=0, 1, ... N 1 -1. The specific iterative algorithm is well known to those skilled in the art.
第七、计算平均失真D和相对失真如果相对失真
第八、此时码书即为第一个子矢量的最终码书。Eighth, the code book at this time That is, the final codebook of the first sub-vector.
针对 和
按照上述第一至第八步骤训练出的残差码书可以直接在本发明实施例的流程中使用。The residual codebook trained according to the above first to eighth steps can be directly used in the process of the embodiment of the present invention.
步骤104:将步骤103中得到的码书索引值进行二进制编码后写入码流。Step 104: Perform binary encoding on the codebook index value obtained in
步骤105:根据码书索引值重构当前帧量化后的ISF参数预测残差矢量。Step 105: Reconstruct the quantized ISF parameter prediction residual vector of the current frame according to the codebook index value.
本步骤中,根据已搜索到的码矢量索引值k1(n)、k2(n)、k3(n)、k4(n)和k5(n),重构出当前帧量化后的ISF预测残差矢量为:In this step, according to the searched code vector index values k 1 (n), k 2 (n), k 3 (n), k 4 (n) and k 5 (n), the current frame after quantization is reconstructed The ISF prediction residual vector is:
步骤106:计算当前帧量化后的无偏ISF参数子矢量。Step 106: Calculate the quantized unbiased ISF parameter subvector of the current frame.
本步骤中,利用步骤105中重构的当前帧ISF预测残差矢量,以及步骤102中定义的公式r(n)=z(n)-p(n),计算出当前帧量化后的无偏ISF参数子矢量分别为:In this step, the current frame ISF prediction residual vector reconstructed in
这些量化后的所有无偏ISF参数子矢量构成量化后的无偏ISF参数矢量,在下一帧的量化中,将使用当前帧计算出的无偏ISF参数矢量计算步骤101中的ISF参数预测矢量。All these quantized unbiased ISF parameter sub-vectors constitute a quantized unbiased ISF parameter vector. In the quantization of the next frame, the ISF parameter prediction vector in
步骤107:计算当前帧量化后的ISF参数矢量。Step 107: Calculate the quantized ISF parameter vector of the current frame.
本步骤中,利用步骤106中计算出的当前帧ISF参数和存储的ISF参数矢量均值,计算当前帧量化后的ISF参数矢量。In this step, the quantized ISF parameter vector of the current frame is calculated by using the current frame ISF parameter calculated in
经过上述步骤100~步骤107,本发明实施例提供的ISF参数矢量量化方法的编码过程结束。After the
图2示出了本发明实施例提供的ISF参数矢量量化方法中的解码端流程,在每一帧对ISF参数的矢量量化中,该流程包括:Fig. 2 shows the flow of the decoding end in the ISF parameter vector quantization method provided by the embodiment of the present invention. In the vector quantization of ISF parameters in each frame, the flow includes:
步骤200:从码流中解析码书索引值,从残差码书中查询码书索引值对应的当前帧量化后的ISF预测残差矢量。Step 200: Parse the codebook index value from the code stream, and query the quantized ISF prediction residual vector of the current frame corresponding to the codebook index value from the residual codebook.
本步骤中,在残差码书中根据码书索引值查询出当前帧量化后的ISF预测残差子矢量,分别记做
步骤201:使用各维非等系数帧间预测器的预测系数计算当前帧ISF参数预测矢量。Step 201: Calculate the ISF parameter prediction vector of the current frame by using the prediction coefficients of the non-equal-coefficient inter-frame predictors of each dimension.
设当前帧为第n帧,第n帧的ISF参数的预测矢量的第i个分量为pi(n),计算当前帧的ISF参数的预测矢量的方法为:Let the current frame be the nth frame, and the ith component of the predictive vector of the ISF parameter of the nth frame is p i (n), the method of calculating the predictive vector of the ISF parameter of the current frame is:
其中,m为ISF参数的阶数,为第n-1帧量化后的无偏ISF参数矢量的第i个分量,如果当前帧为第一帧,则使用预置的初始值0带入公式计算。将上述计算的所有分量组合起来构成当前帧ISF参数的预测矢量。Among them, m is the order of ISF parameters, It is the i-th component of the unbiased ISF parameter vector quantized for the n-1th frame. If the current frame is the first frame, use the preset The initial value 0 is brought into the formula calculation. All the components calculated above are combined to form the predictive vector of ISF parameters of the current frame.
步骤202:计算当前帧量化后的无偏ISF参数矢量。Step 202: Calculate the quantized unbiased ISF parameter vector of the current frame.
本步骤中,使用步骤200得到的当前帧量化后的ISF参数预测残差矢量和步骤201得到的ISF参数的预测矢量,计算当前帧量化后的无偏ISF参数子矢量分别为:In this step, using the quantized ISF parameter prediction residual vector of the current frame obtained in
将这五个量化后的无偏ISF参数子矢量组合起来,就得到当前帧量化后的无偏ISF参数矢量。在每一帧量化中得到的量化后的ISF参数矢量都将在下一帧中用作ISF参数预测矢量的计算。The five quantized unbiased ISF parameter sub-vectors are combined to obtain the quantized unbiased ISF parameter vector of the current frame. The quantized ISF parameter vector obtained in each frame of quantization will be used in the calculation of the ISF parameter prediction vector in the next frame.
步骤203:计算当前帧量化后的ISF参数矢量。Step 203: Calculate the quantized ISF parameter vector of the current frame.
本步骤中,使用步骤202计算的当前帧量化后的无偏ISF参数矢量与ISF参数均值矢量相加,得到当前帧量化后的ISF参数矢量,具体计算公式如下:In this step, the quantized unbiased ISF parameter vector of the current frame calculated in
经过步骤200~步骤203,本发明实施例提供的ISF参数矢量量化方法的解码过程结束。After
上述步骤100~步骤107,以及步骤200~步骤203合起来构成本发明实施例提供的ISF参数矢量量化方法的完整流程,其中步骤100~步骤107也可以作为本发明实施例提供的ISF参数矢量量化编码端方法的较佳实施方式,步骤200~步骤203也可以作为本发明实施例提供的ISF参数矢量量化解码端方法的较佳实施方式。The
最后对本发明实施例提供的ISF参数矢量量化的装置进行详细介绍。图3示出了本发明实施例提供的ISF参数矢量量化的装置结构示意图,该装置包括编码端单元和解码端单元,其中编码端单元包括:残差码书单元、加法器、分裂矢量量化编码模块、各维非等系数帧间预测器、分裂矢量量化解码模块、无偏ISF参数矢量重构模块和ISF参数矢量重构模块。解码端单元包括:残差码书单元、分裂矢量量化解码模块、无偏ISF参数矢量重构模块、各维非等系数帧间预测器和ISF参数矢量重构模块。该装置中的各个部件涉及到的计算,均可以使用本发明实施例中ISF参数矢量量化中所定义的公式和计算方法,作为本发明实施例ISF参数矢量量化装置的一种较佳实施方式。Finally, the device for vector quantization of ISF parameters provided by the embodiment of the present invention is introduced in detail. Figure 3 shows a schematic structural diagram of an ISF parameter vector quantization device provided by an embodiment of the present invention. The device includes an encoding end unit and a decoding end unit, wherein the encoding end unit includes: a residual codebook unit, an adder, a split vector quantization encoding module, non-equal coefficient inter-frame predictor of each dimension, split vector quantization decoding module, unbiased ISF parameter vector reconstruction module and ISF parameter vector reconstruction module. The decoding end unit includes: a residual codebook unit, a split vector quantization decoding module, an unbiased ISF parameter vector reconstruction module, an inter-frame predictor with non-equal coefficients in each dimension, and an ISF parameter vector reconstruction module. The calculations involved in each component in the device can use the formulas and calculation methods defined in the ISF parameter vector quantization in the embodiment of the present invention, as a preferred implementation mode of the ISF parameter vector quantization device in the embodiment of the present invention.
首先介绍编码端单元中的各个组成部分,编码端单元依次对每一帧进行ISF参数矢量量化,以下均按照帧为单位进行描述,设当前量化的是第n帧。Firstly, each component of the encoder unit is introduced. The encoder unit performs vector quantization of ISF parameters for each frame in turn. The following descriptions are made in units of frames, assuming that the current quantization is the nth frame.
各维非等系数帧间预测器,用于存储各维非等系数帧间预测器的预测系数,将各维非等系数帧间预测器的预测系数与无偏ISF参数矢量重构模块提供的上一帧量化后的无偏ISF参数矢量相乘,计算当前帧ISF参数的预测矢量并提供给分裂矢量量化解码模块和加法器。上述各维非等帧间系数预测器的预测系数由预先训练得到,训练的方法与本发明实施例提供的ISF参数矢量量化方法中所述相同,训练完成后存储在各维分等系数帧间预测器中保持恒定,供编码端单元中的其他部件使用。Each dimensional unequal coefficient inter-frame predictor is used to store the prediction coefficients of each dimensional unequal coefficient inter-frame predictor, and the prediction coefficients of each dimensional unequal coefficient inter-frame predictor are provided by the unbiased ISF parameter vector reconstruction module The unbiased ISF parameter vectors quantized in the previous frame are multiplied to calculate the predictive vector of ISF parameters in the current frame and provide it to the split vector quantization decoding module and adder. The prediction coefficients of the above-mentioned non-equal inter-frame coefficient predictors of each dimension are obtained by pre-training, and the training method is the same as that described in the ISF parameter vector quantization method provided by the embodiment of the present invention. remains constant in the predictor for use by other components in the encoder side unit.
加法器,用于将无偏ISF参数矢量产生模块提供的当前帧无偏ISF参数矢量与各维非等系数帧间预测器提供的当前帧ISF参数的预测矢量相减,计算当前帧ISF预测残差矢量提供给分裂矢量量化编码模块。The adder is used to subtract the unbiased ISF parameter vector of the current frame provided by the unbiased ISF parameter vector generation module from the predicted vector of the ISF parameter of the current frame provided by the non-equal coefficient inter-frame predictor of each dimension, and calculate the ISF prediction residual of the current frame The difference vector is provided to the split vector quantization encoding module.
残差码书单元,存储五个残差码书即残差码书1-5,为分裂矢量量化编码模块和分裂矢量量化解码模块提供查询。残差码书单元中存储的残差码书的具体训练方法与本发明实施例提供的ISF参数矢量量化方法中所述相同。The residual codebook unit stores five residual codebooks, that is, residual codebooks 1-5, and provides queries for the split vector quantization encoding module and the split vector quantization decoding module. The specific training method of the residual codebook stored in the residual codebook unit is the same as that described in the ISF parameter vector quantization method provided in the embodiment of the present invention.
分裂矢量量化编码模块,用于根据加法器提供的当前帧ISF参数预测残差矢量,从残差码书单元中查询当前帧码书索引值写入码流,将当前帧码书索引值提供给分裂矢量量化解码模块。The split vector quantization encoding module is used to predict the residual vector according to the current frame ISF parameters provided by the adder, query the current frame codebook index value from the residual codebook unit and write it into the code stream, and provide the current frame codebook index value to Split vector quantization decoding module.
分裂矢量量化解码模块,用于接收分裂矢量量化单元提供的当前帧码书索引值,在残差码书单元中搜索对应当前帧码书索引值的量化后ISF参数预测残差矢量,并提供给无偏ISF参数矢量重构模块。The split vector quantization decoding module is used to receive the current frame codebook index value provided by the split vector quantization unit, search for the quantized ISF parameter prediction residual vector corresponding to the current frame codebook index value in the residual codebook unit, and provide it to Unbiased ISF parameter vector reconstruction module.
无偏ISF参数矢量重构模块,用于将分裂矢量量化解码模块提供的当前帧量化后的ISF参数预测残差矢量与各维非等系数帧间预测器提供的当前帧ISF参数的预测矢量相加,计算当前帧量化后的无偏ISF参数矢量并缓存,在当前帧的下一帧将当前帧量化后的无偏ISF参数矢量提供给各维非等系数帧间预测器用作下一帧ISF参数的预测矢量的计算,在当前帧将当前帧量化后的无偏ISF参数矢量提供给ISF参数矢量重构模块。The unbiased ISF parameter vector reconstruction module is used to compare the current frame quantized ISF parameter prediction residual vector provided by the split vector quantization decoding module with the current frame ISF parameter prediction vector provided by the non-equal coefficient inter-frame predictor of each dimension Add, calculate the quantized unbiased ISF parameter vector of the current frame and cache it, and provide the unbiased ISF parameter vector of the current frame quantized to the non-equal coefficient inter-frame predictor of each dimension in the next frame of the current frame to be used as the ISF of the next frame For the calculation of the predictive vector of the parameter, the quantized unbiased ISF parameter vector of the current frame is provided to the ISF parameter vector reconstruction module in the current frame.
无偏ISF参数产生模块,用于存储ISF参数均值矢量,将当前帧ISF参数矢量与存储的ISF参数均值矢量相减,计算当前帧无偏ISF参数矢量提供给加法器。The unbiased ISF parameter generation module is used to store the ISF parameter mean vector, subtract the current frame ISF parameter vector from the stored ISF parameter mean vector, calculate the current frame unbiased ISF parameter vector and provide it to the adder.
上述编码端单元也可以作为本发明实施例提供的ISF参数矢量量化编码端装置的较佳实施方式,图4示出了本发明实施例提供的ISF参数矢量量化编码端装置的结构。The above encoding end unit can also be used as a preferred implementation of the ISF parameter vector quantization encoding end device provided by the embodiment of the present invention. FIG. 4 shows the structure of the ISF parameter vector quantization encoding end device provided by the embodiment of the present invention.
其次,介绍解码端单元中的各个组成部分,解码端单元依次对每一帧进行ISF参数矢量量化,以下均按照帧为单位进行描述。Next, introduce each component in the decoder unit. The decoder unit performs ISF parameter vector quantization on each frame in turn, and the following descriptions are made in units of frames.
各维非等系数帧间预测器,用于存储各维非等系数帧间预测器的预测系数;将各维非等系数帧间预测器的预测系数与无偏ISF参数矢量重构模块提供的上一帧量化后的无偏ISF参数矢量相乘,计算当前帧ISF参数的预测矢量提供给无偏ISF参数矢量重构模块。上述各维非等系数帧间预测器的预测系数由预先训练得到,训练方法与本发明实施例ISF参数矢量量化方法中所述相同,量化开始后存储在各维非等系数帧间预测器中保持恒定。Each dimensional unequal coefficient inter-frame predictor is used to store the prediction coefficients of each dimensional unequal coefficient inter-frame predictor; the prediction coefficients of each dimensional unequal coefficient inter-frame predictor and the unbiased ISF parameter vector reconstruction module provide The quantized unbiased ISF parameter vectors of the previous frame are multiplied to calculate the predicted vector of ISF parameters of the current frame and provided to the unbiased ISF parameter vector reconstruction module. The prediction coefficients of the above-mentioned non-equal coefficient inter-frame predictors of each dimension are obtained by pre-training, and the training method is the same as that described in the ISF parameter vector quantization method of the embodiment of the present invention, and are stored in each dimension non-equal coefficient inter-frame predictor after quantization starts keep constant.
无偏ISF参数矢量重构模块,将分裂矢量量化解码模块提供的量化后的当前帧ISF参数预测残差矢量与各维非等系数帧间预测器提供的当前帧ISF参数的预测矢量相加,计算当前帧量化后的无偏ISF参数矢量并缓存,在当前帧的下一帧将该矢量提供给各维非等系数帧间预测器,在当前帧将该矢量提供给ISF参数矢量重构模块。The unbiased ISF parameter vector reconstruction module adds the quantized current frame ISF parameter prediction residual vector provided by the split vector quantization decoding module to the current frame ISF parameter prediction vector provided by each dimension non-equal coefficient inter-frame predictor, Calculate the unbiased ISF parameter vector after quantization of the current frame and cache it, provide the vector to the non-equal coefficient inter-frame predictor in each dimension in the next frame of the current frame, and provide the vector to the ISF parameter vector reconstruction module in the current frame .
残差码书单元,存储五个残差码书即残差码书1-5,为分裂矢量量化解码模块提供查询。The residual codebook unit stores five residual codebooks, that is, residual codebooks 1-5, and provides queries for the split vector quantization decoding module.
分裂矢量量化解码模块,根据从编码端单元送入的码流中解析出码书索引值,在残差码书单元中查询当前帧量化后的ISF参数预测残差矢量,提供给无偏ISF参数矢量重构模块。The split vector quantization decoding module parses the codebook index value from the code stream sent from the encoder unit, and queries the quantized ISF parameters of the current frame in the residual codebook unit to predict the residual vector and provide it to the unbiased ISF parameter Vector reconstruction module.
ISF参数矢量重构模块,存储ISF参数均值矢量,将无偏ISF参数矢量重构模块提供的当前帧量化后的无偏ISF参数矢量与ISF参数均值矢量相加,计算当前帧量化后的ISF参数矢量。The ISF parameter vector reconstruction module stores the ISF parameter mean value vector, adds the unbiased ISF parameter vector after current frame quantization provided by the unbiased ISF parameter vector reconstruction module to the ISF parameter mean value vector, and calculates the current frame quantized ISF parameter vector.
上述解码端单元也可以作为本发明实施例提供的ISF参数矢量量化解码端装置的较佳实施方式。图5示出了本发明实施例提供的ISF参数矢量量化解码端装置的结构。The above decoding end unit can also be used as a preferred implementation mode of the ISF parameter vector quantization decoding end device provided by the embodiment of the present invention. FIG. 5 shows the structure of an ISF parameter vector quantization decoder device provided by an embodiment of the present invention.
本发明实施例提供的ISF参数矢量量化的装置,编码端单元可以按照本发明实施例提供的ISF参数矢量量化方法的编码过程工作,而解码端单元可以按照本发明实施例提供的ISF参数矢量量化方法的解码过程工作,该装置可以应用在宽带语音编解码系统中。In the ISF parameter vector quantization device provided by the embodiment of the present invention, the encoding end unit can work according to the encoding process of the ISF parameter vector quantization method provided by the embodiment of the present invention, and the decoding end unit can work according to the ISF parameter vector quantization provided by the embodiment of the present invention The decoding process of the method works, and the device can be applied in a wideband speech codec system.
将本发明实施例提供的ISF参数矢量量化的装置应用在实际的宽带语音编解码系统中,可以例举如下实施方式:Applying the ISF parameter vector quantization device provided by the embodiment of the present invention to an actual wideband speech codec system, the following implementation modes can be cited as examples:
在宽带代数码激励线性预测(Algebraic Code Excited Linear Prediction,ACELP)语音编码解码系统中的编码端,第一步,对预处理后的输入语音信号进行线性预测分析,分析帧长为30ms,其中20ms(256个样点)来自当前帧,5ms(64个样点)来自上一帧,5ms(64个样点)来自下一帧。窗函数采用集中于当前帧第四子帧出的非对称窗,该窗由两部分组成,第一部分是半个汉明窗(256点),第二部分是四分之一余弦函数(128点)。第二步,在加窗后的语音进行自相关估计,用滞后窗乘以自相关函数使其具有60Hz的带宽扩展。第三步,采用莱文逊-杜宾递归算法获取16阶LP系数。第四步,将LP系数转化为ISF参数。第五步,在本发明实施例提供的ISF参数矢量量化装置的编码端单元中对ISF参数进行量化,将得到的五个码书索引值写入码流。At the encoding end of the Algebraic Code Excited Linear Prediction (ACELP) speech encoding and decoding system, the first step is to perform linear prediction analysis on the preprocessed input speech signal, and the analysis frame length is 30ms, of which 20ms (256 samples) from the current frame, 5ms (64 samples) from the previous frame, and 5ms (64 samples) from the next frame. The window function adopts an asymmetric window focused on the fourth subframe of the current frame. The window consists of two parts. The first part is a half Hamming window (256 points), and the second part is a quarter cosine function (128 points). point). In the second step, autocorrelation estimation is performed on the speech after windowing, and the autocorrelation function is multiplied by the hysteresis window to make it have a bandwidth extension of 60 Hz. The third step is to use the Levinson-Durbin recursive algorithm to obtain the 16th-order LP coefficients. The fourth step is to convert the LP coefficients into ISF parameters. In the fifth step, the ISF parameters are quantized in the encoder unit of the ISF parameter vector quantization device provided by the embodiment of the present invention, and the obtained five codebook index values are written into the code stream.
在宽带ACELP语音编解码系统中的解码端,第一步,本发明实施例ISF参数矢量量化装置的解码端单元接收到来自编码端单元的码流后,根据解析出的五个码书索引值,还原量化后的ISF参数矢量。第二步,将还原的量化后ISF参数矢量转换成导抗谱频率对(Immittance Spectral Pairs,ISP)矢量,内插ISP矢量,得到四个子帧的ISP矢量,转换回ISF参数。第三步,将四个子帧的ISF参数转化为LP系数,解码完成。At the decoding end in the wideband ACELP speech codec system, in the first step, after the decoding end unit of the ISF parameter vector quantization device according to the embodiment of the present invention receives the code stream from the encoding end unit, according to the parsed five codebook index values , to restore the quantized ISF parameter vector. In the second step, the restored quantized ISF parameter vectors are converted into Immittance Spectral Pairs (ISP) vectors, the ISP vectors are interpolated to obtain the ISP vectors of four subframes, and converted back to ISF parameters. In the third step, the ISF parameters of the four subframes are converted into LP coefficients, and the decoding is completed.
上述应用在具体编解码系统中的实施方式中,本发明实施例提供的ISF参数矢量量化装置完成对由LP参数转化的ISF参数的矢量量化,量化时使用了本发明实施例ISF参数的矢量量化方法中的编码过程和解码过程。通过如下实验结果,说明本发明实施例提供的ISF参数的矢量量化方法和装置取得的效果:In the implementation of the above-mentioned application in a specific codec system, the ISF parameter vector quantization device provided by the embodiment of the present invention completes the vector quantization of the ISF parameter converted from the LP parameter, and the vector quantization of the ISF parameter in the embodiment of the present invention is used for quantization The encoding process and decoding process in the method. The effect obtained by the vector quantization method and device for ISF parameters provided by the embodiment of the present invention is illustrated by the following experimental results:
用训练语音外的345秒(17250帧)汉语语音产生17250个ISF参数矢量。实验表明,按国际通用的谱失真计算方法,在无丢失帧的情况下,用46比特每帧量化得到的平均谱失真为0.787173dB,谱失真介于2dB和4dB之间的帧百分比仅为0.968%,而平均谱失真大于4dB的百分比为零,其量化性能达到了透明量化的标准。在有丢失帧的情况下,只用前一接收帧的信息就能恢复出本帧的ISF参数,并且错误的延续性能够保持在几帧之内,从听觉上讲恢复出的语音没有明显的厌恶声。17250 ISF parameter vectors were generated with 345 seconds (17250 frames) of Chinese speech outside the training speech. Experiments show that, according to the internationally accepted spectral distortion calculation method, in the case of no lost frames, the average spectral distortion obtained by quantizing each frame with 46 bits is 0.787173dB, and the percentage of frames with spectral distortion between 2dB and 4dB is only 0.968 %, and the percentage of average spectral distortion greater than 4dB is zero, and its quantization performance has reached the standard of transparent quantization. In the case of a lost frame, only the information of the previous received frame can be used to restore the ISF parameters of this frame, and the continuity of the error can be kept within a few frames. Disgusting sound.
以上所述的具体实施例,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施例而已,并不用于限定本发明的保护范围,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。The specific embodiments described above have further described the purpose, technical solutions and beneficial effects of the present invention in detail. It should be understood that the above descriptions are only specific embodiments of the present invention and are not intended to limit the scope of the present invention. Protection scope, within the spirit and principles of the present invention, any modification, equivalent replacement, improvement, etc., shall be included in the protection scope of the present invention.
Claims (21)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNA2007100031936A CN101256773A (en) | 2007-02-28 | 2007-02-28 | Vector Quantization Method and Device for Frequency Parameters of Immittance Spectrum |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNA2007100031936A CN101256773A (en) | 2007-02-28 | 2007-02-28 | Vector Quantization Method and Device for Frequency Parameters of Immittance Spectrum |
Publications (1)
Publication Number | Publication Date |
---|---|
CN101256773A true CN101256773A (en) | 2008-09-03 |
Family
ID=39891529
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNA2007100031936A Pending CN101256773A (en) | 2007-02-28 | 2007-02-28 | Vector Quantization Method and Device for Frequency Parameters of Immittance Spectrum |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101256773A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009056047A1 (en) * | 2007-10-25 | 2009-05-07 | Huawei Technologies Co., Ltd. | A vector quantizating method and vector quantizer |
CN101895373A (en) * | 2010-07-21 | 2010-11-24 | 华为技术有限公司 | Channel decoding method, system and device |
CN101937680A (en) * | 2010-08-27 | 2011-01-05 | 太原理工大学 | Codebook classification rearrangement vector quantization method and its vector quantizer |
CN101770777B (en) * | 2008-12-31 | 2012-04-25 | 华为技术有限公司 | A linear predictive coding frequency band extension method, device and codec system |
CN105244034A (en) * | 2011-04-21 | 2016-01-13 | 三星电子株式会社 | Apparatus for quantizing linear predictive coding coefficients, sound encoding apparatus, apparatus for de-quantizing linear predictive coding coefficients, sound decoding apparatus, and electronic device therefor |
-
2007
- 2007-02-28 CN CNA2007100031936A patent/CN101256773A/en active Pending
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009056047A1 (en) * | 2007-10-25 | 2009-05-07 | Huawei Technologies Co., Ltd. | A vector quantizating method and vector quantizer |
CN101770777B (en) * | 2008-12-31 | 2012-04-25 | 华为技术有限公司 | A linear predictive coding frequency band extension method, device and codec system |
CN101895373A (en) * | 2010-07-21 | 2010-11-24 | 华为技术有限公司 | Channel decoding method, system and device |
CN101895373B (en) * | 2010-07-21 | 2014-05-07 | 华为技术有限公司 | Channel decoding method, system and device |
CN101937680A (en) * | 2010-08-27 | 2011-01-05 | 太原理工大学 | Codebook classification rearrangement vector quantization method and its vector quantizer |
CN101937680B (en) * | 2010-08-27 | 2011-12-21 | 太原理工大学 | Vector quantization method for sorting and rearranging code book and vector quantizer thereof |
CN105244034A (en) * | 2011-04-21 | 2016-01-13 | 三星电子株式会社 | Apparatus for quantizing linear predictive coding coefficients, sound encoding apparatus, apparatus for de-quantizing linear predictive coding coefficients, sound decoding apparatus, and electronic device therefor |
CN105244034B (en) * | 2011-04-21 | 2019-08-13 | 三星电子株式会社 | For the quantization method and coding/decoding method and equipment of voice signal or audio signal |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11721349B2 (en) | Methods, encoder and decoder for linear predictive encoding and decoding of sound signals upon transition between frames having different sampling rates | |
US7805314B2 (en) | Method and apparatus to quantize/dequantize frequency amplitude data and method and apparatus to audio encode/decode using the method and apparatus to quantize/dequantize frequency amplitude data | |
Milner et al. | Speech reconstruction from mel-frequency cepstral coefficients using a source-filter model. | |
CN105741846A (en) | Apparatus and method for determining weighting function, quantization device and quantization method | |
CN101615396A (en) | Audio encoding device, audio decoding device and method thereof | |
JPH09127990A (en) | Voice coding method and device | |
CN101256773A (en) | Vector Quantization Method and Device for Frequency Parameters of Immittance Spectrum | |
CN1420487A (en) | Method for quantizing one-step interpolation predicted vector of 1kb/s line spectral frequency parameter | |
Gueham et al. | An enhanced insertion packet loss concealment method for voice over IP network services | |
Ai et al. | A low-bitrate neural audio codec framework with bandwidth reduction and recovery for high-sampling-rate waveforms | |
JPH08194497A (en) | Acoustic signal conversion coding method and decoding method thereof | |
KR100701253B1 (en) | Voice Encoding Method and Apparatus for Server-based Speech Recognition in Mobile Communication Environments | |
Sarkar et al. | Dynamic programming based segmentation approach to LSF matrix reconstruction. | |
Huong et al. | A new vocoder based on AMR 7.4 kbit/s mode in speaker dependent coding system | |
HK40036813A (en) | Methods, encoder and decoder for linear predictive encoding and decoding of sound signals upon transition between frames having different sampling rates | |
HK40057033A (en) | Method, apparatus and memory for use in a sound signal encoder and decoder | |
HK40036813B (en) | Methods, encoder and decoder for linear predictive encoding and decoding of sound signals upon transition between frames having different sampling rates | |
Yeh et al. | Computational Reduction For G. 729’s LSP Quantization | |
HK40011418A (en) | Method, device and computer-readable non-transitory memory for linear predictive encoding and decoding of sound signals upon transition between frames having different sampling rates | |
HK40011418B (en) | Method, device and computer-readable non-transitory memory for linear predictive encoding and decoding of sound signals upon transition between frames having different sampling rates | |
Raza et al. | Implementation of Voice Excited Linear Predictive Coding (VELP) on TMS320C6711 DSP Kit | |
SHISHIBORI et al. | AN EVALUATION OF JAPANESE SPEECH RECOGNITION USING ETSI STANDARD DSR FRONT-END | |
Lee et al. | A CELP coder using MFCC for server-based speech recognition in mobile. | |
HK1227168A1 (en) | Methods, encoder and decoder for linear predictive encoding and decoding of sound signals upon transition between frames having different sampling rates |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
WD01 | Invention patent application deemed withdrawn after publication |
Open date: 20080903 |